
NG blend with hydrogen fuel cooking appliances

ORNL, Southern California Gas, Samsung Electronics America Praveen Cheekatamarla, Senior R&D staff 865.341.0417, cheekatamapk@ornl.gov

Project Summary

Timeline:

Start date: 03/05/2021 (New project) Planned end date: 12/30/2022

Key Milestones

- Single burner evaluation: 11/30/2021
- Fuel-flexible cooking appliance fabricated: 5/30/2022 2.
- 3. Prototype appliance with hydrogen blends: 08/31/2022

Budget:

Total Project \$ to Date:

- DOE: \$250k
- Cost Share: \$200k

Total Project \$1000k

- DOE: \$500k
- Cost Share: \$470k (CRADA, SCG)
- Cost Share: \$30k (in-kind, SEA)

Key Partners:

Southern California Gas – cooperative research and development agreement (CRADA) partner

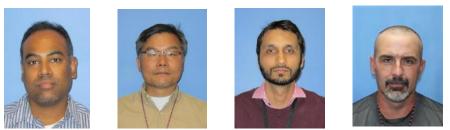
Samsung Electronics America – in-kind cost share partner

Renewable Hydrogen Alliance*

Northwest Natural*

* General interest in the project progress

Project Outcome:


- Enabling renewable hydrogen utilization in buildings
- Cooking energy carbon footprint reduction by >30%

A clean, safe, fuel-flexible cooking appliance fueled by renewable hydrogen blended fuel.

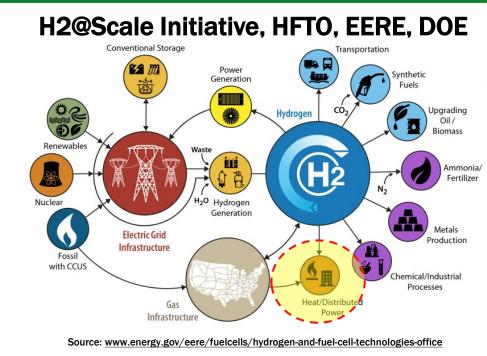
Key objectives:

- Novel heterogeneous oxidation technology
- Flashback safety 2.
- 3. Non-precious metal based catalytic oxidation at moderate operating temperatures

Team

- Praveen Cheekatamarla Product design and development (FY21 FY23), 16 years of industrial experience in thermo-chemical and thermo-electrochemical systems, hydrogen and fuel cells
- Zhiming Gao product design and development, heat transfer, integration, safety (FY22, FY23), 16 years of research experience in building equipment
- Viral Patel system design and integration, heat transfer (FY22, FY23), 6 years of research experience in building appliances
- Brian Goins system evaluation, installation (FY22), 30 years of experience in building equipment

Cost share partner – nation's largest gas distribution utility, SoCalGas delivers affordable, reliable, clean and increasingly renewable gas service to 21.8 million customers.


SAMSUNG

Technical cost share partner – Leading appliance manufacturer with a full line of major appliance products.

Challenge

Green hydrogen for decarbonization:

- Clean, sustainable hydrogen from domestic renewable energy resources
- Long-term energy storage (of excess renewables) in chemically bound form at a utility scale
- Affordable clean energy transition
- Decarbonization of all sectors buildings, transportation, and industrial

~ 100 million metric tons of CO₂ emissions per year by cooking equipment in residential and commercial buildings

- Renewable hydrogen can significantly decarbonize cooking appliance energy consumption, but faces technical barriers
- This project aims to enable green hydrogen introduction (>30%) and utilization in cooking appliances in residential and commercial buildings

Impact

- Fuel consumption by cooking equipment in buildings
 - > 33% of residential buildings use fuel for cooking, ~930TBtu (RCES¹, EIA)
 - Commercial buildings (mostly food service industry): ~805TBtu (CBECS², EIA)
 - Combined CO_2 footprint = 97Mt/yr
- Renewable hydrogen for cooking alone can lower this impact by > 30% if blended with gas
- Extension to space & water heating can potentially decrease ~ 379 Mt CO_2/yr
- Commercial food service process
 - highest energy intensive segment in commercial sector (> 275,000 Btu/ft²)
 - difficult to electrify
 - 23% of commercial building fuel usage is consumed by cooking
- Cooking carbon footprint reduction via renewable hydrogen

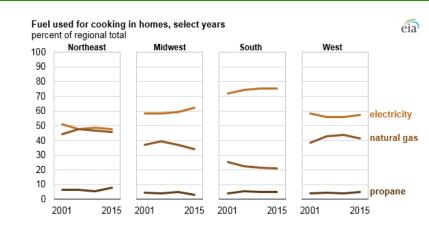
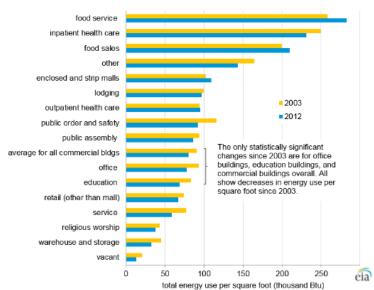
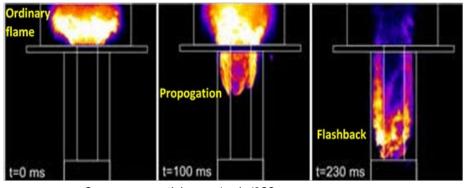
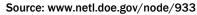
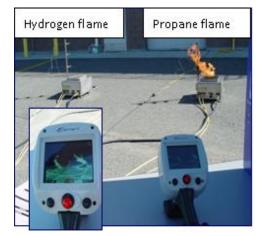



Figure 4. Food service buildings and hospitals are the most intensive users of energy overall




Source: U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey.


Challenge

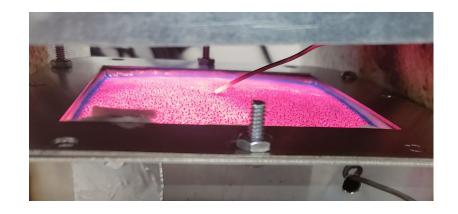
Research gaps associated with hydrogen usage in building equipment

- Design and operational challenges
 - High flame velocity flame propagation from combustion to premix zones, leading to flashback
 - High flame temperature thermal NOx
- Appliance efficiency
- Combustion visibility and flame stability
- Energy modulation capability (turn-down)

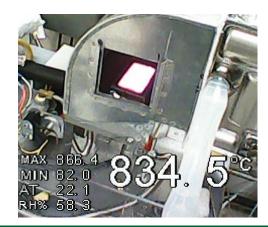
Source: h2tools.org/bestpractices/hydrogen-flames

Approach

- Heterogeneous (catalytic) oxidation via engineered surface burner
- Fast response, shock resistant design
- Flame propagation pathway smaller than flame-quench diameter flashback safety
- Provide reaction zone extension for complete oxidation at moderate temperatures – wide turn-down and air-to-fuel ratios
- Non-precious metal catalyst
- Infrared (IR) heat output: efficient direct energy transfer

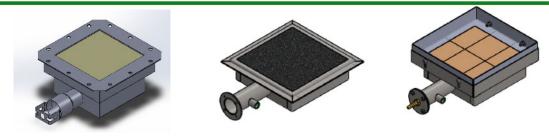

Approach

Design Considerations

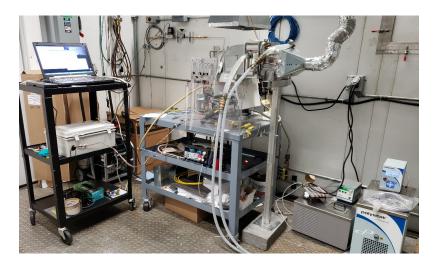

- Address adiabatic flame temperature rise and flashback/autoignition of hydrogen fuel blends
- -Moderate temperature requirement for cooking (>1500 deg C source vs
 - < 800 deg C need)
- -Emissions suppression
- -Efficiency
- -Turn-down
- -Reliability and robustness
- Safety, controllability and high exothermicity at moderate temperatures

Progress

- Project began in Q3, FY 2021
- Current status: early stage
- CRADA executed
- Completed 4 milestones on time
- Identified critical design requirements
- Preliminary design concept evaluation with 35% hydrogen blend



• Based on a comprehensive survey of commercial product line

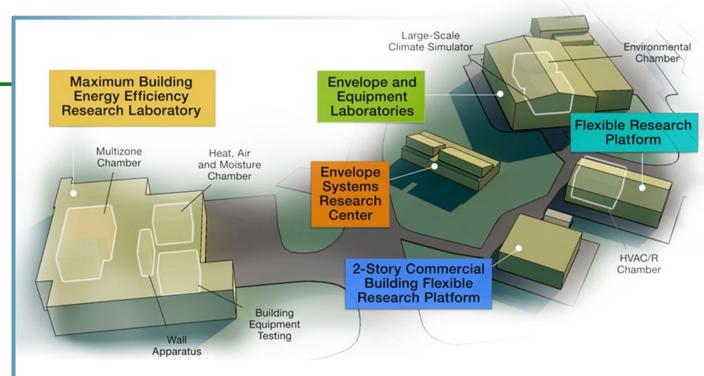

Requirement	Specification
Total Btu rating (cook top)	40,000 Btu/h
Physical dimensions	24" - 30" wide
Number of Burners	4 or 5
Ignition	Electronic
Gas connection	5/8" OD pipe (4' long)
Gas supply pressure	5" - 14" water column
Electrical connections	120V/15A
Safety	Auto re-ignition, shut-off
Gas supply valve (manual)	5/8-in OD x 3/4-in MIP
Min. Btu/h	5,000
Max. Btu/h	15,000 - 18,000
Burner protection	Sealed
Turn-down	1:3

Progress

- Milestones accomplished to date
 - system specification
 - design concept development (invention disclosure filed)
 - prototype fabrication
 - test facility commissioned
- Safety features, feed blending, data acquisition, thermal conditioning and ventilation
- Preliminary design concept evaluation complete
- 4,000 Btu/hr burner evaluated with 35% hydrogen blend

Stakeholder Engagement

- Project kick-off in March 2021
- Cooperative research agreement (CRADA) between ORNL and SoCalGas is fully executed
- SoCalGas
 - co-sponsorship (funds-in)
 - engagement with engineering personnel during design, integration and implementation stages
- Samsung Electronics America
 - Engineering resources
 - Product design knowledge sharing
 - Product samples
 - Prototype testing
 - Commercialization feasibility evaluation


SAMSUNG

Remaining Project Work

- Prototype burner evaluation and optimization
 - Safety
 - Thermal capacity (Btu/hr-in²)
 - Composition
 - Emissions
 - Control
 - Turn-down
- Burner integration with commercial appliance
- Packaged prototype design finalization and fabrication
- Prototype performance study and optimization to meet/exceed design specifications
- Stakeholder engagement for commercialization feasibility study
- Successful field evaluation in SoCalGas' "Hydrogen Home" NetZero Building
- Final reporting

Thank you

Oak Ridge National Laboratory Praveen Cheekatamarla, Research Staff (865)-341-0417 | cheekatamapk@ornl.gov

ORNL's Building Technologies Research and Integration Center (BTRIC) has supported DOE BTO since 1993. BTRIC is comprised of 50,000+ ft² of lab facilities conducting RD&D to support the DOE mission to equitably transition America to a carbon pollution-free electricity sector by 2035 and carbon free economy by 2050.

Scientific and Economic Results

238 publications in FY20
125 industry partners
27 university partners
10 R&D 100 awards
42 active CRADAs

BTRIC is a DOE-Designated National User Facility

REFERENCE SLIDES

Project Budget

Project Budget: \$1000K Variances: none Cost to Date: ~ \$105k Additional Funding: \$500k (CRADA, in-kind), included in the total above New FY21 project

Budget History								
	2 1 – FY 2020 ast)	FY 2021	. (current)	FY 2022 – 12/30/2022 (planned)				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
-	-	\$250k	\$200k	\$250k	\$300k			

Project Plan and Schedule

Project Schedule												
Project Start: 03/05/2021		Completed Work										
Projected End: 12/30/2022		Active	Task (in	progres	s work)							
		 Milestone/Deliverable (Originally Planned) use for missed milestones Milestone/Deliverable (Actual) use when met on time 										
		FY2021 FY2022						FY2023				
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work												
Cooking_Specification												
Cooking_Burner												
Cooking_Fabrication												
Cooking_Test platform												
Current/Future Work												
Cooking_Test report												
Cooking_Appliance modification												
Cooking_Appliance fabrication												
Cooking_Prototype preliminary test												
Cooking_Prototype testing complete												
Cooking_OEM engagement												
Cooking_Final report												