Energy Efficient Refrigerated Food Processing and Dispensing Machines for Quick Service Restaurants

Oak Ridge National Laboratory Vishal Sharma 865-576-5810 (sharmav@ornl.gov)

Project Summary

Timeline:

Start date: 10/01/2019 Planned end date: 9/30/2022

Key Milestones

- 1. Complete hardware-based component model: 3/31/2021
- Complete experimental evaluation of R454C based soft-serve ice-cream machine: 09/30/2021

Budget:

Total Project \$ to Date:

• DOE: \$180K (FY21)

Total Project \$:

• DOE: \$510K (FY20- FY22)

Key Partners:

Taylor Company (CRADA FY20-FY21)

Project Outcome:

At the end of this project, a low GWP refrigerant based soft-serve ice-cream will be developed using **IEC60335-2-89**

Team

- Oak Ridge National Laboratory Research Team
 - Vishaldeep Sharma
 - Bo Shen
 - Brian Fricke
 - Service & Safety Team
 - Jeff Chambers, Jeff Taylor and Gerald Barth
- Taylor Company
 - Stephen Wadle (Senior Project Engineer)
 - Jim Minard (COO)

Challenge

- Carbon emission
 - 420,000 metric tons of carbon emission reduction potential
- Low GWP Alternatives
 - Natural- CO₂, Propane
 - Synthetic- R-454C (GWP:146)
- Significance for Taylor Company
 - Global Company with 500 employees
 - Industry leader in the US, 25% share in EU

- Two Evaporators
 - Hopper
 - Freezing Cylinder
- Heat treatment cycle
 - 150°C for 30mins

- Complete evaluation of baseline soft-serve ice-cream machine
 - R449A based machine
- Modeling Prototype Low GWP based Soft-Serve Ice-cream machine
 - Investigate Refrigerant Option
 - Thermodynamic Analysis
 - Evaporator and Condenser Modeling
- Fabricate Prototype Soft-Serve Ice-cream machine
- Laboratory Evaluation
 - Environmental chamber at different ambient temperatures

- Baseline Testing
 - Continuous Run Test
 - Product Quality
 - Product Draw Rate
 - Capacity and Hopper Cooling Test
 - Refrigeration Capacity
 - Recovery time
 - Heat Treatment Test
 - NSF/ANSI 6- Dispensing Freezers
 - Product temperature > 150°C for 30minutes

- CO₂ system analysis
 - Thermodynamic Model development
 - Heat Pump Design Model
- Issues
 - High Operating Pressure
 - Inefficient
- Flammable refrigerants
 - R454C (Mildly Flammable): GWP-146
 - R290 (Highly Flammable): GWP-3

	System	Coefficient of Performance	Discharge Temperature (°F)	Condenser Pressure (psia)	Refrigerant Charge (Ib/hr)	System Complexity	Store Retrofit
Single Stage System	CO ₂ Direct Expansion (DX) System	1.18	284	1350	196	Simple	NO
	CO ₂ DX system with SLHX	1.25	326	1310	170	Simple	NO
	CO ₂ DX with Gas Bypass	1.21	273	1345	198	Simple	NO
Two Stage System	CO ₂ DX system with SLHX (2 stage expansion)	1.24	283	1331	189	Moderate	NO
	CO ₂ DX system with 2 stage compression (intercooler)	1.49	188	1335	167	Moderate	NO
	CO ₂ system with 2 stage compression and 2 stage expansion	1.4	186	1335	189	Moderate	NO
	CO ₂ Booster System	1.42	232	1229	214	Moderate	NO

Failed Pressure Test

Impact

- 200,000 quick service restaurants in the US
- Current Refrigerant: R449A (GWP= 1400)
- Future Refrigerant: R290 (GWP = 3)
- Direct CO_{2e} emission reduction = 99%
- Replacing refrigerant in all soft serve machines would reduce carbon equivalent by 420,000 metric tons
- Increases global footprint of US OEM

Progress: Modeling and Fabrication

- Evaluated baseline R449A Soft-Serve Machine
- Developed System Model using different Heat Exchangers
 - Flooded Evaporator
 - Wrapped Tank Coil
 - Microchannel Heat Exchanger (**Propane**)
- Developed Liquid injection model
- Fabricated and Evaluated R454C based Soft-Serve Machine

Refrigerant	Classification	GWP	Capacity	Operating Pressure	Minimum Room Size (m²)	Spark Free Components					
R-404A	A1	3922	Acceptable	Low	No Restriction	N/A					
R-449A	A1	1400	Acceptable	Low	No Restriction	N/A					
R-454C	A2L	148	Low	Low	No Restriction	65 components					
R-290	A3	3	Acceptable	Low	23.6	65 components					
R-744	A1	1	Low	High	No Restriction	N/A					

– 17% reduced capacity

Stakeholder Engagement

- CRADA with Taylor Company (12/11/19)
 - Leading manufacturer of soft-serve machines
 - Commercialize technology for global market
 - Durability test
 - Spark proof components (≥ 65)

Remaining Project Work

- Fabricate Prototype R290 Soft-serve ice-cream machine
- Leakage testing of Prototype R-290 Soft-serve ice-cream machine

Thank you

Oak Ridge National Laboratory Vishal Sharma 865-574-5810 (sharmav@ornl.gov)

ORNL's Building Technologies Research and Integration Center (BTRIC) has supported DOE BTO since 1993. BTRIC is comprised of 50,000+ ft² of lab facilities conducting RD&D to support the DOE mission to equitably transition America to a carbon pollution-free electricity sector by 2035 and carbon free economy by 2050.

Scientific and Economic Results

238 publications in FY20125 industry partners27 university partners10 R&D 100 awards42 active CRADAs

BTRIC is a DOE-Designated National User Facility

REFERENCE SLIDES

Project Budget

Project Budget: 510K Variances: No Cost to Date: \$180K Additional Funding: NO.

Budget History									
FY 2020 (past)		FY 2021	(current)	FY 2022 (planned)					
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share				
180K	90K	180K	90K	150K	90K				

Project Plan and Schedule

Project Schedule												
Project Start: 10/1/2020		Com	pletec	l Worl	k							
Projected End: 9/30/2022		Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned) use for missed										
		Milestone/Deliverable (Actual) use when met on time										
		FY2020			FY2021				FY2022			
Task	Q1 (Oct-	Q2 (Jan-	Q3 (Apr-	Q4 (Jul-	Q1 (Oct-	Q2 (Jan-	Mar) Q3 (Apr-	Q4 (Jul- San)	Q1 (Oct-	Q2 (Jan-	Q3 (Apr-	Q4 (Jul- Sen)
Past Work												
Complete evaluation of baseline shake and soft-												
serve ice-cream machine												
Complete modelling of the prototype machine												
Complete fabrication of prototype CO2 based						•						
machine												
Complete comparative performance evaluation of the two machines												
Complete modelling of a R454C based liquid							•					
injection machine and a vapor injection machine												
Complete Experimental Evaluation of R454C based								•				
liquid injection integrated soft-serve ice cream												
machine												
Complete Experimental Evaluation of R454C based												
vapor injection integrated soft-serve ice cream												
machine												
Current/Future Work												