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Complex Dynamical Networks
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Pandemic-driven Supply Chain Failures

* 85% of global supply chains have faced a reduction in
operations due to the pandemic

e Operational performance reduced by
* 57% reported a drop of 25%
* 6% reported complete shut down
* Only 13% reported normal operation

e Overconfidence was rife in the industry
* 77% anticipated to be at least "somewhat ready" for severe
disruptions.
* This number dropped to 39% during the pandemic.

https://industryeurope.com/sectors/technology-innovation/study-85-of-supply-
chains-hit-by-reductions-due-to-covid-19-pandemic/
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Supply Chain as Socio-Technical Systems

* Supply chains are more than mere

engineering systems pociey
e Also involve humans making decisions pyoovernmen’g
e Socio-technical system with self- Regulatory

interested agents

* Complex network of nonlinear
interactions among equipment,
processes, people, incentives, policies,
and environment

* Modeling resilience requires a more
comprehensive perspective

Picture credits:
https://www.google.com/search?g=workers+in+a+chemical+plant&biw=1280&bih=6008&source=
Inms&tbm=isch&sa=X&ved=0ahUKEwja74mm6bRARWD7iYKHUZAAhEQ AUIBigB#tbm=isch&g=0
perators+in+a+chemical+plant&imgrc=dRFrGrOp9 VbVM%3A
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https://www.google.com/search?q=workers+in+a+chemical+plant&biw=1280&bih=600&source=lnms&tbm=isch&sa=X&ved=0ahUKEwja74mm6bRAhWD7iYKHUZAAhEQ_AUIBigB#tbm=isch&q=operators+in+a+chemical+plant&imgrc=dRFrGrOp9_VbVM%3A

What can we learn from Nature?

Natural systems are perhaps the most resilient

e Robustness to upsets: e.g. loss of species

e Distributed systems

e Decentralized control: e.g. ant foraging, swarms
e Evolutionary

e Adaptive

e Self-organized
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Supply Chains Topology:
The Design Perspective

* Network Structure or Topology
* What determines it?
* How is it determined?

* Design Issues
e Objective: Transport Material, Energy, Information
* Metrics: Efficiency, Robustness/Resilience, and Cost
* Environmental Constraints

e Central Design Question

* How are the “local” properties of the network such as the vertex
degree, which is a property at the individual node level, related to
“clobal” or system-level properties such as network performance?

* How do you go from Parts to Whole?
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How Do We Design Resilient Topologies?

* Topology governs operational
efficiency and resiliency

STAR Topology RING Topology

* How to optimize the topology in the
event of threats and disruptions?
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Efficiency

* Distance: @
d(i, j) = length of the shortest path between nodes i and | /

* Average Path Length
. O
> (i, J) L/

_ _ i .
(d) = Average APSP = D) 1<ij<n \ /
2

m Efficiency

= Time, Energy, or Effort required for an
exchange between agents i and |

= Measured by Path Length
= Smaller average path length, higher efficiency Eff =
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Robustness of Interaction

* Failure of one or more nodes or edges

* Structural robustness:

* Number of resulting component(s)

* Resulting graph connected: perfectly robust
* Functional robustness:

» Efficiency of resulting component(s)

* Average path length of resulting graph unchanged: perfectly
robust

* Worst-case versus average-case

The Fu Foundation School of Engineering and Applied Science
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Efficiency and Robustness

* They are often conflicting objectives

* Increasing efficiency often implies reducing robustness
for the same cost

* And vice versa

* Efficiency : A measure of short-term performance
or survival

* Robustness/Resilience: A measure of long-term
performance or survival
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Optimization Formalism

For a given environment o, design a network to maximize
survival fitness G

max G=a . + (1-a) n; —<¢,(B.k) —Cc,(n)

ne 1S the efficiency

1, 1S the robustness

a isaconstant, 0<a <1

c, is the cost function related to the addition of edges

C, is the cost function related to the addition of nodes

k is the vertex degree of the node to which a new edge is being added
S is the redundancy coefficient

n is the number of nodes

Venkatasubramanian, V., Katare, S., Patkar, P.R. and Mu, F.,
“Spontaneous emergence of complex optimal networks through evolutionary adaptation”,
Computers and Chemical Engineering, 28(9), 2004.
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Different ‘Survival’ Environments o

ca=0
* Only Robustness matters for survival

ca=1
* Only Efficiency matters

*a=0.5
* Both matter equally

e Other a values are possible
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Adaptive Evolution of Topologies

* GAs — stochastic, evolutionary search based on the Darwinian
model of natural selection

“ Survival of the fittest ”

.
- gij:m(r.@

Fitness Calculn, Operators
Initial Population Parent Selectn New
(random) \ Population /
Evolution
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Optimal Network Topologies
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PRESIDENTIAL DISASTER DECLARATIONS

December 24, 1964 to March 3, 2007
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Automotive Supply Chain
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OperationCost

ExpectedDisruptionCost

Disruption Cost vs Operating Cost Trade-off
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TotalCost
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Robust and Resilient Topologies in
Hostile Environments

« Study the Efficiency-Robustness
Tradeoffs

* Find the most efficient and
robust/resilient topologies

« Perform well consistently under
hostile conditions

(a) 240 network topologies
(b) von Neumann grid,

(c) Scale-free graph,

(d) Random graph

(e) Small-world graph

Star

Circular
Core

Complete
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Summary

* Supply chains are complex dynamical
networks

. Star

* Too much emphasis on efficiency while
disregarding robustness and resilience -
issues compd

* Need to study optimal trade-offs
between Efficiency and
Robustness/Resilience

* Developed a formal analytical
framework to study different topologies
systematically
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Thank You for Your Attention!

COLUMBIA ENGINEERING

18642014

Questions?
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