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Background 

• In the 1950’s and 1960’s DoD and 
NASA requirements drove the 
development of large scale LH2 
systems 

• Kennedy Space Center has not 
substantially changed its LH2 
hardware or processes since that 
time 

• Inefficiencies lead to the loss of 
almost 50% of liquid hydrogen 
purchased during the shuttle 
program 

• Some technology development work 
done with densified propellants but 
never incorporated by NASA 
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Integrated Refrigeration and Storage (IRAS) 

• Interface a cryogenic refrigerator to a 
liquid hydrogen storage tank via an 
internal heat exchanger 

• Remove energy directly from the liquid 
to control bulk fluid 

• Enables Full Control Storage, including 
Zero Boil-Off, Densification, and 
Liquefaction 

• NASA and DoE funded small scale LH2 
IRAS proof of concept demonstration 
from 2002-2006 

• NASA funded IRAS Heat Exchanger 
characterization tests in 2008-2009 
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Densification Benefits 

Image Credit : [8] 

• Additional payload to orbit of 
4.9% to 17.5% for liquid, up to 
26% for slush 

• Enables advanced capabilities 
such as reusability 
(SpaceX Falcon 9) 

Image Credit : [4] 

• Additional energy storage 
capacity and enthalpy margin 

Properties of para-hydrogen from RefProp Version 8 
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GODU-LH2 Project 

• Ground Operations Demonstration Unit 
for Liquid Hydrogen (GODU-LH2) project 
ran from 2012 to 2016 

• IRAS tech development and scale-up 

Project Goal 
Demonstrate cost efficient cryogenic operations 
using IRAS, on a relevant scale that can be projected 
onto future Spaceport architectures 

Primary Technical Objectives 
1. Demonstrate large scale zero loss storage and 

transfer of LH2 

2. Demonstrate hydrogen densification inside the 
storage tank 

3. Demonstrate in situ hydrogen liquefaction 
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IRAS Tank 

• Originally constructed in 1991 for Titan-Centaur 
program 

• 33,000 gallons (125, m3) of NBP LH2 storage 

• Modified into an IRAS tank by incorporating an internal 
HX, stiffening rings, temperature rakes, and man-way 
feed-through 
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Site Build-Up 

September 14th, 2012 
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Site Build-Up 

October 30th, 2014 
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Site Build-Up 



GODU-LH2 Functional Diagram 
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 “Bird’s-eye View” of GODU-LH2 Site 
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Test Matrix and Timeline 

• Completed Test Readiness Review on February 12, 2015 
• First tanker offload occurred May 21, 2015 
• Refrigerator contamination from October 2015 until March 2016 
• Compressed testing from March 2016 until October 2016 
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Inner Tank Instrumentation 

100% 

67% 

46% 

33% 

Accuracies 
Diodes: ±0.5 K from 450 K to 25 K, and ±0.1 K from 25 K to 1.5 K 
Pressure Transducers: ±6.89 kPa (1% of full scale) 
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Zero-Loss Tank Chilldown Test Results 

• Initial Conditions 
• 99.95% GH2 at 300 K and 40 psia. 

• Lock up tank and turn on 
refrigerator at T-0. 

• Add GH2 as tank pressure 
decreases 

• Final Conditions 
• Tank near isothermal at 20.8K - 22.4 K 

and 14.7 psia 
• Saturated vapor with condensation 

on HX tubing 

• Multiple lessons learned would 
decrease total timeline in the 
future Conclusion: IRAS enables zero-loss chilldown of a large cryogenic vessel 

Pressure 

Temperatures 

GH2 Fills 
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Zero-Loss Tanker Offload Test Results 

• Based on STS Program 
data, 13% of purchased 
LH2 is lost due to 
transport and offload 
inefficiency 

• Heat from transport and 
line chilldown can be 
removed by refrigerator, 
allowing no loss offload 

• Zero-loss tanker offloads 
were achieved at 33%, 
67%, and 100% fill levels 

Pressure 

Temperatures 

Conclusion: IRAS enables zero-loss tanker offloads at all fill levels 
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Boil-off Heat Leak Test Results 

• Boil off testing to quantify 
heat leak was conducted 
at 3 fill levels 

• Vented thru control valve 
and mass flow meter 

• Pre-test analysis 
estimated 300 W 

�̇�𝐐 = �̇�𝐦 ∗ 

Ullage Temp (top of tank), Avg. = 49.5 K 

Mass Flow, Avg. = 255 splm 

Liquid Temp, Avg. = 20.2 K 

Pressure, Avg. = 15.2 psia 

𝐡𝐡𝐟𝐟𝐟𝐟 + 𝐡𝐡𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐟𝐟𝐮𝐮 − 𝐡𝐡𝐬𝐬𝐮𝐮𝐬𝐬,𝐯𝐯𝐮𝐮𝐯𝐯𝐯𝐯𝐯𝐯 [𝐖𝐖] 

Conclusion: Tank heat leak was quantified at three fill 
levels and agreed closely with pretest estimates 
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ZBO Pressure Control Test Results 

• GODU-LH2 software 
controlled refrigerator to 
achieve and maintain IRAS 
tank pressure set-point. 

• No LN2 pre-cooling used 

• Approach set points from 
above and below 

• Pressure stability +/- 0.5% 
for all three fill levels 

• Near isothermal 
temperature profile 
following saturation line 

Pressure 

Temperatures 

Set Points 

Conclusion: IRAS using tank pressure control achieves ZBO 
and provides complete control over the state of the fluid 18 



 

 
  

 

 
 

  

       
     

ZBO Temperature Control Test Results 

• Linde software controlled 
refrigerator to achieve 
and maintain constant 
helium supply 
temperature. 

• No LN2 pre-cooling used 

• Helium supply 
temperature response 
fast and accurate 

• But LH2 takes long time 
period to reach 
equilibrium state 

Pressure 

Temperatures 

Conclusion: IRAS using supply temperature control achieves ZBO 
but takes a long time to reach LH2 equilibrium state 
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ZBO Duty Cycle Test Results 

• ZBO achieved in batch 
processes by turning on and 
off the refrigerator as required 

• Testing was both accidental 
and purposeful 

• Minimum electrical cost but 
depends on multiple start/stop 
cycles of cryogenic equipment 

• Duty cycle varied from 1.13 
(33%) to 1.16 (67%) to 3.6 
(100%) on/off with no LN2 
precooling 

Pressure 

Temperatures 

Conclusion: IRAS using duty cycling of the refrigerator achieves ZBO 
with minimal energy but provides no control of LH2 state 
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Liquefaction Test Results 

• GH2 was controlled using 
a mass flow controller 
until the tank pressure 
remained constant. 

• NOT optimized for 
liquefaction.  GH2 was 
fed in at ambient 
temperature. 

• Using LN2 pre-cooling, 
roughly 78 gal of LH2 was 
produced during the test. 

Pressure GH2 Mass 
Flow Rate 

Liquid Level 
Reading 

Conclusion: Hydrogen liquefaction was achieved using IRAS, 
though the current system was not optimized for yield 
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Densification Test Results 

• System performance exceeded 
expectations! Min temp was 
expected to be ≈15 K 

• Fridge ran with LN2 precooling, 
and densified 13,000 gallons of 
LH2 for 14 days. 

• LH2 cooled below the triple point. 
Minimum temp recorded was 
12.6 K (-437°F) 

• Estimated that 3,700 lb of 
hydrogen ice was formed during 
the course of testing; or about 
5,100 gal 

Temperatures 

Pressure 

Conclusion: IRAS enables propellant densification down to the freezing point 
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 Solid Hydrogen Production 

H2 Ice Production 
≈ 85 hrs 

46% LH2 Fill Level Test 
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 Solid Hydrogen Production 

H2 Ice Production 
≈ 85 hrs 

67% LH2 Fill Level Test 
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Conclusions 

• The GODU-LH2 system successfully met all test 
objectives at the 33%, 46%, 67%, and 100% tank fill 
levels 

• Complete control over the state of the fluid has been 
demonstrated using Integrated Refrigeration and 
Storage (IRAS) 
– First large-scale demonstration of Full Control Storage of LH2 

– Almost any desired point within the liquid phase envelop can 
essentially be “dialed in” and maintained indefinitely 

• System can also be used to produce densified/slush 
hydrogen in large quantities 

25 



 

  

  
   
 

Current Status of the System 

• Refrigeration system consolidated into a single 
40’ shipping container 

• IRAS tank and fridge currently installed at Test 
Stand 300 at NASA-MSFC in Alabama for an 
upcoming densification loading test 
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 Thank you for your attention! 

Questions? 
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