

Smart Building Start

Technology Commercialization Fund (TCF) Project

Target: buildings with centralized HVAC and multiple zones

Pacific Northwest National Laboratory Timothy Salsbury, Ph.D., Staff Scientist (509) 372-4709 timothy.salsbury@pnnl.gov

Project Summary

Timeline:

Start date: Jan 1, 2021

Planned end date: June 30, 2022

Key Milestones

1. Literature Review; 3/31/2021

2. Standalone algorithm; 6/30/2021

3. Distributed algorithm; 8/30/2021

4. Simulation Testing; 12/31/2021

5. VOLTTRON™ implementation; 12/31/2021

6. Field Tests; 6/30/2022

Budget:

Total Project \$ to Date:

DOE: \$104K (07/23/2021)

Cost Share: \$37K (06/30/2021)

Total Project:

DOE: \$250K

Cost Share: \$250K

Key Partners:

Pacific Northwest	www.pnnl.gov
V verdicity	www.verdicity.com

Verdicity is a marketplace for open-source smart building solutions, to accelerate widespread adoption of a unifying data platform for commercial and multifamily residential real estate.

Project Outcome:

- Scalable and easily deployable algorithm that optimizes HVAC scheduling
- Documented results from rigorous simulation testing of algorithm
- Algorithm implemented in VOLTTRONTM platform and field tested
- Algorithms fully documented and publicly disseminated for wide-scale industry adoption

Team

Tim

Salsbury

Austin Rogers

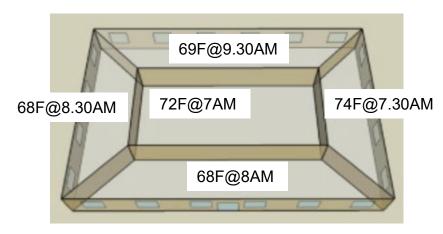
Karthikeya **Devaprasad**

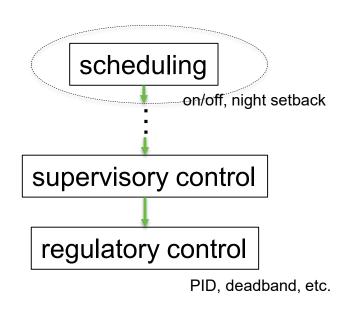
Robert Lutes

- Research, math, proofs
- Algorithm development
- Coding
- Simulation testing
- **VOLTTRON** implementation

Pete **Scanlon**

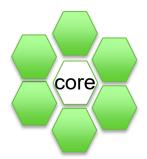
Rick Justis

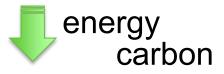

Andrew Rodgers


- User experience
- Product implementation
- Field testing
- Commercialization

Challenge

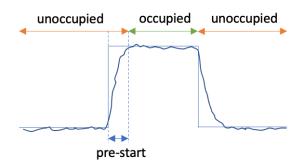
- Scheduling of HVAC equipment is critical but underdeveloped and often ad-hoc in buildings
 - How can optimal schedules be determined?
- **Buildings often have many zones with different** schedules and different responses
 - How can different responses be predicted and coordinated?




control layers

Challenge

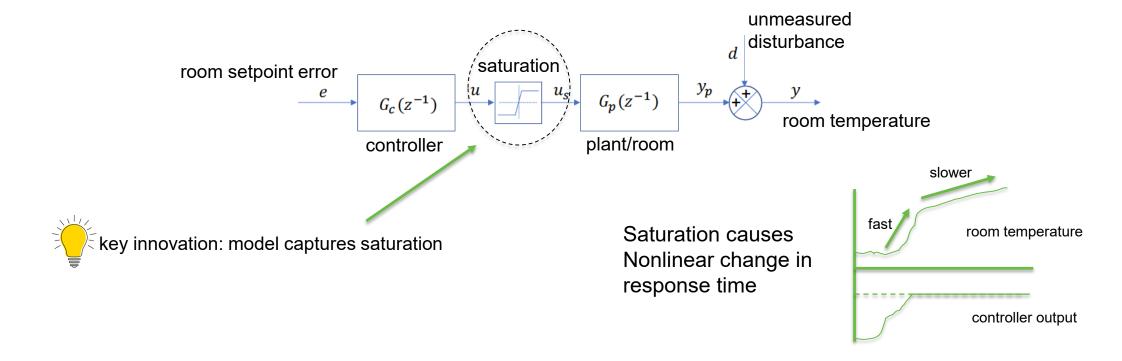
- Create a core optimization framework for HVAC system scheduling that:
 - is <u>simple</u>, <u>scalable</u>, and <u>easily deployable</u> to different types of buildings
 - has self-learning capability to adapt to changing conditions
 - exceeds the performance and capability of the current state-of-the-art


- Contribute to energy efficiency and carbon reduction goals by:
 - minimizing the energy used to achieve comfort requirements
 - enabling scheduling to be used as a grid service

Approach

- **Break the problem into TWO parts:**
 - (1) Individual zones
 - Learn the response of each individual zone so it can be predicted in the future

Individual Rooms



- (2) Central system
 - Consolidate individual room information to optimize central system scheduling

minimize
$$f_0(t_s)$$

subject to $f_i(t_s) \leq b_i, i = 1, ..., m$.

Approach: Individual Zones

- Time series model of the room response that adapts over time
 - Recursive least squares + forgetting
 - Controller and "plant" modeled separately

Approach: Central System

- Minimize run time (could also be cost) subject to constraints
 - Consolidate room predictions of discomfort (setpoint error) and combine all rooms based on user specified priority to create building comfort measure

Room	1	2	3	4	5
Demand	0	0	1	1	0
Error @ occ.	3.2	2.4	3.6	1.2	4
Priority	0	1	1	1	2

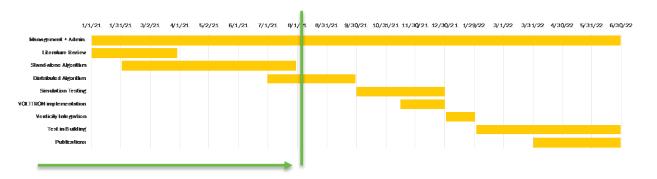
Solve optimization that allows trade-off between comfort and energy use/cost

minimize
$$t_s$$
 subject to $\frac{1}{N_M} \sum_{i=1}^{N_M} |e_i(t_s)| \le c_{lim}$ $e_i(t_s) \le c_{lim}, \ i = 1, \dots, N_H$.

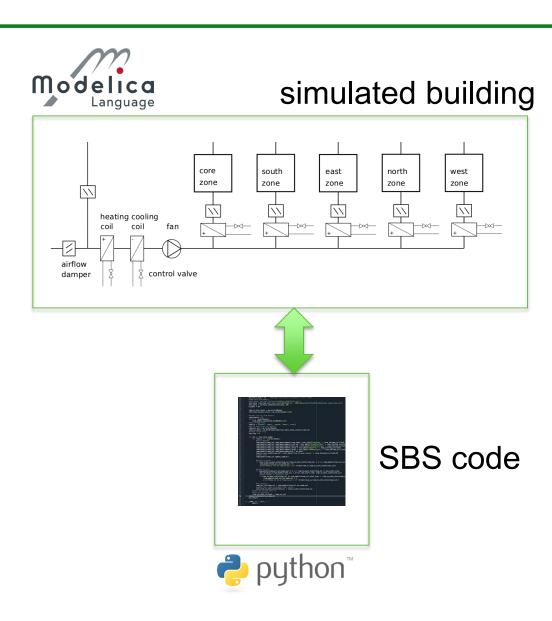
Impact

Energy use (and carbon) reduction

 Theoretical maximum energy savings of 33% during the start-up phase with equivalent comfort compared to state of the art (representative zone)

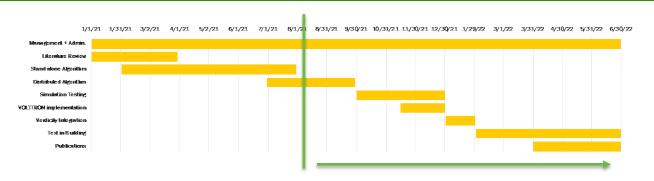

Key differentiators from state-of-the-art

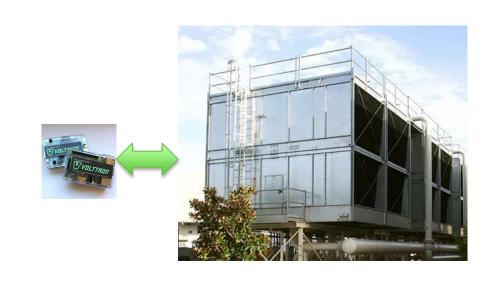
- Distributed approach that manages and coordinates multiple schedules
- More accurate response prediction via control saturation modeling
- Flexible framework for cost/energy optimization
- Low configuration and set-up self-learning and adaptive
- Controllable trade-off between comfort and energy


Market potential

- Applicable to all types of buildings with multiple controllable zones
- Flexible deployment options: cloud, BAS, smart thermostat, etc.

Progress: FY21


- Literature review done to be incorporated in final report
- Algorithm formulated and documented
- Alpha version implemented in Python
- Testing using LBNL Modelica Buildings Library
 - DOE Commercial Building Benchmark, Medium Office
 - ASHRAF-2006 5-zones VAV with reheat
- Algorithm validated offline with data from simulation
- **Active testing underway (ahead of schedule)**
 - "product-ready" code in Python used in active testing
 - simulation is real building substitute


Stakeholder Engagement

- Real-world commercialization with project partner Verdicity
 - The project team plans to offer SBS packages directly to Verdicity customers and channel partners.
 - Targeted stakeholders include: The City of Kansas City, MO, Akron Energy Services/City of Akron, OH, and between 1-10 public school systems across 6 states.
- Accelerating market adoption of integrated smart controls/smart building/smart grid solutions
 - Shared commitment to open, widely available technology, coupled with standards-based processes, languages and ontologies
 - Publish updates to the VOLTTRON™ platform code base to extend its usefulness to district energy and connected community deployments, to publicly available websites such as the Eclipse Foundation, DOE/PNNL's volttron.org, and GitHub.com.
 - Publish the research findings of the project, including supporting data, to freely available platforms and publications, or at conferences.

Remaining Project Work

- Active simulation testing
 - Quantify energy savings + comfort compared with traditional strategies
 - Debug edge cases
- Implementation in VOLTTRON™ and code validation
 - Python code clean up and streamline
- Integration in Verdicity controls library
 - Touchpoints and interfaces
- Field testing
 - Test data analysis
 - Document performance
 - Troubleshoot problems

Thank You

Pacific Northwest National Laboratory
Timothy I Salsbury, Staff Scientist
timothy.salsbury@pnnl.gov

REFERENCE SLIDES

Project Budget

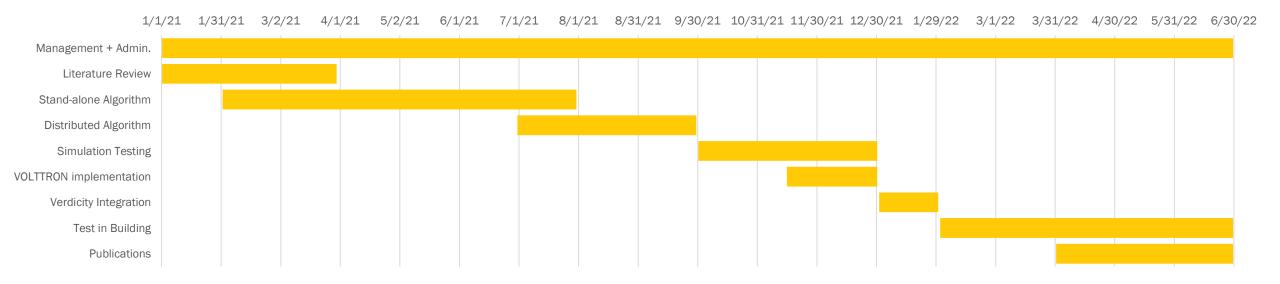
Project Budget: PNNL 250K over 18 months, uniform spend rate; Cost share 250K end weighted

for field testing etc.

Variances: No/minor variances

Cost to Date: ~104K DOE; 78K Cost Share

Additional Funding: None


Budget History						
FY 2020 (past)		1/1/21 - FY 2021 (current)		FY 2022 - 6/30/22 (planned)		
	DOE	Cost-share	DOE	Cost-share	DOE	Cost-share
0		0	125K	78K	125K	172K

Project Plan and Schedule

Project Summary

- Start date 1/1/2021 planned completion 6/30/2022
- Project is slightly ahead of schedule

Smart Building Start			DURATION
START DATE	END DATE	DESCRIPTION	(days)
1/1/21	6/30/22	Management + Admin.	545
1/1/21	3/31/21	Literature Review	89
2/1/21	7/31/21	Stand-alone Algorithm	180
7/1/21	9/30/21	Distributed Algorithm	91
10/1/21	12/31/21	Simulation Testing	91
11/15/21	12/31/21	VOLTTRON implementation	46
1/1/22	1/31/22	Verdicity Integration	30
2/1/22	6/30/22	Test in Building	149
4/1/22	6/30/22	Publications	90

