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Project Summary

I Key Partners:
Timeline:
Start date: 10/9/ _2018 Southern Company University of
Planned end date: 9/30/2021 Tennessee, Knoxville
Key Milestones
1. Develop, formulate, and test the RL algorithm in A
simulation;9,/30/2019 #(,OAK RIDGE  southern %‘Eﬁ“ﬁﬁ%‘é‘gﬁ
2. Test the scalability of the developed load National Laboratory Company KNOXVILLE
management system;9,/30/2020
3. Compare RL performance with a golden standard
optimization technique;6/30/2021 e |
. Project Outcome: ’
Budget: O A scalable load management system that can be
Total Project $ to Date: . deployed by utilities on grid existing infrastructure
« DOE: $1,824 K
« Cost Share: $0 ' O A learning-based optimization algorithm that can be
Total Project $: . applied to existing homes and new construction with
« DOE: $2,100 K . minimal effort and minimal additional devices
« Cost Share: $0 '
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Challenge: The Effect of Emerging Technologies on the Electric Grid

i cOrmTon e
 Over 75 billion connected devices predicted to be in use rsromon— o —

by 2025 . L
* There is an immense opportunity for a management > ‘% ST F e i e
system which can control and coordinate the power use of oA ‘ \
these devices
* 41% of the energy consumption in the United States is S :

i Rule-based Control

from b u | Id | ngS : true w false :\/ Simplest and can be effective
i : : : X Problems with multiple objectives

* Advanced sensing and controls have the potential to save ccon wciths2
energy in buildingsupto40% oo

;r Model Predictive Control
! o i\/ Can handle multiple objectives

! Optimization
| CO?TFO| prediction )( Model-based and requires
 actions opfimization

What does the electric grid need? T

Reinforcement Learmng

Can polenlially address many

I

: Agent

1 control & \/ limitations of rule-based and
! actions . MPC

! i reward

Environment
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Approach: Project Overview

Design, develop, and field evaluate a scalable and cost-effective load management system using

Reinforcement Learning (RL)

Reward

P roj e CII' O bj e C II-ive S —-G-Iouse Environment) State

Objective 1: Develop Reinforcement Learning-based optimization and
control methods for understanding energy use patterns and for load

SChedU“ﬂg Action @ «—

House Learning Agent

Objective 2: Develop a scalable load management system to access
flexibility in loads

Objective 3: Perform field validation of the software framework and
demonstrate benefits of running Rl-based optimization and control in
residential buildings

ORNL Yarnell Station Research Ho
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Load Management System Software Architecture

e C(Critical data are identified

* Hierarchical cloud-based multi-agent system (MAS) architecture

L ecobee skyc%ntr.ics southen  \fendor

A The home has a single Docker instance containing all
AZE=  needed software
Docker containers are lightweight virtual machines that provide a
stable, controlled environment in which to run software. Instruction for
building the run environment from the operating system up are saved,
so that all aspects of program execution can be controlled and
dOCker‘ standardized. Containers are easy to deploy and swap on the fly over
the internet to push updated versions of the software.
W VOLTTRON Volttron is an agent-based system that manages small
Dt 1 0t | Do agents which perform automated actions on a periodic
schedule. Each agent has a small, well defined function to
perform as part of the system.
Thermostat Agent | | Water Heater Weather Agent Sensor Agent
-Periodically Agent -Periodically —Penocicaﬂy
collects thermostat | | -Periodically collects collects energy
state information collscts water temperature and | | usage information
from vendor AP!. heater state solar forecast from vendor API.
-Publishes latest L"efﬁﬁ'ﬂ,al'\%r: from information from -Publishes latest
data to database _Publishes latest vendor APl data to database
as it comes in. data to database as | | -Fublishes latest as it comes in.
-Can send it comes in. data fo database
commands to the -Can send as it comes in.
remote AP to commands to the
contral the remote AP to
thermostat control the water
heater.
A & A .
(L “‘"/ Remote

Company

APls

aWS Amazon Web Services

provides hosting for the
database

. DynamoDB

Database Tables:

Devices
-Stores metadata about each unigue
device managed by an agent.

Forecasts

-Stores a 24-hour forecast for solar DHI,
DI, and GNI and temperature. Updated
hourly.

Sensors

-Stores energy usage over time of the
total house, as well as for indoor HVAC,
outdoor HYAC, and water heater, for
each house.

Thermostats

-Stores cool and heat setpoints, mode,
state, and current temperature for each
thermostat.

Water Heaters
-Stores capacity, state, mede, and power
for each water heater

. Simulator

docker A docker container that simulates remote
. APls with Spring Boot has been developed,
@5Drmg providing known results for verification and
boot validation. A Python test suite uses it for
automated regression testing.
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Scalability Testing
VM1 VM2 VM5
Aggregator Agent Home Agent Simulated APls
. (homes 1-15)
GUI container Building Simulator
7] | Leaming Agent (homes 1-15)
7/ | (homes 1-15)
& VM 3 VM6
V4 Home Agent Simulated APls
<y i {(homes 16-30)
r - Building Simulator
A N Learning Agent (homes 16-30)
D}'I‘I amoDB v (homes 16-30)
VM 4 VM5
Home Agent Simulated APls
g = (homes 31-50)
Building Simulator
Learning Agent (homes 31-50)

(homes 31-50)




Approach: Control Development Approach

Model Development

Virtual deployment Thermostat
1 environment controller 4

- Weather
JE: data
I l Feedback I t @

1. Single-zone single-family house
2.  Two-zone single-family house 8 o -
3.  Single-stage HVAC o @ ot @ RL n Frcricny
RL training model
4. 2-zone HVAC e ] e primiria 1
development model 1‘ =p ao
5.  Water heater S <, 8
I (<3 Data logger  pgst-processing
: oy ;
Tsl,Roof Sin;:':;:g::?:;:’ad 2 Training Frodeckiot Deployment

W

Simulation Testbed

1. Single-zone building, single-stage HVAC
simulation testbed

2. 2-zone building, 2-zone HVAC simulation
testbed

b

Algorithm Development

Developed and evaluate two different model-free
deep reinforcement learning approach :

Vaidation Data - RmsE= 0.57 sDeistpoofi%?S T | Heat/Cool Mode,
;‘ ‘ I I’“/’\ V Thermostat & signal airflow, and
W sl Wiy ‘ Model t
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sefpoint = gl femperature 1. Deep Q-Network(DQN)
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Approach: Reinforcement Learning

JdReinforcement learning (RL) method
IS a type of machine learning method I
that OptimizeS the deCiSiOﬂ-making Residential HVAC building ;= oo=—-o=-———o= ! Ac“’rg --------------- !

S(Toul®), Tin(0),

strategy of an agent within an red0 ) | % % % i, | % % % i
unknown environment o | . |

{Setpt,}  ————m—————— — ———— . e I
JRL uses a Markov Decision Process

ViQ(s.atf) for =n(s 0 )
STl T, 0, wpdating - Critic

retaile )y T T T T T T T T T T T~ )l T T T T T T T T T T T T |
Tiowar(t), (1)) Behavior Network Q(s,a;69)1 4o soft Target Network Q(s,a;6 )

(MDP) e | iy |
There are mainly two types of RL o % % % % % % |

experience @ - ————————————--_ I

method: replay p minLo=QGaQUER |
< ) QU =r+yQ(s’a%0? )
= Value-based RL method: estimates o- ‘ — Nanpiing | X = -cost - penalty

value of a state-action pair

= Policy-based RL method: generate

probability of all feasible action for current state

*Yan Du, Fangxing Li, Jeffrey Munk, Kuldeep Kurte, , Kadir Amasyali, Olivera Kotevska, Helia Zandi “Intelligent Multi-zone Residential HVAC Control Strategy based on Deep Reinforcement Learning” Applied Energy 2021, https://doi.org/10.1016/j.apenergy.2020.116117

*Yan Du, Fangxing Li, Jeffrey Munk, Kuldeep Kurte, , Kadir Amasyali, Olivera Kotevska, Helia Zandi “Multi-task Deep Reinforcement Learning for Intelligent Multi-zone Residential HVAC Control,” Electric Power Systems Research 2021, https://doi.org/10.1016/j.epsr.2020.106959
*Kuldeep Kurte, Jeffrey Munk, Kadir Amasyali, Olivera Kotevska, Robert Smith, Evan McKee, Yan Du, Bori Cui, Teja Kuruganti, Helia Zandi “Evaluating the Adaptability of Reinforcement Learning based HVAC Control for Residential Houses” MDPI Sustainability as part of the Special
Issue Building and Urban Energy Prediction-Big Data Analysis and Sustainable 2020, https://doi.org/10.3390/su12187727
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Approach: HVAC Optimization for 2-Zone Single Family Building

Building model Neural network-based Q-learning RL Model Development Based on DQN
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Kuldeep Kurte, Jeffrey Munk, Kadir Amasyali, Olivera Kotevska, Robert Smith, Evan McKee, Yan Du, Borui Cui, Teja Kuruganti, Helia Zandi “Evaluating the Adaptability of Reinforcement Learning based HVAC Control for Residential Houses”
Sustainability as part of the Special Issue Building and Urban Energy Prediction-Big Data Analysis and Sustainable 2020, https://doi.org/10.3390/sul2187727
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Progress: Validation-1: with the Same House as a Simulation
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Progress: Validation-1: with the Same House as a Simulation

Cost comparision daywise

Daily cost ($)
[ M [nd
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B Baseline_Cost
@ RL Cost
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Day

Day wise cost comparison of

operating HVAC with cooling set
point (baseline) and pre-trained
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RL model
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Cooling Set Point —» 73 °F 74 °F 75°F (74,75, 73) °F
Energy (kWh) 368.01 33349  301.37 334.84
Baseline -~ i (g) 5694 5191 4674 51.69
MOC (min) 0 0 0 97
Energy (kWh) 430.89 39096  352.72 393.97
RL Cost ($) 4010 3546 3158 36.09
MOC (min) 0 0 0 79
% Cost reduction 2957% 31.68% 3243%  30.17%

Comparison of the cost of
operation, energy consumption
and MOC for a fixed cooling
setpoint baseline and pre-trained




Adaptability Testing

e e i Rl —.

Generating unique building models
Validating with synthetic houses

fix)
Trained ER Randomized
parameters i=; parameters
/_ Trained Model \ 0 o b / Unigue Model \
1t |
l -
b=a
0 o b
\ / i)
L -
b-a
0 o b

Unifarm distribution
120% of troined value
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Validation with synthetic house and real house

......................................................................

Cost comparision daywise

_ Cooling Set Point »  73°F  74°F  75°F  (74,75,73) °F

= om Energy (kWh) 330.15 29772  269.20 299 61

20 Baseline ot (s) 5094 4600 4181 45.98
- MOC (min) 0 0 0 97
§ Energy (kWh) 39075 35236 317.71 358.73
520, RL Cost ($) 3517 3094  27.41 31.57

o MOC (min) 0 0 0 69

% Cost reduction 309% 3272% 3444%  31.33%

1 2 3 45 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Day

Validation with real house

EI Deployed with Model Pre-Trained on the
= Deployed House Data
; = Synthetic house data
. Demonstrated an average saving of 20%
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Approach: WH Optimization

Focus: Control a hybrid water heater using demand response (DR) commands for minimum electricity
cost under a time-of-use (TOU) electricity pricing policy. rates

RL Agent

Tuple

-

;};}{ |#late. achon, reward, nest :_‘_ra_'e,‘-}
)

H

H

H

H

H

[s.ars')

action
state reward As

S R’r !

Exploration

- Oligiig e |
s e i
Epsilon-Greedy ?/ Gj ]

Loss Function

State (s) Action (a) Reward (r)

» Water temperatures * Load up * (-)Electricity cost

* Electricity prices * Normal operation
* Hot water usages » Shed

Eadir Amasyali, Kuldeep Furte, Jeffrey hlunk, Olivera Eotevska Fobert Smith Helia Fandi * Double Desp Q-Netawarks for Optimizing Electricity Cost of a Water Heater®, 2021 JEEE Power & Energy Socleqy
Tnmovarive Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 2021, pp. 1-5, doi: 10.1109I5GT49243.2021. 9372205,
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Progress: RL Training
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RL agent #1 (RL #1)

* node temperatures
* Electricity prices of next 30

minutes minutes

* Hot water usage volumes of
next 30 minutes

RL agent #2 (RL #2)

* node temperatures
* Electricity prices of next 30

RL agent #3 (RL #3)

* node temperatures

* Electricity prices of next

hour

* Hot water usage volumes of
next hour

RL agent #4 (RL #4)

* node temperatures

* Electricity prices of next two

hours

* Hot water usage volumes of
next two hours

—_
—
L

—_
o
1

O
1

|
/\
\ \\'\,4 \
W s s
S N I Y\
}"\\ \"\\ o B \I“\ [I \»’ N /’“‘-' \'\" Vr
Y ’ /\
h\" ‘ : \'\/' \»‘ I\'~ '\['N" V\I & \l’\ .’
YRGS J A orh N ed IQ/ . LRI
\)~<¢/ \/ \l" \/ ‘..__, SN \r\ n /\\ o \.‘/ N \\,'\‘ "/“'I\\/" VAWV
\ N\ AN, e Dl
/\Ml-‘ NI 1% Q A I\ 3 \ \
\./\)\I \\.' '\ WA A I"\’I Mg ALY a,/\ ll\a\ "N \ I"\
1R '\\ PV ) Vool R A, /'\llkﬂ Iy \
(e SO ’_v»\/‘u\_\ \/ , Yo/
) \//\ll\/ \Ahl LY \
| | I | I I I

Episode

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Operation Look Electricity Element Average
strategy Ahead  Cost Usage COP,p
Baseline N/A $1.36 75 min 4.88
RLagent#2 30min $1.21 89 min 5.25
RLagent#3 1 hour $1.03 82 min 5.47
RLagent#4 2 hours $0.91 53 min 5.15
MPC #2 30 min  $1.31 157 min  5.76
MPC #3 1 hour $1.04 104 min  5.70
MPC #4 2 hours $0.94 84 min 5.61
Day-ahead™ ., o $081  47min 548
optimization




Baseline vs RL
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Progress: WH Deployment Results

Operation March 27 March 28 March29  March 30
strategy

RL $0.07 $0.14 $0.09 $0.17
Baseline $0.11 $0.23 $0.11 $0.26

I

» In all days, the RL cost less than the baseline
» RL saved in the range of 18% to 39%
» RL achieved more savings when hot water demand is higher

Comfort \

* The upper tank is reserved for users by the manufacturer and are not
available for any DR command

* In both cases, the upper tank temperature never went below the
comfort range
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Impact

M Developed and demonstrated a learning-based load management system
= Addressing the need for a scalable Grid-interactive Efficient Buildings (GEB) platform
= Delivering towards BTO strategy for GEB - seamless connectivity between different devices and
utilization of optimization and learning algorithm for optimal scheduling of residential loads.
 The data-driven RL algorithm addresses the need for:
= Control algorithms that are self-aware and self-calibrating
= |mprove energy efficiency, reducing peak demand, and improving comfort.

 This project contributes towards the BTO emerging technology goal of reducing U.S. building
portfolio’s carbon footprint in half by 2035

O RL-based algorithm demonstrated an average demand cost savings of 25% while maintaining the
occupant comfort
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Stakeholder Engagement

= Weekly meetings

= ORNL has presented the project, findings, and
lessons learned to other national laboratories,
professional societies, workshops,
conferences, seminars, industry
representatives.

= Team members are active in professional
societies

= Published 14 Journal and conference papers,
1 journal papers under review, and more in
process.

=  ORNL submits Quarterly Progress Report(QPR)
to DOE

%

A

=\

Southern
Company

OAK RIDGE

National Laboratory

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

& IEEE As@
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Remaining Project Work

dImprove the performance of the developed algorithms for both
WH and HVAC optimization

J Enhance the RL implementation with deploying RL from scratch

d Draft a technical report which contains the results of the
system integration, data collection, data analysis, algorithms
design, lessons learned, and field testing
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Thank you

U.S. DEPARTMENT OF ENERGY

ORNL
Helia Zandi, R&D Staff
zandih@ornl.gov
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Large-Scale
Climate Simulator

Maximum Building
Energy Efficiency
Research Laboratory

Multizone Heat, Air
Chamber and Moisture
; Chamber

HVAC/R
Chamber

Testing

Apparatus

ORNL’s Building Technologies Research and Integration Center
(BTRIC) has supported DOE BTO since 1993. BTRIC is comprised
of 50,000+ ft2 of lab facilities conducting RD&D to support the DOE
mission to equitably transition America to a carbon pollution-free
electricity sector by 2035 and carbon free economy by 2050.

Scientific and Economic Results

238 publications in FY20 BTRIC is a
125 industry partners DOE-Designated
27 university partners National User Facility

10 R&D 100 awards
42 active CRADAs
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List of Publications

* Yan Du, Fangxing Li, Jeffrey Munk, Kuldeep Kurte, , Kadir Amasyali, Olivera Kotevska, Helia Zandi “Intelligent Multi-zone
Residential HVAC Control Strategy based on Deep Reinforcement Learning” Applied Energy 2021 (Grid (Impact Factor: 8.5)),
https://doi.org/10.1016/j.apenergy.2020.116117

* Kuldeep Kurte, Jeffrey Munk, Kadir Amasyali, Olivera Kotevska, Robert Smith, Evan McKee, Yan Du, Bori Cui, Teja Kuruganti,
Helia Zandi “Evaluating the Adaptability of Reinforcement Learning based HVAC Control for Residential Houses” MDPI
Sustainability as part of the Special Issue Building and Urban Energy Prediction-Big Data Analysis and Sustainable 2020,
https://doi.org/10.3390/sul2187727

 "Approximating Nash Equilibrium in Day-ahead Electricity Market Bidding with Multi-Agent Deep Reinforcement Learning”,
Yan Du, Fran Li, Helia Zandi, Sonny Xue, Accepted in Journal of Modern Power Systems and Clean Energy (MPCE),2021.

* Yan Du, Fangxing Li, Jeffrey Munk, Kuldeep Kurte, , Kadir Amasyali, Olivera Kotevska, Helia Zandi “Multi-task Deep
Reinforcement Learning for Intelligent Multi-zone Residential HVAC Control,” Electric Power Systems Research 2021,
https://doi.org/10.1016/j.epsr.2020.106959

* Yan Du, Fangxing Li, Helia Zandi, Olivera Kotevska, Kuldeep Kurte, , Kadir Amasyali, Jeffrey Munk, Evan McKee “Model-Based
and Data-Driven Heating, Ventilation, and Air Conditioning (HVAC) Control Strategies for Residential Demand Response (DR)
Programs,” under review IEEE Transactions on Industrial Informatics.

 Kadir Amasyali, Kuldeep Kurte, Jeffrey Munk, Olivera Kotevska, Robert Smith, Helia Zandi " Double Deep Q-Networks for
Optimizing Electricity Cost of a Water Heater", IEEE ISGT 2021.

 Kotevska, O., Kurte, K., Munk, J., Johnston, T., McKee, E., Perumalla, K., Zandi, H. " RL-HEMS: Reinforcement Learning-based
Home Energy Management System for HVAC Energy Optimization" ASHREA Conference, 2020.

 for HVAC Energy Control", IEEE BigData20 Industry & Government
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List of Publications

« Evan McKee, Yan Du, Fangxing Li, Jeffrey Munk, Travis Johnston, Kuldeep HKurte, Olivera Kotevska, Kadir Amasyali,
Helia Zandi “Deep Reinforcement Learning for Residential HVAC Control with Consideration of Human Occupancy” IEEE
Power & Energy Society (PES) General.

« Kuldeep Kurte, Jeffrey Munk, Kadir Amasyali, Olivera Kotevska, Robert Smith, Helia Zandi “Electricity aware deep
reinforcement learning based intelligent HVAC control” ACM 1st International Workshop on Reinforcement Learning for
Energ, https://doi.org/10.1145/3427773.3427866

 y Management in Buildings & CitiesKadir Amasyali, Kuldeep Kurte, Jeffrey Munk, Olivera Kotevska, Robert Smith, Helia Zandi
“Double Deep Q-Networks for Optimizing Electricity Cost of a Water Heater” ACM 1st International Workshop on
Reinforcement Learning for Energy Management in Buildings & Cities

« Xiao Kou, Mohammad Olama, Helia Zandi, Chenang Liu, Saiid Kassaee, Brennan Smith, Ahmad Abu-Heiba, Ayyoub M.
Momen, “Bi-Level Optimization for Electricity Transaction in Smart Community WitYang Xiao Kou, Fangxing Li, Jin Dong,
Michael Starke, Jeffrey Munk, Yaosuo Xue, Mohammed Olama, Helia Zandi, “A Scalable and Distributed Algorithm for
Managing Residential Demand Response Programs using Alternating Direction Method of Multipliers (ADMM)” IEEE
Transactions on Smart Grid (Impact Factor: 10.48). DOI: 10.1109/TSG.2020.2995923,

* Xiao Kou, Fangxing Li, Jin Dong, Yang Chen, Mohammed Olama, Helia Zandi “A Comprehensive Scheduling Framework using
SP-ADMM for Residential Demand Response with Weather and Consumer Uncertainties,” |IEEE Transactions on Power
Systems 2020 Grid (Impact Factor: 6), 10.1109/TPWRS.2020.3029272. Cheh Modular Pump Hydro Storage”, ASME
conference, 2020.

* Olivera Kotevska, Jeffrey Munk, Kuldeep Kurte, Kadir Amasyali, Robert Smith, Helia Zandi "Methodology for Interpretable
Reinforcement Learning Model
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Project Budget

Project Budget: $700K(FY19), $700K(FY20), $700K(FY21)

Variances: N/A
Cost to Date: $1,824K
Additional Funding: None

Budget Histor

FY2019- FY 2020 FY 2021 (current) FY 2022
(past) (planned)
DOE Cost-share DOE Cost-share DOE Cost-share

$1,400K $0 $700K $0 $0 $0
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Project Plan and Schedule

Project Schedule

Project Start: 10/2018 Completed Work
Projected End: 9/30/2021 Active Task (in progress work)
’ Milestone/Deliverable (Originally Planned) use for missed
’ Milestone/Deliverable (Actual) use when met on time
FY2019 FY2020 Fy2021
=3 = = = = = = = = = = =
= = = =B = = = X = = = R
Task S |2 || |8l2l=1=2]8|ls1=1=
s |l |s |z ils s |s |3 |ls |s s |3

Q1 Milestone: Draft software architecture
specification for the load management system
Q2 Milestone: Develop field evaluation plan

Q3 Milestone: Implement software application for
load management system

Q4 Milestone: Define and formulate the initial RL
algorithm

Q1 Milestone: Initial field validation at Yarnell
Station

Q2 Milestone: Try various RL strategies and
algorithm improvement

Q3 Milestone: Draft a data collection & analysis
report

Q4 Milestone: Scalability testing
Q1 Milestone: Improve RL algoirthm performance
&: its cost svaing and comfort in simulation

Q2 Milestone: Field test the improved methodology
at Yarnell station house

Q3 Milestone: Draft a data collection an danalysis

report

Current/Future Work

Q4 Milestone: Improve RL performance and draft a
technical report
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		Q4 Milestone: Define and formulate the initial RL algorithm

		Q1 Milestone: Initial field validation at Yarnell Station

		Q2 Milestone: Try various RL strategies and algorithm improvement
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		Q1 Milestone: Improve RL algoirthm performance  & its cost svaing and comfort in simulation
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		Current/Future Work

		Q4 Milestone: Improve RL performance and draft a technical report
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