# A Framework for Analyzing Efficiency-Robustness Trade-offs in the Design of Adaptable Complex Supply Networks

#### Venkat Venkatasubramanian

Center for the Management of Systemic Risk (CMSR)

Department of Chemical Engineering

Columbia University

New York, NY

DOE TRANSSFORM Workshop Sept 10, 2021





# **Complex Dynamical Networks**



**Process Industry Supply Chain** 



**FedEx Transportation Network** 





**Western Electrical Power Grid** 



Internet

Source: Various CCL sources

## **Pandemic-driven Supply Chain Failures**

- 85% of global supply chains have faced a reduction in operations due to the pandemic
- Operational performance reduced by
  - 57% reported a drop of 25%
  - 6% reported complete shut down
  - Only 13% reported normal operation
- Overconfidence was rife in the industry
  - 77% anticipated to be at least "somewhat ready" for severe disruptions.
  - This number dropped to 39% during the pandemic.





### Supply Chain as Socio-Technical Systems







- Supply chains are more than mere engineering systems
- Also involve humans making decisions
- Socio-technical system with selfinterested agents
- Complex network of nonlinear interactions among equipment, processes, people, incentives, policies, and environment
- Modeling resilience requires a more comprehensive perspective

Picture credits:

https://www.google.com/search?q=workers+in+a+chemical+plant&biw=1280&bih=600&source=lnms&tbm=isch&sa=X&ved=0ahUKEwja74mm6bRAhWD7iYKHUZAAhEQ\_AUIBigB#tbm=isch&q=operators+in+a+chemical+plant&imgrc=dRFrGrOp9\_VbVM%3A

1864-2014

COLUMBIA ENGINEERING
secutive.gom/thenchallenger.og/netawthnwhenitumning-a-board-of-directors/

Government

Regulatory

Market

Management

**Plant** 

**Equipment** 

Seven-layer Hierarchical Model of Interactions

#### What can we learn from Nature?

#### Natural systems are perhaps the most resilient

- Robustness to upsets: e.g. loss of species
- Distributed systems
- Decentralized control: e.g. ant foraging, swarms
- Evolutionary
- Adaptive
- Self-organized





# Supply Chains Topology: The Design Perspective

- Network Structure or Topology
  - What determines it?
  - How is it determined?
- Design Issues
  - Objective: Transport Material, Energy, Information
  - Metrics: Efficiency, Robustness/Resilience, and Cost
  - Environmental Constraints
- Central Design Question
  - How are the "local" properties of the network such as the vertex degree, which is a property at the individual node level, related to "global" or system-level properties such as network performance?
  - How do you go from Parts to Whole?





## **How Do We Design Resilient Topologies?**

Topology governs operational efficiency and resiliency





 How to optimize the topology in the event of threats and disruptions?





# **Efficiency**

• Distance:

d(i, j) = length of the *shortest* path between nodes i and j

Average Path Length

$$\left\langle d\right\rangle = \text{Average APSP} = \frac{\displaystyle\sum_{i,j} d(i,j)}{\displaystyle\frac{n(n-1)}{2}}, \quad 1 \leq i,j \leq n$$



- Efficiency
  - Time, Energy, or Effort required for an exchange between agents i and j
  - Measured by Path Length
  - Smaller average path length, higher efficiency

$$\overline{\langle d \rangle}$$



#### **Robustness of Interaction**

- Failure of one or more nodes or edges
  - Structural robustness:
    - Number of resulting component(s)
    - Resulting graph connected: perfectly robust
  - Functional robustness:
    - Efficiency of resulting component(s)
    - Average path length of resulting graph unchanged: perfectly robust
  - Worst-case versus average-case





# **Efficiency and Robustness**

- They are often conflicting objectives
  - Increasing efficiency often implies reducing robustness for the same cost
  - And vice versa
- Efficiency: A measure of short-term performance or survival
- Robustness/Resilience: A measure of long-term performance or survival





#### **Optimization Formalism**

For a given environment  $\alpha$ , design a network to maximize survival fitness G

$$\max G = \alpha \eta_E + (1-\alpha) \eta_R -c_1(\beta,k) -c_2(n)$$

 $\eta_E$  is the efficiency

 $\eta_R$  is the robustness

 $\alpha$  is a constant,  $0 \le \alpha \le 1$ 

 $c_1$  is the cost function related to the addition of edges

 $c_2$  is the cost function related to the addition of nodes

k is the vertex degree of the node to which a new edge is being added

 $\beta$  is the redundancy coefficient

*n* is the number of nodes

Venkatasubramanian, V., Katare, S., Patkar, P.R. and Mu, F., "Spontaneous emergence of complex optimal networks through evolutionary adaptation", *Computers and Chemical Engineering*, 28(9), **2004.** 



#### Different 'Survival' Environments α

- $\alpha = 0$ 
  - Only Robustness matters for survival
- $\alpha = 1$ 
  - Only Efficiency matters
- $\alpha = 0.5$ 
  - Both matter equally
- Other  $\alpha$  values are possible





#### **Adaptive Evolution of Topologies**

 GAs – stochastic, evolutionary search based on the Darwinian model of natural selection



**Evolution** 





# **Optimal Network Topologies**





# PRESIDENTIAL DISASTER DECLARATIONS





COLUMBIA ENGINEERING
The Fu Foundation School of Engineering and Applied Science

1864-2014

#### **Disruption Cost vs Operating Cost Trade-off**







The Fu Foundation School of Engineering and Applied Science

1864-2014

# Robust and Resilient Topologies in Hostile Environments

- Study the Efficiency-Robustness Tradeoffs
- Find the most efficient and robust/resilient topologies
- Perform well consistently under hostile conditions

- (a) 240 network topologies
- (b) von Neumann grid,
- (c) Scale-free graph,
- (d) Random graph
- (e) Small-world graph



CRIS.lab

# Summary

- Supply chains are complex dynamical networks
- Too much emphasis on efficiency while disregarding robustness and resilience issues
- Need to study optimal trade-offs between Efficiency and Robustness/Resilience
- Developed a formal analytical framework to study different topologies systematically







#### Thank You for Your Attention!







