

Current Status of (Low Temperature) Electrolyzer Technology and Needs for Successful Widespread Commercialization and Meeting Hydrogen Shot Targets

Bryan Pivovar

Hydrogen Shot Summit

The 2020's – The Decade of Hydrogen

Hydrogen Council

CLIMATE CH2AMPION: HYDROGEN IS THE MISSING PIECE OF THE ENERGY PUZZLE

HYDROGEN COST TO FALL SHARPLY AND SOONER THAN EXPECTED

HYDROGEN DEPLOYMENT ACCELERATING WITH MORE THAN \$300 BILLION IN PROJECT PIPELINE

Potential Impacts from Hydrogen Council Roadmap Study. By 2050:

- *\$2.5 trillion in global revenues*
- 30 million jobs

earthshots

https://hydrogencouncil.com/en/


• 400 million cars, 15-20 million trucks

Hvdroaen

• 18% of total global energy demand

A / Livenews

ued on: 31/03/2021 - 05:52 Modified: 31/03/2021 - 05:50

Hydrogen-powered fuel cells could solve the key problem with battery electric vehicles – the long recharge times – as filling up a tank with hydrogen takes just a bit longer than putting in petrol. GEORGES GOBET AFP/File

() 4 min

Paris (AFP)

It's seen as the missing link in the race for carbon-neutrality: "green" hydrogen produced without fossil fuel energy is a popular buzzword in competing press releases and investment plans across the globe.

https://www.france24.com/en/livenews/20210331-the-global-race-todevelop-green-hydrogen

Politics

Hydrogen Is 'Jump Ball' in Global Clean-Energy Race, Kerry Says

By <u>Jennifer A Dlouhy</u> and <u>Will Wade</u> March 2, 2021, 9:38 AM MST

Climate envoy touts oil-industry opportunity at CERAWeek
Says tensions with China won't block aggressive climate action

Coinbase Hangover Rattles Crypto Assets With Bitcoin in Freefall

Most Read

SPAC Wipeout Is Punishing Followers of Chamath Palihapitiya

TECHNOLOGY Amazon Cancels Lord of the Rings Game Announced Two Years Ago

TECHNOLOGY Covid Survivors May Require Just One Shot of a Two-Dose Vaccine

susvess Covid Claims 3 Million Lives as Burden Shifts to Poorer Nations

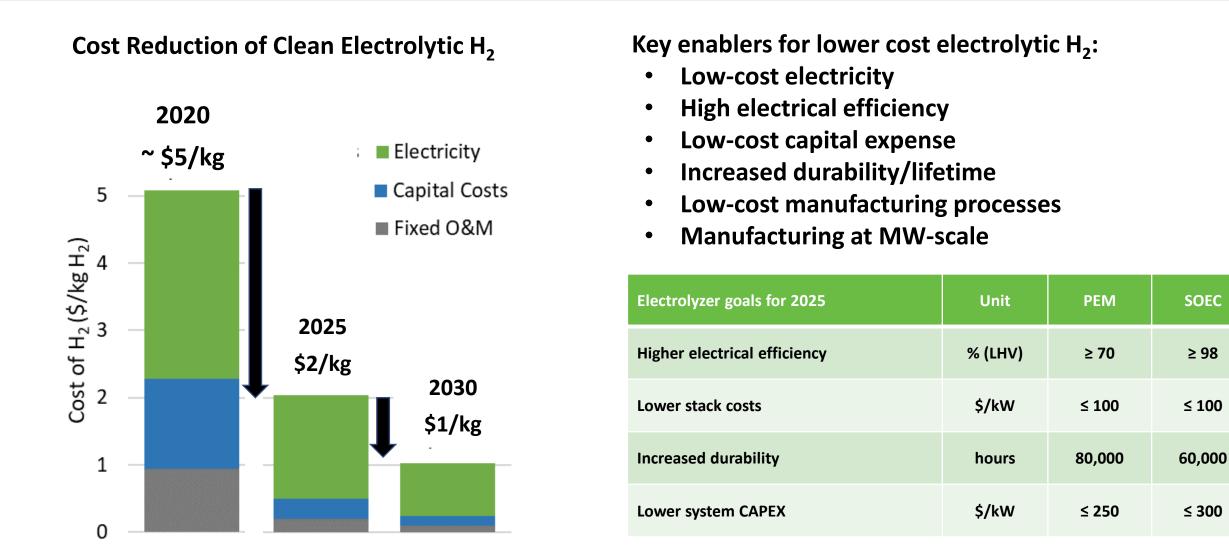
https://www.bloomberg.com/news/articl es/2021-03-02/hydrogen-is-jump-ballin-global-clean-energy-race-kerry-says

Now is the time for hydrogen and the "global race" is on

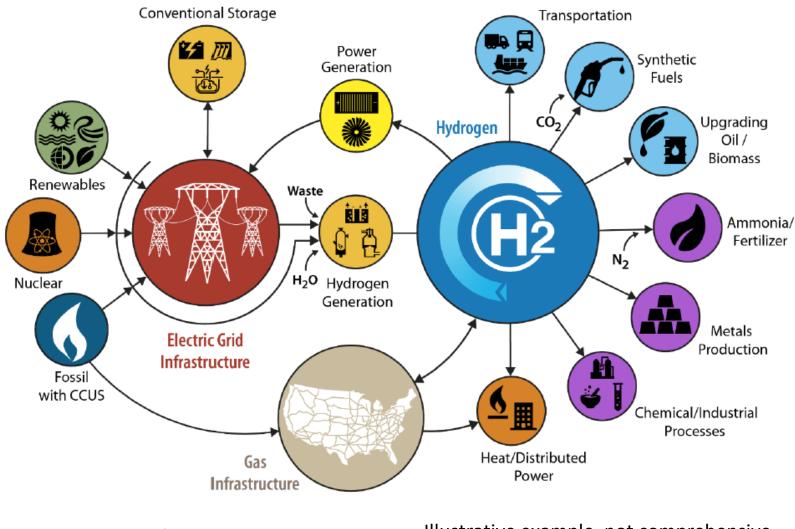
Hydrogen

Hydrogen Energy Earthshot

"Hydrogen Shot"


"1 1 1" \$1 for 1 kg clean hydrogen in 1 decade

Launched June 7, 2021



Pathways to Reduce the Cost of Electrolytic H₂

https://www.hydrogen.energy.gov/pdfs/review21/plenary7_stetson_2021_o.pdf

Electrolysis Connection to H2@Scale

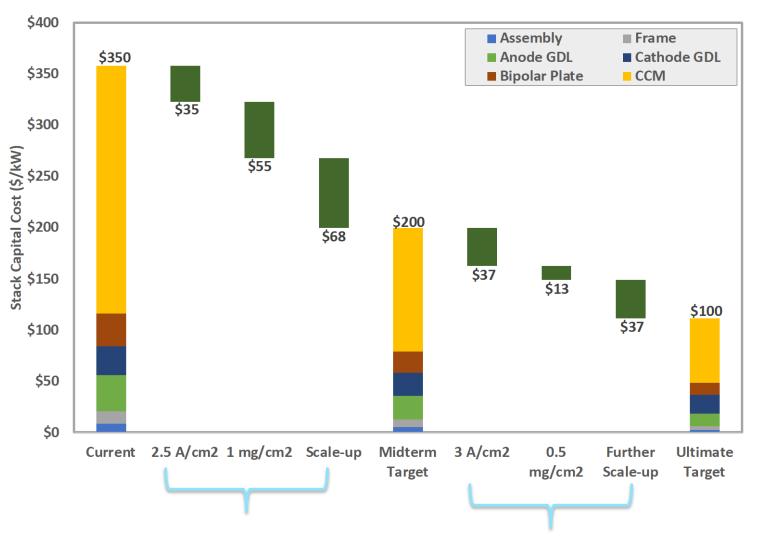
earthshots

Hvdroaen

Illustrative example, not comprehensive https://www.energy.gov/eere/fuelcells/h2-scale

- Making, storing, moving and using H₂ more efficiently are the main H2@Scale pillars and all are needed.
- Making H2 is the inherently obvious, first step to spur the wideranging benefits of the H2@Scale vision.
- Electrolysis has most competitive economics and balances increasing renewable generation challenges.

Electrolyzers by Type


Hydrogen

energy earthshots U.S. department of energy

Туре	Pros	Cons		
Alkaline	Well established, lower capital cost,	Corrosive liquid electrolyte used, higher	1	
	more materials choices at high pH, high	ohmic drop, lack of differential pressure		
	manufacturing readiness, can leverage	operation, shunt currents, limited		
	established supply chains, demonstrated	intermittency capabilities, efficiency	Low	
	in larger capacity		- Temperature	
Polymer	Low ohmic losses/high power density	Requires expensive materials (Ti, Ir, Pt,	(0 - 200°C)	
Electrolyte	operation, differential pressure	perfluorinated polymers), lower		
Membrane	operation, DI water only operation,	manufacturing and technology		
	leverages PEM fuel cell development and	readiness, efficiency		
	supply chain, load following capability		1	
Solid Oxide	High efficiency, low-cost materials,	High temperature materials challenges,	1	
	integration with continuous high	limited intermittency capabilities,	High	
	temperature electricity sources (e.g.,	thermal integration, lower	- Temperature	
	nuclear energy), leverages SOFC	manufacturing and technology	(>500°C)	
	development and supply chain,	readiness, steam conversion and		
	differential pressure operation	separation challenges		

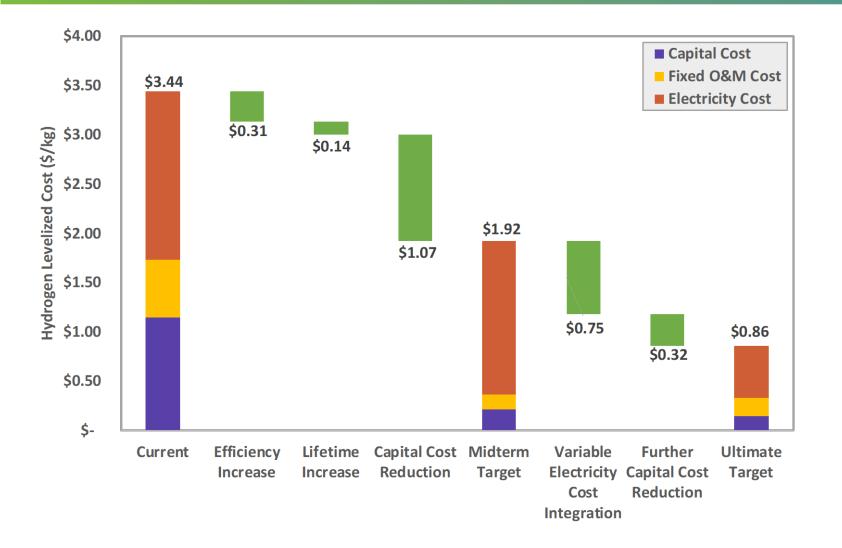
Badgett, Ruth and Pivovar, "Economic considerations for hydrogen production with a focus on polymer electrolyte membrane electrolysis," accepted 2021.

Stack Costs (PEM analysis from H2NEW)

earths

Hvdrogen

Stack Targets	Status	2023	2025
Cell (A/cm ² @1.9V)	2.0	2.5	3.0
Efficiency (%)	66	68	70
Lifetime (khr)	60	70	80
Degradation (mV/khr)	3.2	2.75	2.25
Capital Cost (\$/kW)	350	200	100
PGM loading (mg/cm ²)	3	1	0.5


These 3 areas

- 1. Increased efficiency/current density
- 2. Decreased PGM loading
- 3. Scale-up

Are the strongest levers for addressing stack costs.

https://www.hydrogen.energy.gov/pdfs/review21/p196_pivovar_boardman_2021_o.pdf

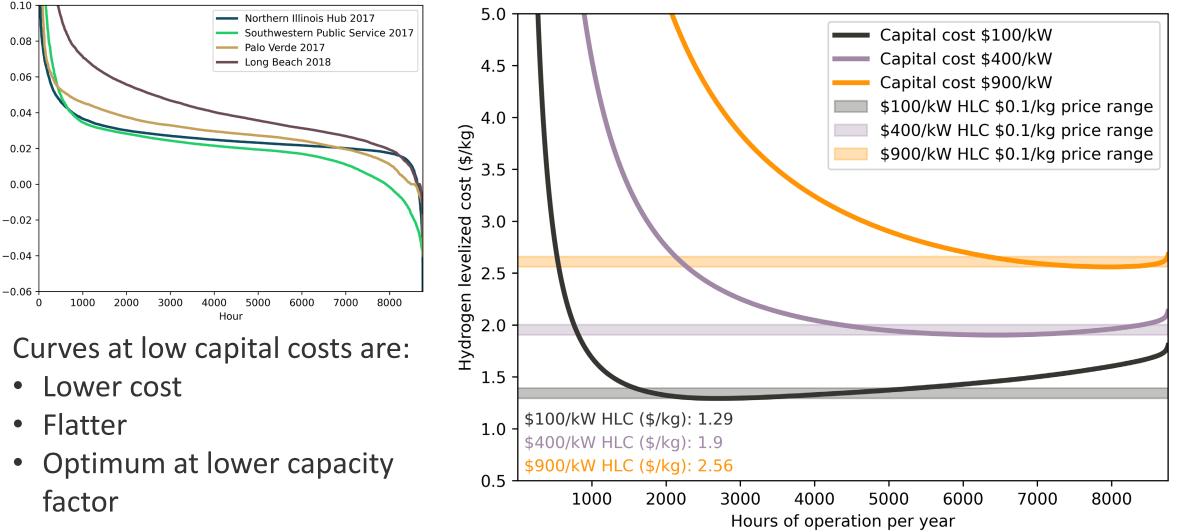
Achieving Hydrogen Levelized Cost (HLC) Targets

Hvdroaen

Select pathway to \$2/kg and \$1/kg identified.

Much of HLC gains possible through greatly decreasing capital costs and enabling lower cost electricity through variable operation.

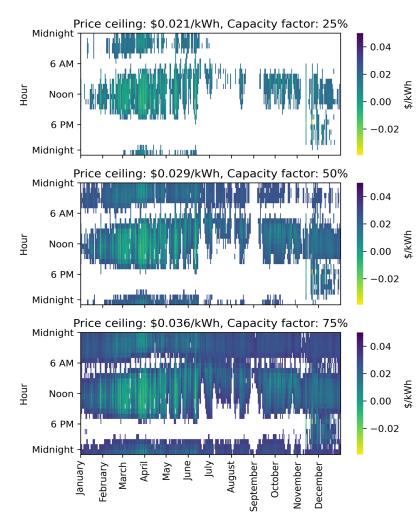
These advances can't come with compromised durability or efficiency, so all three areas are linked.


8

Wholesale Electricity Cost Curves

Hvdrogen

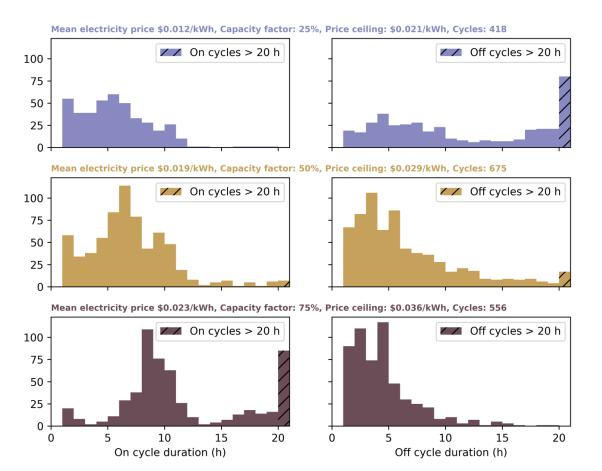
Electricity price (\$/kWh)


earths

H2A Future Central case. 51.3 kWh/kg system efficiency. Capital costs are total system purchase cost. Palo Verde LMPs.

Badgett, A., M. Ruth, B. Pivovar. "Economic Considerations for Hydrogen Production with a Focus on Polymer Electrolyte Membrane Electrolysis" Submitted as a chapter in Hydrogen Production by Water Electrolysis. Ed. Tom Smolinka. accepted, 2021.

Impact of Electricity Costs on Operating Strategies

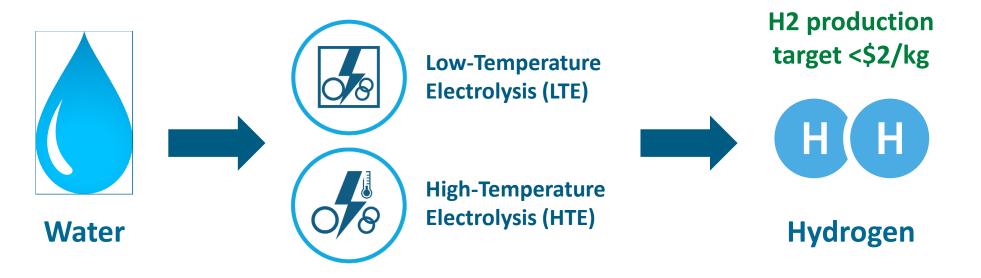

Month

Hvdroaen

earthshots

S DEPARTMENT OF ENERGY

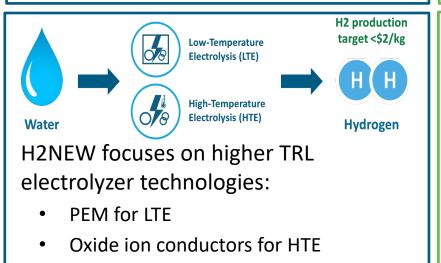
Locational Marginal Pricing (LMP) heatmaps can give insight into potential operating strategies


Lends insight into possible operating strategies

Badgett, A., M. Ruth, B. Pivovar. "Economic Considerations for Hydrogen Production with a Focus on Polymer Electrolyte Membrane Electrolysis" Submitted as a chapter in Hydrogen Production by Water Electrolysis. Ed. Tom Smolinka. accepted, 2021.

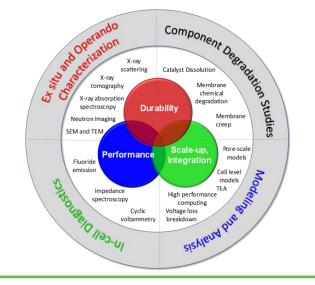
H2NEW Project Goals

By 2025, H2NEW will address components, materials integration, and manufacturing R&D to enable manufacturable electrolyzers that meet required cost, durability, and performance targets, simultaneously, in order to enable \$2/kg hydrogen.


H2NEW has a clear target of establishing and utilizing experimental, analytical, and modeling tools needed to provide the scientific understanding of electrolysis cell <u>performance</u>, <u>cost</u>, <u>and durability</u> <u>tradeoffs</u> of electrolysis systems under predicted future operating modes

H2NEW Consortium: <u>H2</u> from the <u>Next-generation of Electrolyzers of Water</u>

A comprehensive, concerted effort focused on overcoming technical barriers to enable affordable & efficient electrolyzers to achieve <\$2/kg H₂ (2025)

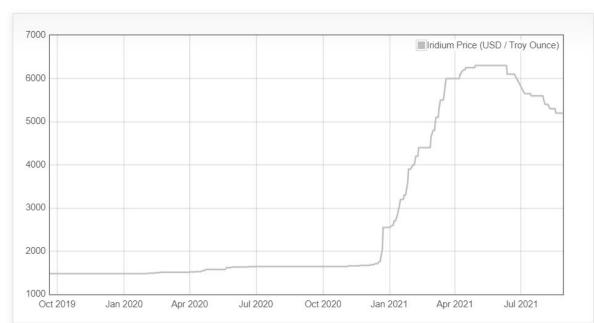

- Launched in Q1 FY2021
- Both low- and high-temperature electrolyzers
- Planned commitment of \$50M over 5 years

The emphasis is not on new materials but addressing components, materials integration, and manufacturing R&D

Makes use of a combination of world-class experimental, analytical, and modeling tools

Clear, well-defined stack metrics to guide efforts.					
Electrolyzer Stack Goals by 2025					
	LTE PEM	HTE			
Capital Cost	\$100/kW	\$100/kW			
Elect. Efficiency (LHV)	70% at 3 A/cm ²	98% at 1.5 A/cm ²			
Lifetime	80,000 hr	60,000 hr			

Durability/lifetime is most critical, initial, primary focus of H2NEW


- Limited fundamental knowledge of degradation mechanisms including under future operating modes
- Lack of understanding on how to effectively accelerate degradation processes.
- Develop and validate methods to accelerate identified degradation processes to evaluate durability in weeks or months instead of years.
- National labs are ideal for this critical work due to existing capabilities and expertise combined with the ability to freely share research findings.

Materials Needs for PEM

- Thrifting/replacing of Ir
 - Supports
 - Novel compositions/structures
 - Electrode fabrication impacts
- Improved membranes
 - Increased selectivity, thin membranes
 - Improved durability
 - Recombination layers

Hydrogen

- Novel Porous Transport Layers (PTLs)
 - Materials
 - Morphology
 - Coatings

Iridium Prices for the Last 2 Years

https://www.dailymetalprice.com/metalpricecharts.php?c=ir&u=oz&d=120

Alkaline Needs

- Traditional (Conc. KOH)
 - Intermittent operating capability
 - Operating pressure
 - Degradation mechanisms/ASTs
 - Performance/efficiency improvements
- AEM/hybrid (low conc/KOH-free systems)
 - Novel materials development
 - Stable polymers

Hydroaen

- Advanced catalysts
- Performance dependence on electrolyte
- Degradation mechanisms/ASTs