Future Manufacturing TRANSSFORM Workshop

Sudarsan Rachuri Advanced Manufacturing Office EERE, DOE

The notion of TRANSSFORM

TRANSSFORM – More than a word play. The main theme is to conceptually connect these

- Transformative
- **R**esilient
- Adaptive
- Nimble
- Sustainable
- Smart
- Flexible
- Optimal
- Robust
- Model-based

	Motivation Why	Data What	Function How	People Who	Network Where	Time When
Transformative	Whole system thinking, Energy system modeling Multi and cross disciplinary, Leapfrogging and disruptive,	Cyber physical human system, Computing, Communications, Standards, Protocols, Best practices	Enabling technologies, Interoperability, Digitalization, Automation, Autonomy	Industry, Academia, Government, Labs, SMMs, SMEs	Machine, Shopfloor, Plant, Supply network level Innovation ecosystem	On-time, Justin time, Real-time
Resilient	System's ability to avoid, withstand, and recover from adversity	Unexpected, extreme and rare events, cyber attacks	Cyber security, Safety, maintainability, Reliability, Integrity, Confidentiality, resiliency modeling	IT and OT system integrators, Suppliers, security and safety experts	Machine, Shopfloor, Plant, Supply network level	On-time, Justin time, Real-time
Adaptive	Self-optimize manufacturing performances, realize intelligent and adaptive behaviors	Data related to Energy, material, and water and other resources, Process data,	Controllability, Availability, Sensor networks, information fusion, DAQ system, MS&A	Control system and sensors providers, Software and hardware system providers	Machine, Shopfloor, Plant, Supply network level	On-time, Justin time, Real-time
Nimble	Faster, cheaper, better, and greener products, processes, and services	Data related to Cost, quality, throughput, and resources (energy, water, materials)	Connect product design with manufacturing, mathematical models	Industry, Academia, Government, Labs, SMMs, SMEs	Machine, Shopfloor, Plant, Supply network level	On-time, Justin time, Real-time
Sustainable	Minimize negative environmental impacts while conserving energy and natural resources	Data - Cost, quality, throughput, resources (energy, water, materials) Life cycle analysis	Integrate product design and manufacturing, mathematical models, decarbonization	Environmental scientists, Climate change experts, materials scientists, energy experts	Machine, Shopfloor, Plant, Supply network level	On-time, Justin time, Real-time

	Motivation Why	Data What	Function How	People Who	Network Where	Time When
Smart	Integrate operational technologies and information technologies (OT/IT) for effective and secure Cyberphysical human system platform for better decision making and improving the overall productivity and efficiency of manufacturing across the networked enterprise	Data related to Energy, material, and water and other resources, Process data, Digital Thread, Digital Twin, process data, production data	AI/ML, Hybrid models, Sensor networks, information fusion, DAQ system, IT and OT Cloud/Edge Computing CPS Platform, AR/VR/MR, MS&A	Process engineers, System optimization experts, plant and shop floor engineers/managers PLCs/SCADA experts	Machine, Shopfloor, Plant, Supply network level	On-time, Justin time, Real-time
Flexible	Ability to deal with variability and variations	Process, production variability variations Product variety Supply-demand	Flexible manufacturing facilities, materials, parts components substitutions, flexible supply networks	Production managers, shop floor, plant engineers, technicians, managers	Machine, Shopfloor, Plant, Supply network level	On-time, Justin time, Real-time
Optimal	Optimize system level performance	Data related to Energy, material, water,Process, Production, supplier data	Optimization model, Optimal control, forward and inverse problem modeling, supply network integration, Optimal scheduling, MS&A	Production managers, shop floor, plant engineers, technicians, managers	Machine, Shopfloor, Plant, Supply network level	On-time, Justin time, Real-time
Robust	Ability to deal with perturbations or disturbances	Production and supply perturbations and disturbance data	Robust optimization and control, supply-demand modeling, statistical modeling, MS&A	Production managers, shop floor, plant engineers, technicians, managers	Machine, Shopfloor, Plant, Supply network level	On-time, Justin time, Real-time
Model- based	System models for real-time digital continuity between product engineering, manufacturing engineering, and operations	Digital Thread, Digital Twin, Domain specific data, knowledge semantics	MBSE, Domain specific modeling, Model integration, Containerization, Semantic modeling, Ontology	System designers and modelers, domain experts, information, knowledge enterprise modelers	Machine, Shopfloor, Plant, Supply network level	On-time, Justin time, Real-time

Interpretable and Explainable Analytics

Bringing Manufacturing Domain and Analytics - Model-based Advanced Analytics for Hybrid Model

How to convert data into actionable insights using data analytics We will need a Cyber Physical Human System architecture

TRANSSFORM Cement Manufacturing – Process Steps

TRANSSFORM Steel Manufacturing – Process Steps

Veight vertification lemental analysis using XRF, XRD Handheid XRF analysis Online elemental analysis of coal Density, flow and level measurement Online gas and moisture analysis Radiation measurement and protection Particulate monitoring aboratory informatics

Steel Making and Casting

Elemental analysis using OES, XRF, XRD Handheid XRF analysis Flow measurement Online gas analysis Radiation measurement and protection Particulate monitoring Laboratory informatics X-ray source/flux stability OES inclusion monitorin

Hot Rolling

Thickness gauging Profile measurement Elemental analysis using OES, XRF, XRD Data acquisition & management Radiation measurement and protection (-rev source/flux stabilit

Cold Rolling

Elemental analysis using OES, XRF, XRD Thickness gauging Gas analysis Data acquisition & management Radiation measurement and protection

Strip Processing Elemental analysis Costing weight measurement Thickness gauging Laboratory informatics Gas analysis Radiation measurement and protection

Data acquisition & management Particulate monitoring

TRANSSFORM Food Processing - Yogurt Production

TRANSSFORM Aluminum manufacturing process

TRANSSFORM Aluminum smelting

TRANSSFORM BioPharma for MAb Manufacturing

