Pre-FEED Industrial FOA0002187 (FY20)

ENERGY Fossil Energy and Carbon Management

CO₂ Capture from SMR Flue Gas

Linde

Advanced Aqueous Amine Post-Combustion CO₂ Capture

CHALLENGE:

Steam Methane Reformer (SMR)

 \bullet CO $_2$ capture from steam methane reformer flue gas at 90+% efficiency with minimum impact on cost of $\rm H_2$

SOLUTION:

• Advanced aqueous amine solvent (BASF's OASE® blue) combined with high-capacity structured packing

Key Process Features and Objectives

- Design a hybrid system and complete pre-FEED analysis for green field SMR plant for a refinery in LA.
- Utilize commercially available chemical absorption technology
- Utilize existing natural gas boilers to supply steam

ENERGY Fossil Energy and Carbon Management

Project Development and Goals- 2021

- Capture technology tested from 2009-2017
- Basic engineering completed for a ~1.4 million tonnes CO₂/yr capture system
- Selected one of Linde's largest SMR plants with proximity to CO₂ & H₂ storage sites

Project Benefits

- Recovers up to 95% of the CO₂ from the flue gas stream produced by a reformer
- Higher CO₂ content in SMR flue gas (~22% by vol. dry basis)
- Eligibility for 45Q tax credits & LCFS

D = BASF We create chemistry

CO₂ Capture from Cement Plant

• Electricore, Inc.

Sorbent-based Post-Combustion CO₂ Capture

CHALLENGE:

LafargeHolcim Portland Cement Plant in Florence, Colorado

CO₂ capture from industrial plant flue gas at commercial scale

SOLUTION:

• Svante's low CAPEX solid sorbent technology

Key Process Features and Objectives

- Complete a pre-FEED analysis for VeloxoTherm[™] capture system installed at a LafargeHolcim-owned cement plant
 - Phase 1: select preferred design and plant capacity
 - Phase 2: CAPEX and OPEX estimates
- Identify plausible CO₂ storage options

ENERGY Fossil Energy and Carbon Management

Project Development and Goals- 2021

- Design a 1.5 mtpa capture system to remove CO₂ from cement kiln flue gas (14% conc.) & CO₂ from natural gas-fired steam generator (8.5% conc.)
- Pre-feasibility report completed

Project Benefits

Reduced CAPEX.. single piece of compact equipment (rotary adsorption system) to capture & release CO₂ and regenerate the sorbent

First commercial-scale Svante capture plant

CO₂ Capture from Steel Plant

Dastur International, Inc.

Solvent-based Blast Furnace Gas CO, Capture

Cleveland Cliffs Integrated Steel Plant, in Burns Harbor, Indiana

- **CHALLENGE:**
- CO₂ capture from a blast furnace producing 5 million tons
- per year of steel at commercial scale

SOLUTION:

• ION Clean Energy's solvent-based CO₂ capture technology

Key Process Features and Objectives

. DEPARTMENT OF

ENERGY

- Complete pre-FEED analysis for ION Clean Energy capture system at **Cleveland Cliffs Integrated Steel Plant**
- State-of-the-art carbon capture technology with proven capture efficiencies of 90-98%
- Water-gas shift integration to increase CO_2 capture from 50% to 70%

Fossil Energy and **Carbon Management**

Project Development and Goals- 2021

• Design a 50-70% CO2 capture system to remove 2 million tons per year of CO₂ from blast furnace gas

Project Benefits

- Conversion of CO₂-stripped process gases to H₂-rich fuels with higher energy value
- Production of low carbon emissions steel through the BF-Basic Oxygen Furnace route

CO₂ Capture from Ethanol Facility

CHALLENGE:

Red Trail Energy Plant, Richardton, ND

• CO₂ capture and compression from an ethanol facility at commercial scale

SOLUTION:

 Monoethanolamine (MEA) solvent-based chemical absorption & CO₂ liquefaction systems

Key Process Features and Objectives

- Initial engineering design & cost estimate includes installation of a hybrid capture/liquefaction system at an ethanol facility in ND
- Uses commercially-available technologies and expands on existing process design for an onsite stand-alone liquefaction system
- Utilizes existing natural gas boilers to supply steam

Fossil Energy and Carbon Management

Project Development and Goals- 2021

- Completed design basis for hybrid capture at the site, with TEA and pre-FEED level cost estimates for implementation to follow
- Design for 200,000 tonnes/yr of CO₂ from both bioprocessing and heat production

Project Benefits

- Site provides a well-suited location to establish commercial-scale net negative CO₂ emissions
- Design produces a stream of CO₂ with low oxygen levels suitable for EOR or storage

TRIMERIC CORPORATION

CO₂ Capture from Cement Plant

Membrane Technology & Research, Inc.

Membrane-based Post-Combustion CO₂ Capture

CHALLENGE:

- Balcones Cement Plant. New Braunfels, TX
- CO₂ capture from industrial plant flue gas at commercial scale

SOLUTION:

• MTR's Polaris membrane separation technology with 10X higher permeance than conventional membranes

Key Process Features and Objectives

- Higher CO₂ content of cement plant flue gas streams reduces capture energy costs compared to coal flue gas
- Polaris[™] membranes' permeance reduces membrane area
- Cement plant location in TX is ideal for injecting CO₂ for EOR applications

Carbon Management

Project Development and Goals- 2021

- Design a capture system to treat ~2,700 tons per day of flue gas with $16\% CO_2$
- Builds upon prior pre-FEED & FEED studies on MTR process at coal plants

Project Benefits

- Higher flue gas CO₂ concentration lowers CAPEX through smaller membrane areas and OPEX through higher permeate purity
- Container-sized membrane module skids are pre-fabricated and easily scalable

Pre-FEED... H₂ Generation SMR & ATR – FOA2400 (FY21)

ENERGY Fossil Energy and Carbon Management Engineering Study of Svante's Solid Sorbent Post-Combustion CO₂ Capture Technology at a Linde Steam Methane Reforming H₂ Plant

Linde Inc.

Will complete an initial engineering design of a commercial scale CO_2 capture plant for a steam methane reformer (SMR), using the Svante VeloxoTherm^M solid adsorbent CO_2 capture technology to make blue hydrogen.

Relevance and Outcomes/Impact

Svante's VeloxoTherm[™] capture technology will target:

- ➤ <u>~1,100,000 tonnes/year</u> net CO₂ capture
- ➢ 90% Capture Efficiency
- Production of "blue" H₂ with 99.97% purity

Objectives

The engineering design study will cover the core technology for CO_2 separation and purification, other process units inside the battery limits (ISBL) of the CO_2 capture unit to produce high pressure CO_2 ready for transport by pipeline, and balance of plant components outside the battery limits (OSBL) of the capture plant.

Partners:

Initial Engineering Design Study for Advanced CO₂ Capture from Hydrogen Production Unit

Phillips 66

```
Will complete an initial engineering design of a commercial scale, advanced CO_2 Capture and Sequestration (CCS) plant that separates and stores CO_2 from an existing steam reforming plant at Phillips 66 Rodeo Refinery, California.
```

Location: Houston, Texas

Relevance and Outcomes/Impact

Separate & store ~190,000 tons/year net CO₂ from hydrogen production unit with >90% carbon capture efficiency

Objectives

- Select commercially available carbon capture technologies that best suit the existing steam reforming plant.
- Evaluate the most technological and economical CCS system design.
- Further advance the engineering effort for completing the initial design for this selected CCS system such that it will have enough scope definition for proceeding into the next phase of engineering.
- The completed initial design at the conclusion of this project will provide adequate information on the engineering design, environmental considerations, and basis for the subsequent deployment of Carbon Capture, Utilization and Sequestration (CCUS) projects that are targeting the federal 45Q tax credits

Partners:

Initial Engineering of a CO₂ Capture Unit from an ATR Producing Pure Hydrogen

• Tallgrass MLP Operations LLC - 13316883

Will design a commercial scale carbon capture unit installed on the Greenfield Blue Bison autothermal reforming (ATR) plant.

Location: Leawood, Kansas

Relevance and Outcomes/Impact

- Separate and store <u>1.66 million</u> <u>tonnes/year</u> of 95% pure CO₂ with >97% carbon capture efficiency
- System combining carbon capture, H₂ production (220 MMSCFD at 99.97% purity), and H₂ combustion in auxiliary burners

Objectives

- Combine carbon capture, pure H_2 production (220 MMSCFD at 99.97% purity), and H_2 combustion in auxiliary burners to become the largest H_2 plant with the lowest CO_2 footprint in the world.
- A successful project will facilitate the engineering of the ATR carbon capture plant which will increase the accuracy of estimating the capital costs for the project and will reduce the contingency levels in the preliminary Techno-Economic Assessment.

Partners:

Process for Producing Clean Hydrogen with Autothermal Reforming and Carbon Capture

8 Rivers Capital, LLC

Conduct a Pre-FEED study for an ATR facility with CCS (99% efficiency) to produce H_2 (50 MMSCFD) at the Painter Gas Complex, WY. H_2 product (99.97%) will be converted to ammonia for rail export to CA. CO₂ will be sequestered in a nearby geological storage (300,000 Mty CO₂).

Relevance and Outcomes/Impact

- Produce clean hydrogen for less than \$1/kg H₂ with the 45Q tax credit with up to 99% Capture efficiency
- Advance the proposed flowsheet for immediate development, FEED, and financing for start of construction in 2023, commissioning in 2025, and full operations in 2026.

Objectives

- Evaluate process schemes ATR/CCS
- Execute Pre-FEED on a fully integrated ATR-CCS:
 - Heat exchanger reformer (HEXR)
 - Oxygen-blown autothermal reformer
 - Low-energy cryogenic CO₂ separation system

Painter Gas Complex, WY

Autothermal Reforming (ATR): Water Gas Shift:

 $CH_4 + \frac{1}{2} H_2O + \frac{1}{4} O_2 \Leftrightarrow CO + \frac{5}{2} H_2$ $CO + H_2O \Leftrightarrow CO_2 + H_2$

FEED... Industrial – FOA2515 (FY21)

ENERGY Fossil Energy and Carbon Management

Cement Facility Carbon Capture Using the Cryocap[™] FG Process

University of Illinois at Urbana-Champaign

Complete a FEED study employing Air Liquide's Cryocap[™] FG system to retrofit Holcim's Ste. Genevieve cement plant in Bloomsdale, Missouri.

Location: Champaign, IL

Cost-Share: DOE: \$3,999,585 Non-DOE: \$1,000,000 **Total:** \$ 4,999,585

Relevance and Outcomes/Impact

- High capture rates (~95%) with high purity (99.9%).
- Preliminary TEA estimated the breakeven CO₂ sales price as \$46-53/tonne.
- Can be used to retrofit existing plants and be deployed at new plants.

Objectives

- Complete FEED study for retrofitting Holcim facility with a carbon capture system that removes >95% of the ~2.9 million TPY CO_2 emitted from two proximate main kiln and coal stacks.
- Employ Air Liquide's two-step Cryocap™ process that uses PSA to preconcentrate the CO_2 in the feed stream, then a cryogenic step to purify & compress the high purity CO_2 product.
- Produce pipeline grade CO₂ for geological storage at a facility approximately 80 miles from the host site.

Emission locations

WKiewit

LafargeHolcim

Chemical Facility Carbon Capture Using CANSOLV

Wood Environment & Infrastructure Solutions, Inc.

Complete a FEED study to separate and capture over 950,000 tpy CO_2 emissions from the Shell Chemicals Complex in Deer Park, Texas, reducing overall CO_2 emissions by 95%.

Location: Blue Bell, PA

Objectives

- Complete a FEED study for applying CANSOLV capture technology to a chemical plant.
- Design for separating and capturing over 950,000 tonnes per year $\rm CO_2$ at 95% capture rate.

Process Flow Diagram of Shell's CO2 Capture Process