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Complex Dynamical Networks
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Pandemic-driven Supply Chain Failures 

• 85% of global supply chains have faced a reduction in 
operations due to the pandemic

• Operational performance reduced by 
• 57% reported a drop of 25% 

• 6% reported complete shut down 

• Only 13% reported normal operation

• Overconfidence was rife in the industry
• 77% anticipated to be at least "somewhat ready" for severe 

disruptions. 

• This number dropped to 39% during the pandemic.
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https://industryeurope.com/sectors/technology-innovation/study-85-of-supply-
chains-hit-by-reductions-due-to-covid-19-pandemic/



Supply Chain as Socio-Technical Systems

• Supply chains are more than mere
engineering systems

• Also involve humans making decisions
• Socio-technical system with self-

interested agents
• Complex network of nonlinear 

interactions among equipment, 
processes, people, incentives, policies, 
and environment

• Modeling resilience requires a more 
comprehensive perspective
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Picture credits: 
https://www.google.com/search?q=workers+in+a+chemical+plant&biw=1280&bih=600&source=
lnms&tbm=isch&sa=X&ved=0ahUKEwja74mm6bRAhWD7iYKHUZAAhEQ_AUIBigB#tbm=isch&q=o
perators+in+a+chemical+plant&imgrc=dRFrGrOp9_VbVM%3A

https://levelfiveexecutive.com/the-challenges-of-growth-when-running-a-board-of-directors/ 4

https://www.google.com/search?q=workers+in+a+chemical+plant&biw=1280&bih=600&source=lnms&tbm=isch&sa=X&ved=0ahUKEwja74mm6bRAhWD7iYKHUZAAhEQ_AUIBigB#tbm=isch&q=operators+in+a+chemical+plant&imgrc=dRFrGrOp9_VbVM%3A


What can we learn from Nature?

Natural systems are perhaps the most resilient

• Robustness to upsets: e.g. loss of species

• Distributed systems

• Decentralized control: e.g. ant foraging, swarms

• Evolutionary

• Adaptive

• Self-organized
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Supply Chains Topology: 
The Design Perspective

• Network Structure or Topology

• What determines it?

• How is it determined?

• Design Issues

• Objective: Transport Material, Energy, Information
• Metrics: Efficiency, Robustness/Resilience, and Cost

• Environmental Constraints

• Central Design Question
• How are the “local” properties of the network such as the vertex

degree, which is a property at the individual node level, related to 
“global” or system-level properties such as network performance?

• How do you go from Parts to Whole?



How Do We Design Resilient Topologies?

• Topology governs operational 
efficiency and resiliency

• How to optimize the topology in the 
event of threats and disruptions?

STAR Topology RING Topology



Efficiency
• Distance:

d(i, j) = length of the shortest path between nodes i and j

• Average Path Length
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Robustness of Interaction

• Failure of one or more nodes or edges
• Structural robustness:

• Number of resulting component(s)
• Resulting graph connected: perfectly robust

• Functional robustness:
• Efficiency of resulting component(s)
• Average path length of resulting graph unchanged: perfectly 

robust

• Worst-case versus average-case

Overall Robustness: combination of above



Efficiency and Robustness

• They are often conflicting objectives
• Increasing efficiency often implies reducing robustness 

for the same cost

• And vice versa

• Efficiency : A measure of short-term performance 
or survival

• Robustness/Resilience: A measure of long-term
performance or survival



Optimization Formalism

For a given environment , design a network to maximize 
survival fitness G
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Computers and Chemical Engineering, 28(9), 2004. 



Different ‘Survival’ Environments 

•  = 0
• Only Robustness matters for survival

•  = 1
• Only Efficiency matters

•  = 0.5
• Both matter equally

• Other  values are possible



Adaptive Evolution of Topologies

Initial Population 

(random)

“ Survival of the fittest ”

Fitness Calculn, 

Parent Selectn
Operators

New 

Population

Evolution

• GAs – stochastic, evolutionary search based on the Darwinian 
model of natural selection

◼ Graphs represented as adjacency lists



Optimal Network Topologies

(a) Star (b) Line  (c) Circle (d) Triangular Hub  (e) Pentagonal Hub  (f) Perfect Hub

 = 1  = 0

 = 0.8

 = 0.7  = 0.5





α=1

Jacksonville Houston Chicago Los Angeles Philadelphia Kansas City New York Seattle Boston Denver

12.49% 9.41% 8.70% 7.54% 6.33% 5.35% 4.42% 4.28% 4.24% 4.24%

Automotive Supply Chain
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Disruption Cost vs Operating Cost Trade-off
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Optimal Alpha ~ 0.7
Total Cost Minimized



C O M P L E X  R E S I L I E N T  I N T E L L I G E N T  

S Y S T E M S  L A B O R A T O R Y  ( C R I S  L A B )
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• Study the Efficiency-Robustness 

Tradeoffs

• Find the most efficient and 

robust/resilient topologies 

• Perform well consistently under 

hostile conditions

(a) 240 network topologies 

(b) von Neumann grid, 

(c) Scale-free graph,

(d) Random graph

(e) Small-world graph

Robust and Resilient Topologies in 
Hostile Environments

(a)

(b) (c) (d) (e)



Summary

• Supply chains are complex dynamical 
networks

• Too much emphasis on efficiency while 
disregarding robustness and resilience 
issues

• Need to study optimal trade-offs 
between Efficiency and 
Robustness/Resilience

• Developed a formal analytical 
framework to study different topologies 
systematically
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Thank You for Your Attention!

Questions?
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