VTO Lab Call Selections October 27, 2021

Lead National Laboratory AOI 1: Battery500 Research Co	Partners			
ADI I. Dallei YOUU NESEAILII CU	nsortium	Project Title		
BNL, INL, SLAC,				
PNNL (Richland, WA)	General Motors	D 500 DI		
	and 8	Battery500 Phase 2		
	universities			
AOI 2: Solid State Electrolytes f	or Lithium Metal			
Focus: Multiple solid electrolytes				
LBNL (Berkeley, CA)		Solid state batteries with long cycle life and high energy density		
		through materials design and integration		
NREL (Golden, CO)		Low-Pressure All Solid State Cells		
	Focus	: Ceramic solid electrolytes		
LLNL (Livermore, CA)		3D Printing of All-Solid-State Lithium Batteries		
LLNL (Livermore, CA)		Integrated Multiscale Model for Design of Robust 3-D Solid-state		
ELIVE (LIVETITIOTE, CA)		Lithium Batteries		
Focus: Sulfide solid electrolytes				
PNNL (Richland, WA)		Stable Solid-State Electrolyte and Interface for High-Energy All-		
		Solid-State Lithium-Sulfur Battery		
ORNL (Oak Ridge, TN)		Substituted Argyrodite Solid Electrolytes and High Capacity		
		Conversion Cathodes for All-Solid-State Batteries		
ANL (Lemont, IL)		Multifunctional Gradient Coatings for Scalable, High Energy		
		Density Sulfide-Based Solid-State Batteries		
		Thick Selenium-Sulfur Cathode Supported Ultra-thin Sulfides		
ANL (Lemont, IL)		Electrolytes for High-energy All-solid-state Lithium Metal		
		Batteries		
la a (a		High-Conductivity and Electrochemically Stable Lithium		
SLAC (Menlo Park, CA)		Thioborate Solid-State Electrolytes for Practical All-Solid-State		
	Гория	Batteries Composite solid electrolytes		
Focus: Composite solid electrolytes				
ANL (Lemont, IL)		Synthesis of Composite Electrolytes with Integrated Interface Design		
		Polymer Electrolytes for Stable Low Impedance Solid State Battery		
ORNL (Oak Ridge, TN)		Interfaces		
		Inorganic-Polymer-Composite Electrolyte with Architecture		
BNL (Upton, NY)		Design for Lithium Metal Solid State Batteries		
		lon conductive high Li+ transference number polymer composites		
LBNL (Berkeley, CA)		for solid-state batteries		
Focus: Other solid electrolytes				
ORNL (Oak Ridge, TN)		Precision control of the Li surface for solid state batteries		
		Lithium Halide-Based Superionic Solid Electrolytes and High		
ORNL (Oak Ridge, TN)		Voltage Cathode Interfaces		
		Polyester-Based Block Copolymer Electrolytes for Lithium Metal		
LBNL (Berkeley, CA)		Batteries		
ANL (Lemont, IL)		Development of All Solid-State Battery using Anti-Perovskite		
		Electrolytes		
AOI 3: Extreme Fast Charging (Xcel) of Batteries				
ANL (Lemont, IL)	NREL-INL-LBNL	Core Research on Extreme Fast Charge Cell Evaluation of Lithium-		
		ion Batteries (XCEL)		
NREL (Golden, CO)	INL-Ford	Electrochemical/Thermal-Optimized Solutions for Extreme Fast		
		Charge		
LBNL (Berkeley, CA)	NREL	Innovative Solutions for Enabling Extreme Fast Charging		

VTO Lab Call Selections October 27, 2021

SLAC (Menlo Park, CA)		Enabling and Understanding Battery Fast Charging at Cell and Materials Levels	
ORNL (Oak Ridge, TN)		Integrated electrolyte development and electrode engineering to enable fast charging of high energy density Li-ion cells	
AOI 4: EVs@Scale Lab Consortium			
NREL (Golden, CO),	ANL, INL, ORNL,	EVs@Scale Lab Consortium addressing technical barriers to wide-	
	PNNL, SNL	scale EV adoption and integration with the grid	
AOI 5: Advancing Driving Automation through Connectivity			
ORNL (Oak Ridge, TN)		A Cooperative Driving Automation (CDA) Framework for Developing Communication Requirements of Energy Centric CDA Applications	
LBNL (Berkeley, CA)		Optimization of Cooperative Driving Automation For Trucks, Passenger Cars, and Infrastructure in Mixed Traffic Scenarios	