

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Robust Large-Scale Dynamic Windows using Reversible Metal Electrodeposition

University of Colorado Boulder, Stanford University Professor Michael McGehee <u>michael.mcgehee@colorado.edu</u> | (303) 492-2063

Project Summary

Timeline:

Start date: 10/31/17 Planned end date: 08/06/21

Key Milestones

- 1. Windows tint uniformly at 1 ft² scale, BP3
- Incorporate start-up (TYNT Technologies) to commercialize the technology, raising \$7M, BP3

Budget:

Total Project \$ to Date:

- DOE: \$410,689
- Cost Share: \$55,103

Total Project \$:

- DOE: \$410,689
- Cost Share: \$55,103

<u>Key Partners</u>: We had discussions with more than 25 companies but did all of the work ourselves. We interact extensively with Professor Chris Barile at the University of Nevada Reno.

Project Outcome:

Our research group has engineering dynamic windows based on reversible metal electrodeposition with color neutral and uniform tinting up to 1 ft² (929 cm²) scale with excellent durability (1,000 cycles). These windows employ a new electrolyte that drastically improves the shelf and cycle life. We have also added a polymer growth inhibitor that allows our windows to achieve privacy (residential) applications (<0.1% transmission). Finally, we have officially incorporated TYNT Technologies, a start-up intending to commercialize the technology and have raised \$7M.

Dynamically tinted windows are the future

- Reduce heating, cooling and lighting costs by 20% to save \$44 billion/year in energy costs in the United States
- Look cleaner than blinds
- Reduce glare while maintaining views
- Provide privacy and the darkness people need to sleep better

Challenge

- Neutral color
- Cost below \$20/ft2
- Visible light transmission below 0.1 % to provide the privacy and ability to sleep that people want in their homes.
- Durable for 25-40 years
- Switches in under 10 minutes

Team

Michael D. McGehee

- Principle Investigator
- Research Projects/Interests
 - Optically tunable dynamic windows based on reversible metal electrodeposition
 - Perovskite tandem solar cells
- *11th* most cited Materials Scientist in the world
 - Former students have started more than a dozen companies, including TYNT Technologies
- Co-founder of TYNT Technologies

Michael T. Strand

- Materials Science & Engineering Ph.D.
- Research Projects/Interests
 - Device modelling and electrode design
 - Scaling RME windows to commercial size
 - Electrolyte additives for enhanced optics
- NSF Fellowship, Stanford Graduate Fellowship
- Co-founder of TYNT Technologies

Tyler S. Hernandez

- Inorganic Chemistry Ph.D.
- Research Projects/Interests
 - Reversible, aqueous electrolytic systems
 - Gel electrolyte systems with high stability and reversibility for RME dynamic window applications
- NSF Fellowship
- Co-founder of TYNT Technologies

Andrew L. Yeang

- 4th year Chemical Engineering Ph.D. Candidate
- Research Projects/Interests
 - Metal mesh electrode design with high capacity, high reversibility, low haze, and high transparency
 - Mechanical stress and strain in electrodeposited films
 - GAANN Fellowship

Company Collaborative Interest:

Velux, Robert Clarke Associates, AGC, AGP, Pilkington, Cardinal, Glas Trosch, Corning, Tesla, Boeing, Nitto Denko, Avery Dennison, BASF, Solvay, View, Gentex, Wisp, and Kinestral

Conventional technologies have drawbacks

	Tungsten Oxide Electrochromics	Reversible Metal Electrodeposition	Motorized blinds
Companies	View, Sage, Kinestral	Tynt	e.g. Hunter Douglas
Color	Slightly blue	Perfectly neutral	The view is lost
Highest light transmission	60 %	75 %	90 %
Lowest light transmission	1%	0 %	0 %, but light gets in around edges
Cost	\$50/ft ²	Path to \$10/ft ²	\$90/ft ²
Fabrication	Deposit at high temperature	Blade coat in roll- to-roll coater	Weave
Retrofittable	No	Yes	Yes

Reversible Metal Electrodeposition (RME) for Dynamic Windows

Metals are great attenuators of light

- Completely opaque at 20-30 nm thickness
- Reflective or absorptive (mirror or black)
- Can achieve <0.1% transmission (privacy applications)

Metals are intrinsically stable

- No degradation from UV
- Chemically stable
- Easily electrodeposited from "green" solvents (i.e. H₂O)

Potential for lower cost

Solution-processed

Generation 1 RME Windows

RME Windows with fast, uniform, and color neutral switching over 1,000 cycles at a 100 cm² scale!

Pt-Modified ITO

ClO₄⁻ Electrolyte Improves Durability – Both Shelf and Cycle Life

CIO₄⁻ Does Not Etch ITO!

Scholten, M. J. Electrochem. Soc., 1993, 140, 2.

ClO₄⁻ Electrolyte Maintains High Coulombic Efficiency and >70% Contrast Ratio in <1 min switching over 10,000 cycles!

Polymer Additive (PVA) Enhances Optical Contrast and Scale

Time (s)

Transmission % (@550

60

40

20

0

0

ASTM Durability Testing Underway

- > 50,000 cycles for clear to dark
- 1 sun illumination
- 85 degrees C

500 cycles at ASTM conditions

500 cycles with no degradation in contrast or switching speed, >99% Coulombic Efficiency, and consistent Coloration Efficiency

Cycle 1

Cycle 500

Cycle 1000

- Air bubbles form from electrolyte outgassing at elevated temperature and UV exposure
- Liquid/gas interface causes metal irreversibility issues

Improved Metal Mesh for Durable Privacy (<0.1% T) Cycling

When a lot of copper is removed from the grid, the Cu:Bi ratio becomes too high.

Cu Mesh -> increases [Cu²⁺] -> increase in reflection and decrease in coloration efficiency

We have shared the design with Marc Lafrance, but cannot reveal it publicly until we file a patent.

An additional improvement to the electrolyte has also improved durability and will also be patented soon. The photos you saw have the improved electrolyte. The video is at www.tynt.io.

Improved Mesh -> consistent in reflection and coloration efficiency

Project Impact

- 6 Publications in high-impact journals (see below)
- 4 Provisional Patents
- Spun out TYNT Technologies to commercialize the technology
- Won \$125 K from the Lab Venture Challenge

- 1. "Polymer Inhibitors Enable >900 cm² Dynamic Windows Based on Reversible Metal Electrodeposition with High Solar Modulation," M.T. Strand, T.S. Hernandez, M.G. Danner, A.L. Yeang, N. Jarvey, C.J. Barile, M.D. McGehee, *Nature Energy*, (2021) DOI: https://doi.org/10.1038/s41560-021-00816-7
- 2. "Electrolyte for Improved Durability of Dynamic Windows Based on Reversible Metal Electrodeposition," T.S. Hernandez, M. Alshurafa, M.T. Strand, A.L. Yeang, M.G. Danner, C.J. Barile, M.D. McGehee, *Joule*, (2020) DOI: 10:1016/j.joule.2020.05.008.
- 3. "Hybrid Dynamic Windows Using Reversible Metal Electrodeposition and Ion Insertion," S.M Islam, T.S. Hernandez, M.D. McGehee and C.J. Barile, *Nature Energy*, 4 (2019) 223-229.
- 4. "Factors that Determine the Length Scale for Uniform Tinting in Dynamic Windows Based on Reversible Metal Electrodeposition," M.T. Strand, C.J. Barile, T.S. Hernandez, T.E. Dayrit, L. Bertoluzzi, D.J. Slotcavage, M.D. McGehee, *ACS Energy Letters*, 3 (2018) 2823-2828.
- 5. "Bistable Black Electrochromic Windows Based on the Reversible Metal Electrodeposition of Bi and Cu," T.S. Hernandez, C.J. Barile, M.T. Strand, T.E. Dayrit, D.J. Slotcavage, M.D. McGehee, *ACS Energy Letters*, 3 (2018) 104-111.
- 6. "Dynamic Windows with Neutral Color, High Contrast, and Excellent Durability using Reversible Metal Electrodeposition," C. J. Barile, D. J. Slotcavage, J. Hou, M. T. Strand, T. S. Hernandez, M. D. McGehee, *Joule* 1 (2017) 133.

Incorporation of TYNT Technologies

CEO: Ameen Saafir (<u>Ameen@tynt.io</u>)

\$7 M seed round closed on 7/30/21

Strategic partnership with a major company that can deploy our dynamic glazings.

www.tynt.io

Former Kinestral Chief Engineer. 16 years at Samsung, Dupont and Kinestral

Tyler Hernandez *Materials Development*

Inorganic Chemistry PhD Developed electrolyte chemistry.

John Dwyer COO/CPO Ran Wearables business at Flextronics, products include Nike FuelBand, Chromecast, and <u>Wink Hub.</u>

Michael Strand Process Development

Materials Science & Engineering PhD Developed electrode system.

Michael McGehee

Chief Scientist Materials Science Professor at Colorado. #11 Materials Scientist in world for scientific impact. Advised 7 companies, 215 Publications, 13 Patents.

Taylor AvilesBusiness Development

Former Corporate Strategy at Kinestral.

Thank You

We love this project and could not have done it with the DOE's support.

University of Colorado Boulder, Stanford University Professor Michael McGehee

michael.mcgehee@colorado.edu | (303) 492-2063

REFERENCE SLIDES

Project Plan and Schedule

Project Schedule												
Project Start: 10/31/17		Completed Work										
Projected End: 12/31/20		Active Task (in progress work)										
*note change in Q dates due to move in summer 2018 from Stanford to Colorado	•	Milestone/Deliverable (Originally Planned)										
		Milestone/Deliverable (Actual)										
		FY2019 FY2020 FY2021										
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Dec)	Q1 (Jan-Mar)	Q2 Apr-June)	Q3 (Jul-Sept)	Q4 (Oct-Dec)	Q1 (Jan-Mar)	Q2 Apr-June)	Q3 (Jul-Sept)	Q4 (Oct-Dec)
Past Work												
Q1 Milestone: 100cm^2 devices switch <1 min												
Q2 Milestone: Electrolyte+packaging stability												
Q3 Milestone: Gridline transparency and haze												
Q4 Milestone: Window with 5,000 cycles					•							
Q1 Milestone: Fabricate 1 ft^2 window												
Q4 Milestone: Commercial Partnerships												
Current/Future Work												
Q4 Milestone: Device durability												

Project Budget

Project Budget: \$410,689.00
Variances: Transferred grant from Stanford to University of Colorado-Boulder.
Cost to Date: All DOE funds are spent.
Additional Funding: VentureWell E-Teams Program (\$5K), Lab Venture
Challenge \$125 K.

Budget History								
10/31/17 – FY 2019 (past)		FY 2020) (current)	FY 2021 – Insert End Date (planned)				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
\$355,586	\$54,054	\$86,259	15,590					