

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Mitigate Market Barriers – Environmental Research Anupam Sharma Iowa State University

Aug 4, 2021

FY21 Peer Review - Project Overview

Project Summary:

- *Challenge*: bat mortality at wind farms; *operational mitigation* (curtailment) is effective but reduces energy capture
- Transducer-based ultrasonic "jamming" devices proven in lab tests but suffer from short range (nacelle-mounted devices do not protect outboard blade regions)
- *Our concept*: aerodynamic whistle -- blade-mounted, passive ultrasound generation using flow instability & resonance
 - Provide full blade rotor swept area coverage
 - multiple resonators for broad spectral coverage
- Optimize prototype with computational fluid dynamics & lab testing
- ISU developing this alone; some discussions with GE

Project Objective(s) 2019-2020:

- Design & test in the ISU anechoic chamber with pressurized air: demonstrate ultrasound generation in 20-50 kHz frequency range
- Develop preliminary concepts of a 'nozzle' to enable passive operation when mounted on rotor blades

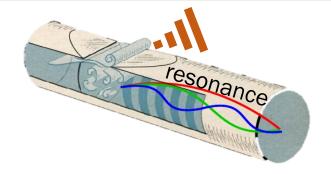
Overall Project Objectives (life of project):

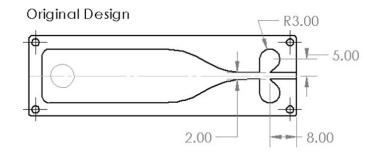
- Develop a passive, blade-mounted ultrasonic bat deterrent
- Characterize performance in anechoic chamber & wind tunnel

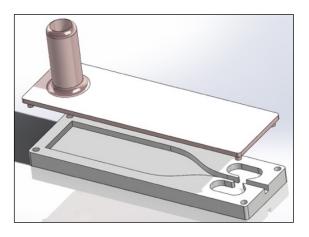
Project Start: Sep 2019 Expected Completion: Aug 2021 Period of Performance: 2 years

DOE Share: \$160,000 Cost Share: \$40,142 Total Project Budget: \$200,142

Key Project Personnel: Anupam Sharma (PI), Zhangming Zeng (PhD student)


Key DOE Personnel: Jocelyn Brown-Saracino, Michael Carella, Raphael Tisch





Project Impact

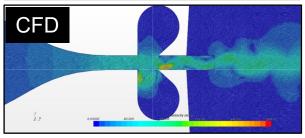
- Mitigate bat fatality → wildlife preservation
- Proposed technology: passive, blade-mounted ultrasonic deterrent *Core idea*: aerodynamic whistle (resonance)
- Advantages over current state-of-the-art:
 - *Passive operation*:
 - Minimal change to turbine design ... potential to install on existing fleet
 - Minimal reduction in energy capture:
 - no curtailment required
 - small profile \rightarrow aero loss negligible
 - Blade-mounted:
 - Technology scales with rotor size ... nacellemounted devices offer limited spatial coverage
 - Ultrasound localized around each blade minimize ultrasound "pollution" / undesirable impact on wildlife
- Evaluate ultrasound generation capability & aero impact

Program Performance – Scope, Schedule, Execution

Scope/schedule

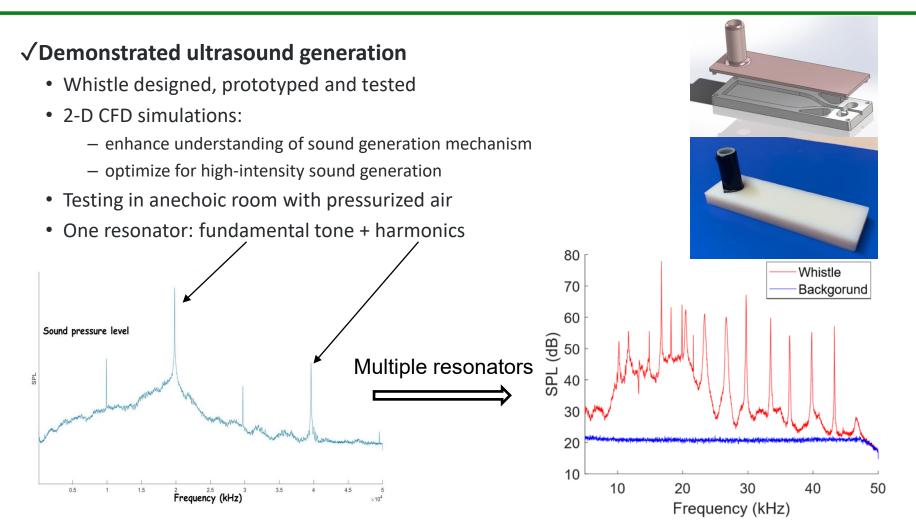
- Demonstrate capability to generate ultrasound using the whistle concept
- ✓ Optimize design for high-intensity ultrasound generation
- ✓ Verify passive operation numerically
- Verify passive operation experimentally (ongoing)
- Quantify adverse aero performance impact using section model tests (not started)
- Requesting 1-year no-cost extension

Execution: approach


- Adapt Galton's (dog) whistle
- Working principle: fluid flow instability + resonance → highintensity (ultra)sound
- Mount on rotor blades with an inlet/diffuser assembly that guides flow into the whistle → passive operation

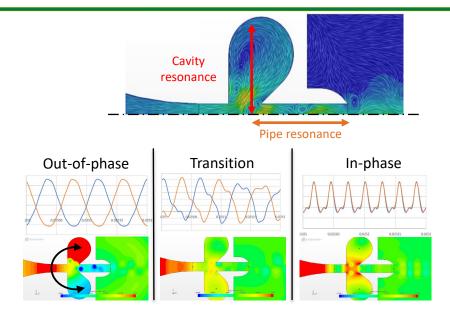
Execution: methods

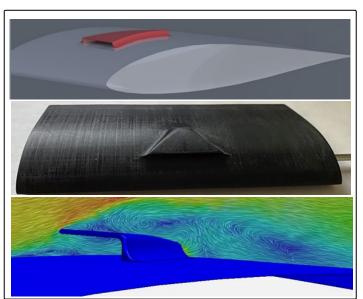
- Experiments: using pressurized air in anechoic chamber
- CFD simulations: 2-D for design & optimization, 3D for analysis


Exp: anechoic room

Program Performance – Accomplishments & Progress

• Multiple resonators to cover 20-50 kHz range


Program Performance – Accomplishments & Progress

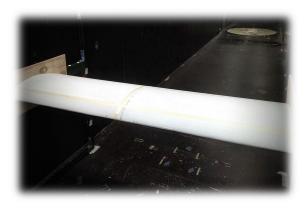

 \checkmark Identified sound generation mechanisms \rightarrow optimization

- Cavity resonance enhanced by pipe resonance
- Whistle operates in 3 modes:
 - out-of-phase (low pressure)
 - Transition (med pressure)
 - In-phase (high pressure)
- Enables design of cavity & pipe dimensions

\checkmark Passive operation

- Initial designs of inlet/diffuser assembly
- Designed & prototyped
- Preliminary analysis and experiments
 - Negligible adverse impact on aerodynamic performance is expected (wind tunnel tests)
 - Computational fluid dynamics simulations consistent with experiments

Project Performance - Upcoming Activities


1. Passive operation in lab

- Verify whistle performance mounted on a blade section in a wind tunnel
 - Test aerodynamics and acoustics
- Investigate multiple inflow conditions

2. Assess aero performance impact

- Wind tunnel tests with inlet assembly & whistle mounted
- Multiple flow conditions

3. Publications (in progress)

- 1. Z. Zeng and A. Sharma, "Experimental and numerical aeroacoustic analysis of an ultrasound whistle," AIAA Aviation Meeting, August 2021
- 2. Z. Zeng and A. Sharma, "Blade-mounted ultrasound whistle to reduce bat mortality at windfarms," AIAA Aviation Meeting, January 2022 (abstract submitted)

Stakeholder Engagement & Information Sharing

General Electric Company

- Had initial discussions with GE
- Our whistle can potentially be used in combination with the GE nozzles installed on towers

MidAmerican

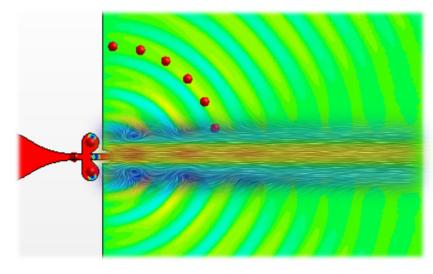
- Has shown interest in the technology
- No plans yet of field-scale tests with MidAmerican yet

ENEL Green Power

• Discussions about potential collaboration for field testing

Conference Presentations

- 1. Z. Zeng and A. Sharma, "Experimental and numerical aeroacoustic analysis of an ultrasound whistle," AIAA Aviation Meeting, August 2021
- 2. Z. Zeng and A. Sharma, "Blade-mounted ultrasound whistle to reduce bat mortality at windfarms," AIAA Aviation Meeting, January 2022 (abstract submitted)


Key Takeaways and Closing Remarks

Project Impact:

- Blade-mounted ultrasound whistle technology can reduce bat mortality
- Little-to-no aero penalty

Project Performance:

- Demonstrated ultrasound generation capability
- Identified sound generation mechanisms
- Passive operation nearly demonstrated

Stakeholder Engagement:

- Talks with GE & MidAmerican
- Conference papers / presentations