Techno-Economic Analysis of Hydrogen Technology Pathways

Strategic Analysis Inc.
Jennie M. Huya-Kouadio
Brian D. James
Cassidy Houchins
Yaset Acevedo

DOE Hydrogen Shot Summit August 31-September 1, 2021

TEA Methodology

 Techno-Economic Analysis (TEA) is a tool to evaluate an entire system; evaluating the interactions between technical performance and cost.

The Value of TEA

- TEA is used to <u>evaluate the cost to produce H₂ (\$/kg)</u> through various technological production pathways (e.g., electrolysis or photoelectrochemical water splitting) and <u>measure the cost impact</u> of technological improvements in those H₂ production technologies
- Identify key parameters that drive system cost
 - Adjust research to focus on key parameters
 - Focus cost saving efforts on key parameters
- Discern cost differences between different designs or manufacturing processes
 - Use as a tool to pick design/process that leads to lowest cost

TEA Challenges

- Although system economic assessment is especially needed for emerging technologies
 - High degree of uncertainty in embryonic system designs
 - Sometimes materials have only been tested in a lab environment
 - Lack of validation of assumptions for nascent technologies
- Identification of changes between "lab" & "mass-production" design
 - One-off design might be radically different than mass-produced design
 - Inventive team may not be best group to assess mass-produced design
 - Applies to both design and manufacturing methods
- For early production systems, difficult to validate assumptions
 - Information may be withheld as proprietary
 - Information may not exist anywhere
 - Many parameters may have to be simultaneously estimated/projected

Future Opportunities for TEA

- Use Hydrogen Shot Target \$1/kg to guide pathway technical targets
 - Top-down approach of setting a cost target and determining the bounds of key performance or cost parameters that "must be" achieved
- Assess technology status, evaluate the <u>cost drivers</u>, and <u>identify the</u> <u>technical areas needing improvement</u> for each technology.
- Provide a <u>complete pathway definition</u>, performance, and economic analysis <u>not elsewhere available</u>
- Provide analysis that is <u>transparent, detailed, and made publicly</u> <u>available</u> to the technical community
- Support <u>selection of portfolio priorities</u> through evaluations of technical progress and hydrogen cost status

Thank You

Jennie M. Huya-Kouadio - jhuya-kouadio@sainc.com

Brian D. James – <u>bjames@sainc.com</u>

Cassidy Houchins – chouchins@sainc.com

Yaset Acevedo – yacevedo@sainc.com

Strategic Analysis Inc. 4075 Wilson Blvd, Suite 200 Arlington, VA 22201

Life Cycle Assessment as an Analytical Framework for Advanced Hydrogen Pathways

Elizabeth Connelly 31 August 2021

What is LCA?

- Lifecycle analysis method used to evaluate the environmental impact of a product through its life cycle
- Lifecycle for hydrogen technologies includes:
 - Feedstock production and transport
 - Hydrogen production
 - Hydrogen delivery (as GH₂, LH₂, other carriers)
 - Hydrogen use
 - Technologies and infrastructure (e.g., vehicles, pipelines, fuel cells, etc.)

Why LCA?

- Determining the role of hydrogen in the clean energy transition
- Understanding impacts of hydrogen technologies on climate, air pollution, and criterica minerals demand
- Informing R&D and investment decisions

Source: <u>IEA Critical Minerals Report</u>

IEA 2021. All rights reserved.

Challenges of LCA

- System boundaries
- Allocation between co-/by-products
 - Energy, mass, market value approaches
- Treatment of biomass/biogenic CO₂
- Regional variability
- Future uncertainties regarding efficiency improvements, feedstock (upstream) emissions intensities, resource availability, etc.

Source: <u>IEA Future of Hydrogen</u>

IEA 2021. All rights reserved.

Opportunities for LCA

- Ensuring hydrogen contributes to the vision of net-zero emissions
- Informing end-of-life and recycling approaches for hydrogen technologies
- Supporting coordination and alignment on methods and definitions of clean hydrogen
- Guiding a global strategy on technology development
- Enabling international trade of clean hydrogen

EA 2021. All rights reserved.

IEA 2021. All rights reserved.

QUESTIONS?

