Next Generation Transcritical CO₂ Refrigeration

Oak Ridge National Laboratory Brian Fricke, Group Leader, Building Equipment Research 865.576.0822 | frickeba@ornl.gov

Project Summary

Timeline:

Start date: 10/01/2020

Planned end date: 09/30/2023

Key Milestones

- 1. Complete modeling of subcooler and parametric analysis (09/30/2022)
- 2. Complete design and development of subcooler (12/31/2022)
- 3. Complete process optimization (06/30/2023)

Budget:

Total Project \$ to Date:

- DOE: \$150k
- Cost Share: \$0

Total Project \$850k

- DOE: \$850k
- Cost Share: \$0

Key Partners:

Hilphoenix

Project Outcome:

Develop the next-generation energy-efficient transcritical CO_2 refrigeration system

- Modular, flexible low-GWP solution to provide subcooling of the CO₂ exiting the gas cooler
- Optimized controls to achieve maximum system efficiency and to provide grid connectivity

Team

$\frac{ORNL Team}{Experienced in CO_2}$ refrigeration system design, system modeling and CFD

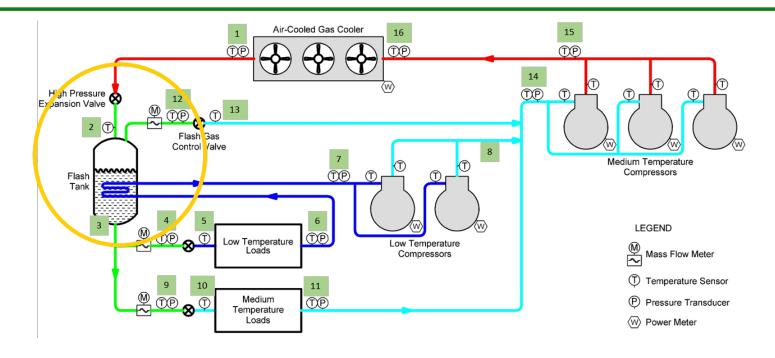
Brian Fricke

Ahmed Elatar

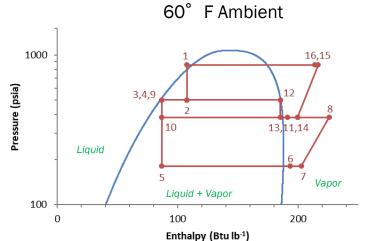
Kashif Nawaz

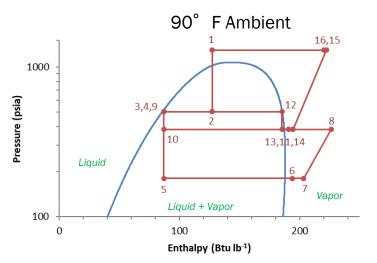
Vishal Sharma

<u>Hillphoenix Team</u> Leading manufacturer of CO₂ refrigeration systems

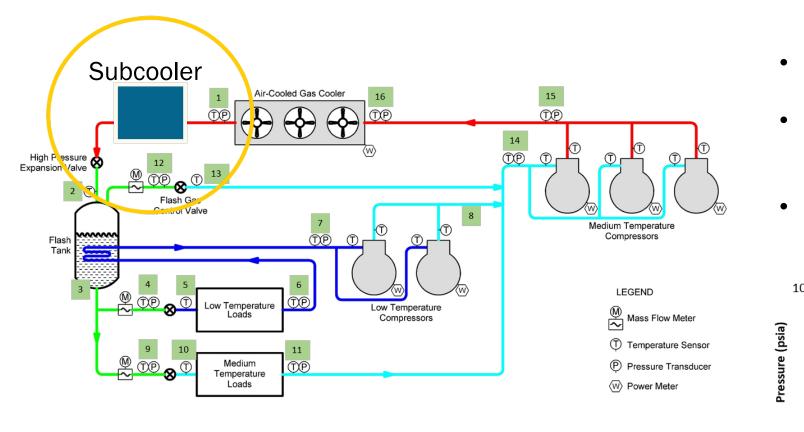


Challenge

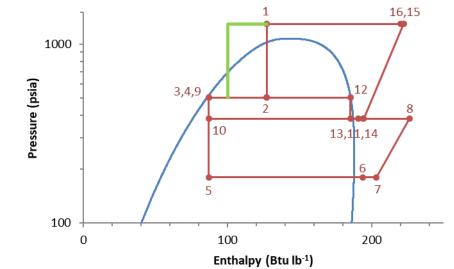

- Many supermarket refrigeration systems use high Global Warming Potential (GWP) refrigerants
 - R-404A: GWP = 3900
 - R-407C: GWP = 1800
- Direct emissions ≈ Indirect Emission
 - Annual refrigerant leakage on the order of 25%
- Deploy low GWP refrigerants to reduce direct emissions
 - Carbon dioxide is an attractive option
 - Non-toxic, GWP = 1
- CO₂ refrigeration system efficiency suffers at high ambient temperatures



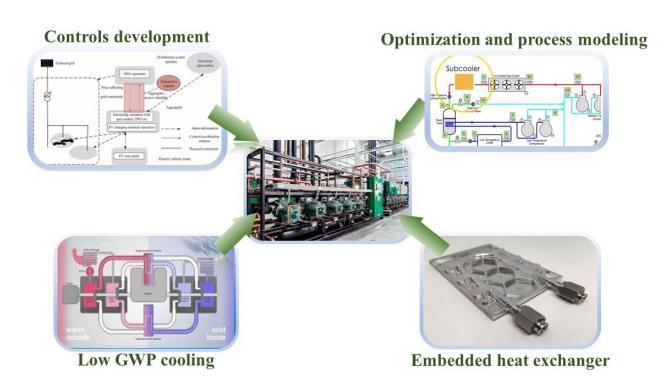
Challenge



- At higher ambient temperatures, more flash gas is produced
- Flash gas does not participate in the refrigeration effect
- It only gets compressed, thus requiring energy



Approach



- Provide subcooling (green line on pH diagram)
- Less flash gas produced
- More refrigerant participates in the cooling process
- Improved COP (~20%)

Innovation and Impact

- Integration for flexible operation due to modular approach
 - Optimal subcooling degree
 - Required capacity of subcooler
- Embedded heat exchanger design for subcooler integration
- Controls and grid connectivity

Impact

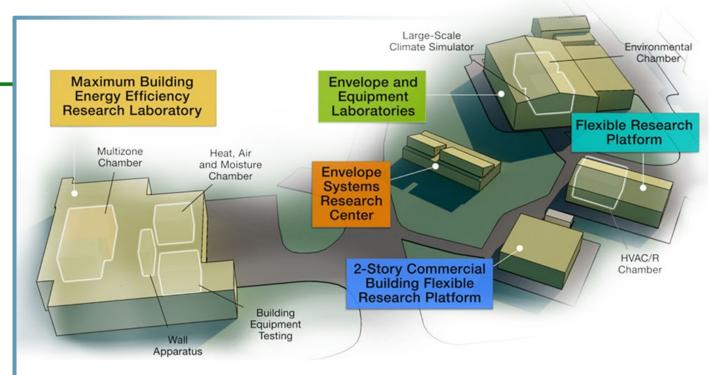
- Current impact of refrigeration in food retail
 - Primary energy: 550 TBtu
 - Indirect emissions: 23 Mt CO₂ emissions
 - Direct emissions: \approx Indirect Emission
 - Refrigerant leakage
 - Use of high Global Warming Potential (GWP) refrigerants (GWP = 1800 to 4000)
- Impact of subcooler technology
 - Decrease CO₂ refrigeration system energy consumption by 10-20%
 - Promote widespread use of CO_2 as a low-GWP refrigerant (GWP = 1)
 - Significantly reduce indirect and direct emissions (50%)

Progress

- Determined baseline refrigeration system performance
 - ORNL's laboratory-scale transcritical CO₂ refrigeration system
 - System performance data over range of operating conditions
 - Refrigerant temperatures/pressures
 - Compressor power
 - Ambient conditions ranging from 25°F to 97°F
- Identified, reviewed and analyzed potential subcooler solutions
 - Mechanical subcooling technologies
 - Refrigerant options
 - Thermoelectric and other technologies (vortex tubes, adiabatic subcooling, absorption systems)
- Parametric cycle analysis
 - Determine optimum subcooler performance characteristics
- Heat exchanger design
 - Compact heat exchanger design options for coupling subcooler to refrigeration system

Stakeholder Engagement

- Collaboration with Hillphoenix
 - Previous CRADA between Hillphoenix and ORNL
 - Introduced CO_2 refrigeration systems to the North American market
 - Assist with development of the subcooler technology and provide design requirements
 - Ensure cost-effective solution
 - Prototype subcooler development and fabrication
 - Provide a path to commercialization
- Future engagement plans
 - Attend meetings with experts at technical forums
 - ASHRAE (TC 10.7)
 - Conferences (Purdue Conferences, IIR Conference on Ammonia and CO₂ Refrigeration, IIR Gustav Lorentzen Conference)



Remaining Project Work

- System performance modeling and subcooler design
- Fabricate subcooler prototype
- Laboratory evaluation of subcooler performance
 - Integration with ORNL's laboratory-scale transcritical CO₂ refrigeration system
- Field evaluation of subcooler

Thank you

Oak Ridge National Laboratory Brian Fricke, Group Leader, Building Equipment Research 865.576.0822 | frickeba@ornl.gov

ORNL's Building Technologies Research and Integration Center (BTRIC) has supported DOE BTO since 1993. BTRIC is comprised of 50,000+ ft² of lab facilities conducting RD&D to support the DOE mission to equitably transition America to a carbon pollution-free electricity sector by 2035 and carbon free economy by 2050.

Scientific and Economic Results

238 publications in FY20
125 industry partners
27 university partners
10 R&D 100 awards
42 active CRADAs

BTRIC is a DOE-Designated National User Facility

REFERENCE SLIDES

Project Budget

Project Budget: \$850k. Variances: None Cost to Date: \$150k Additional Funding: None

Budget History										
FY 2021 – 10/01/2020 (current)		FY 2022	(planned)	FY 2023 – 09/30/2023 (planned)						
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share					
\$250k	\$0	\$300k	\$0	\$300k	\$0					

Project Schedule												
Project Start: 10/01/2020		Completed Work										
Projected End: 09/30/2023		Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned) use for										
		Milestone/Deliverable (Actual) use when met on time										
		FY2021			FY2022			FY2023				
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work												
Q1 Milestone: Baseline system performance												
Q2 Milestone: Evaluation of subcooler options												
Current/Future Work												
Q4 Milestone: System performance modeling												
Q1 Milestone: Development of subcooler									•			
Q3 Milestone: Lab-scale performance												
Q4 Milestone: Field study												