
Spatially Adaptive Tunable Lighting Control System with Expanded Wellness and Energy Saving Benefits

Digitally Steerable Fixtures

Occupancy Driven controls

Optimized Illumination, Autonomous Control

Performing Organization(s): Rensselaer Polytechnic Institute, Lumileds, HKS R. F. Karlicek, Jr. Professor, ECSE, Director, Center for Lighting Enabled Systems & Applications <u>karlir@rpi.edu</u>

Project Summary

Timeline:

Start date: April 3, 2020 Planned end date: March 31, 2023

Key Milestones

- 1. Digital Troffer Design & Simulation: 03/2021
- 2. Working digital troffer installed: 12/2021
- 3. Simulate "Sculpting" for 3 installations: 12/2021
- 4. Full Installation energy/SPD testing: 02/2023

Budget:

Total Project \$ to Date:

- DOE:\$837,833
- Cost Share: \$231,372

Total Project \$:

- DOE: \$2,046,888
- Cost Share: \$715,706

Key Partners:

Rensselaer (LEAD)
Lumileds LLC
HKS, Inc.

Project Outcomes:

- Demonstrate troffer with digitally controlled variable beam patterns and color tuning
- Demonstrate autonomous lighting control that is occupant pose and position aware
- Quantify light application efficiency improvements optimized for circadian performance

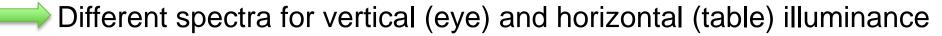
Team

Who	() LUI	MILEDS	LESA Case	HKS
Why	 Global Lead and module Experience in headlight be 	design in digital auto	 LESA – academic leadership in light field sensing and control CASE – academic leadership in architectural design simulation 	 Global Leader in architectural design and services Extensive lighting design and light modeling capabilities
What	 Design and multi-element tunable light Design and light engine system 	nt, color t module fabrication of	 Develop and demonstrate autonomous, occupant aware, dynamic lighting control Design, install, commission and evaluate energy savings and human factors considerations 	 Lighting simulation and algorithm development for multi-directional troffers Simulation of energy and human factors performance in 3 different lighting installations
	49 pixel LED die	Module with optics	Occupant pose/position and lighting control system	Lighting design optimization methods

Challenges

Problem (1): Modern fixtures are static, cannot control light placement

Light goes to places where it is not needed, energy wasted

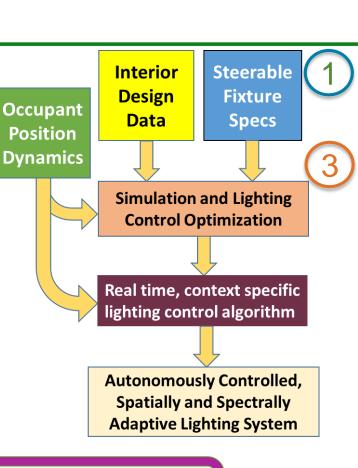

Multiple fixture types installed, adding cost and control challenges

Problem (2): Lighting control systems are barely "occupant aware"

Modern lighting controls are either primitive or too hard to use
Energy savings from controls not realized because they too complex

Problem (3): Color tunable lighting for human wellbeing is complex

Tunable lighting uses more energy, control becomes even harder



Approach

Accelerate the integration of:

- **1** Multi-element, beam steerable LED technology from automotive headlight research
- 2 Advanced occupancy sensing developments from building "occupant centric controls" research
- 3 Modern simulation, modeling and control platforms from VR rendering engine development and new lighting simulation tools

To <u>create a testbed</u> for validating the full <u>energy savings</u> and <u>human well being</u> potential of autonomous lighting systems that deliver the <u>right light where and when needed</u>

Key Challenges:

- Control complexity (many lighting profiles)
- Activity estimation for optimized illumination
- Human perception of dynamic lighting

Mitigation:

- Control algorithm optimization
- Match sensor data to fixed activity types
- Use digital twin (VR) to optimize design

Impact

A state of the art testbed integrating digital lighting control (spectrum and illuminance profiles) with occupant aware controls for studying energy and human performance

Impact Area	Goals	Comments
Lighting Energy Use Reduction	Up to 75%	 Depends on occupant density (impacts local dimming potential) Depends on human factors research (light levels needed for circadian health)
Control Automation	Fully autonomous	 Overcomes issues of lighting control complexity Occupancy sensing continues to improve, costs coming down fast
Building Automation	Integrate to HVAC, safety and security	 Precision localization from lighting control for reducing HVAC costs Improved occupant "situational awareness" for a wide range of building systems like plug load control, security and emergency response A key step to autonomous, sentient smart buildings through occupant awareness

Ultimate freedom in lighting design: light any surface from any angle with any illuminance and spectrum

Adaptive and digital lighting design: developing control algorithms instead of specifying fixtures

Lighting application efficiency: ideal light for any application = no light wasted

Building integration: streamlined supply chain, building construction/renovation, installation and commissioning

Marketing Pitch (Lumileds)

Progress **Project Stage:** Early-Middle (Q5 of 12Q program)

Display Light EngineProjection sectionBeam angle FWHM100°Number of segments49Nominal flux per segment500 lmLight guide section128°Beam angle peak to peak128°Beam angle FWHM152°Number of segments4Nominal flux per segment1400 lm	<section-header> Occupant position dynamics (On Track) Position/gaze integrated Light steering linked to occupant position (Unity) Closed loop position/lighting development in progress </section-header>	Real data in from system in testbed
Spectrum (both sections)CCT range2200-10000KCRI (min 2700-6500K)Ra>90, R9>50Melanopic ratio (MDER)0.35-1.12Melanopic ratio (MEER)0.38-1.2449 Pixel di		 Additional Progress Luminaire housing ~ 40% complete Driver interface to light engine designed/tested Digital Twin Progress ~ 80% complete
One pixel on Progress on track, die/optics/driver fabrication & test		 1st person VR visualization in progress (tests look/feel test of light sculpting control

Illuminance

values

Illuminance at sample point

1..*m* due to pixel 1..*n*

Pixel output

values

algorithms)

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

in progress

Good Progress

On Track

Key Stakeholders: Lighting, Building Controls, Architectural Design Firms

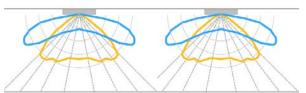
- Stakeholder engagement built into program (Lumileds, HKS are participants)
- Two presentations at 2021 Illumination Engineering Society (IES) Annual Meeting

Digitally Controlled, Beam Steerable and Tunable Lighting System with Occupancy Activity Estimation

R. Karlicek, A. Tsamis, R. Radke, C. Varsami (Rensselaer)
W. Soer, F. Chiang (Lumileds)
H. May, E. Broberg, T. Logan (HKS)

- Regular program updates with DOE SSL program at PNNL (broad stakeholder reach)
- Publications in technical and industry periodicals (planned)
- Broad LESA outreach to students, industry, conference presentations...

Remaining Project Work


Next Steps (remaining 25 months of program):

- Complete die fabrication and light engine design (Lumileds)
- Initiate luminaire design (housing, thermal management, power integration (RPI)
- Complete and test (simulation with VR) lighting algorithm operation
- Build/install 8 steerable luminaires in testbed (RPI)
- Complete testbed energy and human factors tests (RPI, HKS)

Longer Term (focus on cost down/commercial adoption):

- Continue promoting testbed capabilities (new funding, publications, conferences)
- Publish control algorithms for beam steerable lighting (open source)
- Explore position/pose sensing cost reduction (ongoing LESA Research on sensors)

Thank You

Performing Organization(s): Rensselaer Polytechnic Institute, Lumileds, HKS R. F. Karlicek, Jr., Professor, ECSE, Director, Center for Lighting Enabled Systems & Applications <u>karlir@rpi.edu</u>

REFERENCE SLIDES

Project Budget

Project Budget: DOE share - \$2,046,888Cost share - \$715,706Total - \$2,762,594Budget tracking below expected ramp, primarily due to pandemic related hiring and research issues
at RPI. Lumileds and HKS budgets on track.Total - \$2,762,594

Variances: Budget is below expected track – but spend rate increasing to with increased staffing at RPI to make up for pandemic related delays, no budget modifications expected

Cost to Date: *DOE share - \$837,833* Cost share *- \$231,372* Total *- \$1,069,205*

Additional Funding: No other funding sources at present (other than mandatory cost share)

		Budget	History		
	2020 80/2020)		2 021 o 9/30/2021)		2022 3/31/2023(End))
DOE	DOE Cost-share		Cost-share	DOE	Cost-share
98,286	27,543	1,101,456	308,500	1,625,578	379,665

Project Plan and Schedule

- Program Start: April 2020
- Program on track, no missed milestones
- Two Go/NoGo Milestones:
 - One met at end Q4
 - Other one on target for end Q7

- Program End: March 2023
- Going Forward:
 - Build and install luminaires in testbed
 - Complete/Test control with occupancy feedback
 - Complete energy savings and human factors tests

Task	Task Sub Description			Budget Period 1 (Year 1)								Budget Period 2 (Year 2)									Budget Period 3 (Year 3)								
TUSK	Task			Q1 Q2		Q3 Q4		Q4		Q5			Q6		Q7		Q8		Q9		9 Q10		Q10	Q10 Q11		Q12			
: Fixture nt		System Design	Select reference light engine design (Elecrical/Optical)						•																				
1.0 Steerable/Tunable F Development	1.2	Build/Test Prototype Light Engine								working prototype for initial light engine tests along with esults (efficiency, spectral and spatial tuning ranges)																			
Steerab	1.3	Assemble light engines into luminaires, test/install																ational sto ested/inst				s							
elopment	2.1	Create integrated platform for digital twin viewing	Integ	Integrate TOF occupancy sensing visualization and training capability int VR platform three office designs									m with s	simulati	ion test	ting for al	1												
2.0 Twin Devel	2.2	Develop adaptive lighting control concepts (interfaces to steerable luminaires)											ased on	three si	imulat	ng and dy ed occupa d sculpted	ancy sce	narios	s for										
Digital 1		Apply AR capabilities to SCR testbed																	pancy based light sculpting rules for SCT VR/AR tool with real occupant activity										
3.0 Light Utilization Efficiency	3.1	Testbed Photometry																						of st	eering	ic validation and spectral pabilities			
3 Light Ut Effici	3.2	Evaluate Light Utilization Efficiency energy savings potential																									lightin	re energy us profiles with cupant testin	real
4.0 Final Report	4.0																												Final Repor

We are here 🔨