
Gasification of Mixed Blends of Coal, Biomass, 
and Plastic Waste
George Booras, EPRI
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DOE Project Award Summary

• Award Number: DE-FE0032044 
• Project Title: Performance Testing of a Moving-Bed Gasifier Using Coal, 

Biomass, and Waste Plastic Blends to Generate White Hydrogen
• Funding: $625k ($500k gov’t, $125k cost share)
• Period of Performance: 7/1/2021–6/30/2023
• DOE Program Manager: Debalina Dasgupta
• Applicant Name: EPRI
• Subs: Hamilton Maurer International (HMI) and Sotacarbo S.p.A.
• Principal Investigator: George Booras

The project is just getting kicked-off
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Project Objectives

• Qualify coal, biomass, and plastic waste blends based on    
performance testing of selected pellet recipes in a laboratory-scale 
updraft moving-bed gasifier

• Testing will provide relevant data to advance the commercial-scale 
design of the moving-bed gasifier to be able to successfully use these 
feedstocks to produce hydrogen

• Effects of the waste plastics on feedstock preparation (i.e., blending 
and pelletizing) and the resulting products (i.e., syngas compositions, 
organic condensate production, and ash characteristics) will be a focus

Developing data for unique blends for an established gasifier
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HMI Moving-Bed Gasifier

• Moving-bed gasification has demonstrated 
gasifying many coal ranks as well as biomass. 
Testing suggests that it should be well suited for 
blends of coal, biomass, and plastic waste.

• As the fuel descends, it is dried, devolatilized, 
and the resulting char is gasified. Ash is removed 
through a grate and collected in a lock hopper.

• CO2 produced by combustion and the steam 
from the blast react with the char in the 
gasification zone to produce CO and H2

• Streams leaving are ash out the bottom and dry 
gas/tar/water vapor/dust out the top

 

Raw Syngas

Ash Lock

Fuel Lock

Fuel Bin

Distributors

Grate

Dust Removal

O2/Steam

Water Jacket
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California Pellet Mill (CPM)

• CPM will do the blended feedstock 
preparation in the form of pellets 

• In 1931, the company created its first pellet 
mill, the 30-hp flat bed with stationary flat 
die, and became CPM 

• CPM has had considerable experience 
creating fuel pellets including ones using 
biomass and waste and has worked with 
HMI and Sotacarbo on prior projects
– Presented results of pilot gasifier test runs 

with coal/car fluff pellets at the 2007 Clean 
Coal Technology  Conference in Sardinia
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Sotacarbo R&D Facility

• Sotacarbo and HMI have collaborated for 17 years 
on the installation, commissioning, operation, 
and automation for enhanced operation and 
control of updraft moving-bed gasifiers for 
industrial multi-fuel gasification processes 

• HMI designed the pilot-scale 12” inner diameter 
(ID) updraft moving-bed gasifier for coal/biomass 
gasification installed at the Sotacarbo Gasification 
R&D facility that will be used for this project

• Significant testing has taken place on this test 
facility including the current project team 
members from both HMI and Sotacarbo

Sotacarbo Pilot Moving Bed Gasifier
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Major Project Tasks

1. Project Management and Planning: Monitoring and project reporting.
2. Feedstock Procurement and Preparation: Finalize feedstock selection and 

pellet formulations. Prepare and ship pellets. 
3. Test Plan Development: Specify test data to be reported, review facility 

instrumentation, and specify sampling procedures.
4. Gasifier Testing: Perform baseline coal gasification test, and tests for 9 

different pellet formulations
5. Data Analysis and Reporting: Correlate gasifier performance with pellet 

composition, assess overall prospects for gasification of mixed blends, and 
prepare the final report.

Overall project schedule is two years
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Multiphysics and Multiscale Simulation Methods for 
Electromagnetic Energy Assisted Fossil Fuel to Hydrogen Conversion
Dr. Su Yan, Howard University
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Introduction

• Fossil fuels comprise 80% of current global primary energy demand and the energy 
system is the source of approximately two thirds of global CO2 emissions.

• Develop new methods that use electromagnetic (EM) energy to assist fossil fuel to 
hydrogen conversion.

• Two major thrust areas: 

1. Modeling and simulation methods for coupled multiphysical phenomena 
across multiple spatial and temporal scales for accurate conversion process 
simulation; and 

2. Simulation-guided designs for EM energy assisted high-throughput, high-
yield, and low-cost hydrogen generation from fossil fuels such as methane 
and methanol.
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Overview

• Focus:
– Understanding of 3D structures of catalysts and their supports;
– Characterization of EM hotspots within the heterogeneous catalysis; 
– Multiphysics investigation of EM energy assisted catalytic active sites 

enhancement; and
– System design and optimization for high-yield and low-cost hydrogen 

generation.

S. Horikoshi, et al., Catal. Sci. 
Technol., 2014, 4, 1197.
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3D Catalyst Structures

• The catalyst support and distribution determine the EM field/hotspot distribution 
and controls the reaction conversion efficiency and energy consumption for 
hydrogen generation.

• Image and study the 3D structure of the catalyst support and catalyst distribution. 

3D Imaging of Electrode Surface
Optical 3D microscope: FIB-SEM sectioning:
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EM Hotspots Within Catalysis

• EM energy dissipation initiates and sustains 
the thermochemical procedure of fossil fuel to 
hydrogen conversion.

• Investigated EM hotspots and heat generation 
in heterogeneous catalysis.

1. 3D porous catalyst structure from image 
reconstruction

2. Homogenization of porous material using 
averaging formulas
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Multiphysics & Multiscale Investigation

• Fossil Fuel to Hydrogen Conversion: a Multiphysics Process
– Fossil fuel fed through a reaction chamber filled with 

catalysts: Fluid dynamics
– The reactants and catalysts heated up by EM energy 

dissipation: EM and thermal
– Generation of plasma hotspots: micro plasma
– Catalyzed thermochemical reaction: chemical and quantum

1. Coupled EM-thermal-fluid-plasma simulations – Physical aspect
2. Quantum and atomistic simulations – Chemical aspect
3. Coupled physical-chemical simulations



34

System Design and Optimization 

• Conversion efficiency analysis
– 3D morphology of catalyst
– Multiphysics modeling and simulation capabilities
– Quantum and atomistic modeling and simulation capabilities

• Design and optimize the reaction system for an improved hydrogen conversion 
efficiency with a lowered cost 
– chamber geometry
– catalyst distribution and support geometry
– temperature and flow control

• Optimize the shape of the reaction chamber for a uniform and efficient deposition 
of EM energy



Air Separations – High Purity Oxygen Production
Rajinder P. Singh, Los Alamos National Laboratory
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Gasification – Air Separations Needs
Hydrocarbon fuel gasification with

integrated carbon capture and 
sequestration

Advanced technology needs for 
improving efficiency and cost reduction
 Air separation
 Synthesis gas separations 

 Cryogenic distillation is the industrially 
preferred technique for large-scale, high 
purity O2 production
 Scale dependent estimated specific energy 

consumption 23 to 63 kJ/mol (~ 40-50 $/ton, large scale)
 High capital cost & long start-up/shut-down cycle

Ref: Images from NETL & Air Liquide website 
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Air Separations – Technology Landscape

Technology Cryogenic Adsorption Ion transport 
membranes (ITM) Membranes

Development stage Mature Mature Developing Semi-mature
O2 purity (%) 99+ 95+ 99+ ~40

Capacity (ton/day) 1,000~4,000 100~300 (Larger)
20~100 (Small)

Unknown Up to 20

Driving force Electricity Electricity &
Heat (70-90 °C)

Electricity &
Heat (800 °C)

Electricity

Startup time Hours to days Minutes to hours Hours Minutes

Modular Air 
Separation 

Technologies
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Membrane Technology for Air Separations  
 Membrane-based air separation processes have 

advantages over competing technologies 
 Modular & small foot print
 Multi-stage process required to achieve high purity O2

 Improved energy economics

Ref: Meriläinen et al. / Applied Energy, 94 (2012) 285-294
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Membrane Separation Challenges
Materials Need – High O2/N2 selectivity, O2 permeability, and low cost
Deployment – Industry relevant large scale platform 

Carbon molecular sieve hollow fiber membranes

Membrane cost dictates 
the O2 production cost

Ref: Robeson, J. Membr. Sci., 320 (2008) 390-400
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Pre-combustion Carbon Capture

Elevated synthesis gas 
(H2/CO2) separations

PBI-CMS HFMs have exceptional 
H2/CO2 separation at syngas relevant 
operating conditions 
 Elevated temperature H2 selective 

membrane with warm syngas clean-up

Simulated H2 Recovery and CO2 Capture as a function of membrane 
selectivity at coal derived syngas operating conditions
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Thank You!!



Microwave Reactions for Gasification
Christina Wildfire 
National Energy Technology Laboratory, DOE
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Using Microwaves for Gasification

• Process intensification benefits

• Rapid, selective heating

• Modularity

• Cost reduction

• Flexibility and tunability

• Responsive to feed variations

• Pairs with intermittent renewables

• Assist traditional gasification methods

• Treatment  for upstream/downstream to 
integrate carbon capture

• Modularity
• Reduction in capex 

(Low P & T)
Microwave Reactor

Coal, Biomass, Plastics

H2O, CO2

Fuels & ChemicalsCarbon Products

H2, Syngas

Natural Gas

Carbon Ore, Biomass, Plastics
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MW Gasification Increases H2 Production

Trends with Biomass/Plastic:
• Microwave biomass leads to 

increased gas production and tar 
conversion

• Mixed waste streams ideal for 
microwave

Effect of Carbon Ore:
• Microwave gasification led to 

greater hydrogen yields
• Much greater conversion (lower 

char yield) under microwave

Microwave

Conventional

Polymer Waste

(1) Jie, X., Li, W., Slocombe, D. et al. Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons. Nat Catal 3, 902–912 
(2020)

(1)
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Microwaves for our H2 Future

Opportunities:
• Modular waste stream gasification
• Microwave tar treatments
• Companion processes to traditional 

processes

(2) J. Li, J. Tao, B. Yan, L. Jiao, G. Chen, J. Hu, Renewable and Sustainable Energy Reviews,150,2021

(2)
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Reaching the 1:1:1 Goal

Major challenges and current efforts:
• Fundamental understanding of microwave 

interactions

• Scaling for specific application

• Field testing technology   

• System integration

(3)

(3) https://mwcc.jp/en/service_technology/platform03.html
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Advanced Gasification Pathways to Hydrogen –
Small, Modular, Distributed Production Versus Central Plants
Josh Stanislowski, Director of Energy Systems Development
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ENERGY & ENVIRONMENTAL RESEARCH CENTER (EERC)

• Nonprofit branch of the University 
of North Dakota focused on 
energy and environmental 
solutions.

• More than 254,000 square feet of 
state-of-the-art laboratory, 
demonstration, and office space.

EERC

Heart of North Dakota 
Energy Industry
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OUR FACILITIES
254,000 SQ FT OF FACILITIES
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DOE-DESIGNATED NATIONAL CENTER FOR HYDROGEN TECHNOLOGY®

• In 2004, the EERC was awarded the designation of National 
Center for Hydrogen Technology (NCHT) by the U.S. 
Department of Energy (DOE).
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HYDROGEN OPPORTUNITIES IN NORTH DAKOTA

• Fuel cell vehicles

• Fertilizer 
manufacture

• Refining: petroleum 
and renewable oil

• Coal and biomass gasification 
and synfuel production

• Pipelines inter-
and intrastate

• Hydrogen or hydrogen–natural gas mix 
for industry or building applications

Hydrogen and Power Production Hydrogen Uses

• Petrochemical 
manufacture

Electrolysis-Based
Hydrogen Production
• Electricity from fossil 

and renewable 
resources can produce 
hydrogen from water. 

Source: H2@Scale | Department of Energy

Direct Hydrogen Production 
• Coal and biomass 

gasification 
• Natural gas reforming

https://www.energy.gov/eere/fuelcells/h2scale
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HYDROGEN OPPORTUNITIES IN NORTH DAKOTA

• Fuel cell vehicles

• Fertilizer 
manufacture

• Refining: petroleum 
and renewable oil

• Coal and biomass gasification 
and synfuel production

• Pipelines inter-
and intrastate

• Hydrogen or hydrogen/natural gas mix 
for industry or building applications

Hydrogen and Power Production Hydrogen Uses

• Petrochemical 
manufacture

Electrolysis-based 
Hydrogen Production

Source: H2@Scale | Department of Energy

Direct Hydrogen Production 
• Coal and biomass 

gasification 
• Natural gas reforming

• Electricity from fossil and 
renewable resources can 
produce hydrogen from 
water. 

https://www.energy.gov/eere/fuelcells/h2scale
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THE FUTURE OF HYDROGEN PRODUCTION

 Scale Considerations
• Multiple smaller units
• Traditional large-scale systems

 Polygen considerations
• Gas separation for CO2 and H2 production
• Additional coproducts with hydrogen to 

maximize revenue streams
• Syngas to liquid fuels, chemicals, fertilizer, 

and other products
 Feedstock availability

• Economics of transport
• Coal and biomass blending
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MICROGASIFICATION TECHNOLOGIES – DISTRIBUTED PRODUCTION OF 
ENERGY, H2, AND FUELS

The EERC has worked on 
numerous microgasification
projects:
• Woody biomass
• Corn stover
• Switchgrass
• Waste streams

– Municipal solid waste 
– Coffee waste
– Turkey litter

Bring the system to the feedstock 
versus bring the feedstock to the 
system.
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 Great Plains Synfuels Plant in North Dakota
• Diverse product mix has been key to longevity of the plant.

• Synthetic natural gas
• Ammonia/urea
• Other chemicals

• Planning to create a blue hydrogen hub in North Dakota in partnership with Bakken Energy and 
Mitsubishi Power America.

Establishment of a 
hydrogen market 
is key!

CENTRAL PLANTS
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BIOENERGY WITH CARBON CAPTURE AND STORAGE (BECCS)

• Goal: Develop technology that results in 
hydrogen production with a net-carbon-negative 
footprint by using coal and biomass blends.



Energy & Environmental 
Research Center
University of North Dakota
15 North 23rd Street, Stop 9018
Grand Forks, ND 58202-9018

www.undeerc.org
701.777.5000 (phone)
701.777.5181 (fax)

THANK YOU Critical Challenges. Practical Solutions.

Josh Stanislowski
Director of Energy Systems Development
jstanislowski@undeerc.org
701.330.1340 
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