A Novel Framework for Performance Evaluation and Design Optimization of PCM Embedded Heat Exchangers for the Built Environment

Performing Organization(s): University of Maryland, Heat Transfer Technologies LLC. PI: Dr. Vikrant C. Aute, Research Scientist and Co-director at CEEE 301-405-8726; vikrant@umd.edu

Project Summary

Timeline:

Start date: 04/08/2020

Planned end date: 04/08/2023

Key Milestones

- 1. Develop a new framework for design optimization; 04/08/2021
- 2. Develop Web/Desktop UI that incorporates the reduced order models; 04/08/2022
- 3. Fabricate and test the two PCM-HXs and validate the model; 12/07/2022

Budget:

Total Project \$ to Date:

- DOE: \$460,666
- Cost Share: \$117,541

Total Project \$:

- DOE: \$1,400,000
- Cost Share: \$350,000

Industry Advisors:

Rheem	Active Energy Systems
Carrier	Hussmann
Daikin / Goodman	Johnson Controls
NETenergy	Electrolux
Danfoss	

Project Outcome:

Novel framework for rapid performance evaluation and design optimization of PCM embedded heat exchangers (PCM-HX) designs

An online PCM material database and PCM-HX performance simulation tool to assist the HVAC design community.

Develop and test novel PCM embedded heat exchangers (PCM-HX) achieving DOE's targets for thermal storage.

Team

University of Maryland

Heat Transfer Technologies

Expertise: 30+ years of experience in R&D of heat pumps, refrigerant, HVAC&R components and systems, modeling and optimization software development; system and component test facilities; funded by industry and government

20+ years of experience in design and

production evaluation; development of

innovative joining techniques for small

mfg. of heat exchangers for pre-

diameter tubes and manifolds

Dr. V. Aute, PI

Dr. R. Radermacher

Co-PI

Dr. Y. Hwang, Co-Pl

Dr. J. Ling, Co-Pl

J. Muehlbauer

Dr. D. Bacellar

D. Eisner

J. Yang

Yoram Shabtay President, HTT, PI

Challenge

- Combined average energy consumption of residential and commercial sectors from 2017 to 2020 was 39% while industrial and transportation sectors were 33% and 28%, respectively^[a].
 - Average total energy consumption: **98 quadrillion BTU**
- For residential electricity consumption by end use in 2015, the air conditioning, space heating, and water heating took up 46% of the total.
- One-third of U.S. households struggles with meeting energy needs^[b].
- The high demand of air conditioning and heating during peak electricity hours
 - Needs for load balancing on electric grids and power plants
- Deployment of renewable energy coupled with HVAC systems

Source: U.S. Energy Information Administration, 2015 Residential Energy Consumption Survey

- [a] U.S. Energy Information Administration, Monthly Energy Review Table 2.1
- [b] U.S. Energy Information Administration, Residential Energy Consumption Survey 2015

Objectives

- Develop a novel framework for performance evaluation and design optimization of PCM-embedded heat exchangers (PCM-HX)
- Develop and test a PCM embedded heat exchangers (PCM-HX)
- Develop an online PCM material database and PCM-HX performance simulation tool to assist the design community on common use-cases such as Single/multiple flow path(s) fluid-to-PCM configuration and air-tofluid-to-PCM configuration

Metric Description	Metric					
Demand Reduction ⁽¹⁾	$\geq 50\%$					
Time Period	\geq 4 hours					
Volume increase ⁽¹⁾	$\leq 10\%$					
Weight increase ⁽¹⁾	$\leq 10\%$					
Simple Payback Period (2)	\leq 5 years					
Operation	Start/Stop Multiple times as required					
Technology Lifetime ⁽¹⁾	\geq baseline					
Service & Installation ⁽¹⁾	\leq baseline					
Note (1): Measured with respect to baseline						

Note (2): The system cost includes all part for operation, including all energy storage parts and subcomponents.

Approach – Framework

Approach

Year-1: Develop the PCM-HX Design and Optimization Framework

Extensive literature review on PCM-HXs and modeling techniques Construction of commercially available PCM property database

Fabricate and test simple PCM-HX geometries for fundamental control volume validation Establish applications of interest

Year-2: Design, Fabricate and Test Heat Exchangers Resulting from Exercising the Framework

Design, fabricate, and test the PCM-HX prototypes Develop Web/Desktop UI that incorporates the reduced order models

Update **framework**, generate **reduced order performance map** and test the integration in building simulation tools

Year-3: Validate and Improve the Design and Optimization Framework

Fabricate and test the PCM-HXs and validate the model Conduct a **second round** of performance map generation and integrate these with UI

Final framework and documentation delivery

Impact

- Design community impact
 - Easy to use online simulation tool for design engineers
- Advancement of PCM-HX design, testing and modeling technology
- Large scale financial savings and efficient energy distribution when widely employed
 - In 2015, the energy consumption for residential sector was 21 quad BTU^[a]
 - Air conditioning and water heating : 31% (6.5 quad BTU)^[b]
 - If employed in half of the residential sector, with 50% demand reduction, the yearly energy savings will be 1.6 quad BTU
- Next-generation fully optimized PCM-HX obtained from the framework
 - Capable of 50% demand reduction with less than 10% volume and 20% weight increase

[a] - U.S. Energy Information Administration, <u>Monthly Energy Review – Table 2.1</u>
[b] - U.S. Energy Information Administration, <u>2015 Residential Energy Consumption Survey</u>

Literature Review Summary

PCM-HX configurations and HT enhancement

- Fins and conductive particle embedded enhanced PCMs are the most widely used HT enhancement techniques (can reduce charge/discharge time by up to 50%)
- Trade-off between charge/discharge time and energy storage capacity can be considered by opting for designs with high compactness
- First order analysis shows that radial circular fins have higher compactness
- Combining fins with particle enhanced PCM-HX, non-uniform arrangement of fins, and topology optimization can lead to more compact promising designs

PCM-HX modeling techniques

- Analytical and simple iterative numerical models
 - Advantage Fast
 - Disadvantage- Not very accurate and becomes complicated when applied to multidimensional problem
- CFD based models
 - Advantage- More reliable, accurate, can be applied to complicated geometries
 - Disadvantage- Computationally expensive, requires expensive setup
- Resistance-Capacitance based model
 - An approximate method problem which can be implemented easily to estimate charge/discharge time (2-D implementation will improve accuracy)
 - Accurate prediction of PCM internal temperature is less important in practical case

Year-1 Accomplishments

Reduced Order Model

Optimization

Run Time (s)	CFD	ROM	Speed Increase
Training Set	3,300,000	5.67	580,000
Cross- Validation Set	330,000	0.77	430,000
Test Set	86,000	0.36	240,000
Total	3,700,000	6.80	540,000

340

Web-based tool

Geometry PCM Properties Boundary and Initial Conditions Analysis

Year-1 Accomplishments (cont'd)

ROM enables quick generation of the thermal battery Ragone plots¹

E.g.

Dimension	Unit	Value
Tube diam.	mm	5
Tube length	mm	100
Fin diam.	mm	25.4
Fin thick.	mm	0.25
Fin pitch	mm	5
Tank diam.	mm	25.9
PCM	-	RT35

 $se = 1 - \frac{h_{\Delta T = \Delta T_{cutoff}}}{h}; h: enthalpy$

 $se \cdot h_o$

sp =

¹Jason Woods, Allison Mahvi, Anurag Goyal, Eric Kozubal, Adewale Odukomaiya and Roderick Jackson. Rate capability and Ragone plots for phase change thermal energy storage. Nature Energy, 6, (2021), pp. 295-302

Year-1 Assessment

- In need of extensive PCM data gathering and performance testing of PCM-HXs based on simple geometries, using the in-house test facility
- Actions
 - Construction of PCM database:
 - Surveyed 12 OEMs, collected property data for 300+ commercially available PCM products
 - Water-to-PCM test facility construction
 - Construction of test facility capable of testing different PCM-HX configurations
 - Accessory components for accurate water-side measurement: 3D printed RTD guides, turbulator inserts
 - Simple geometry PCM-HX fabrication and experiment
 - Successfully fabricated and tested the straight and helix tube PCM-HXs

3D printed RTD guides

Year-1 Assessment (cont'd)

• PCM-HX configurations and HT enhancement

- Annular PCM-HX are one of the most investigated configurations
- Fins and conductive particle embedded enhanced PCMs are the most widely used HT enhancement techniques
- Trade-off between melting rate and energy storage capacity exists
- Optimization is necessary but not straightforward

PCM-HX modeling techniques

- Analytical and simple iterative numerical models are fast but often not very accurate
- CFD based models are more reliable and accurate but computationally expensive
- Alternative methods like Lattice Boltzmann may provide some computational cost advantages but developing optimization framework can be difficult
- Minimizing natural convection and focusing on conduction dominated modeling is necessary to reduce computational cost

Year-1 Assessment (cont'd)

- CFD is still computationally too expensive for this project, despite the speed gains achieved in the first year
- Future analyses require another breakthrough in speed increase
- Actions:
 - Focus on diffusion-dominated problems that minimize natural convection (e.g., enhanced PCM's with metal foam or graphite, high fin density)
 - Motion of liquid PCM is physically complex and computationally intensive
 - Enhanced PCM's typically result in better heat transfer performance, albeit at the cost of reduced storage volume
 - Develop a hybrid lightweight solver (Resistance-Capacitance-Based)
 - Explore shape & topology optimization for novel surface structures

Progress - Year-2 (Mid.)

Progress - Year-2 (Mid.) (cont'd)

- Straight & helix tube PCM-HX fabrication and experiments
 - Implementation of air and argon cylinders for improved insulation
 - Visualization of phase change processes
 - Laminar and turbulent flow tests with upward and downward water flow directions
 - Repeatability tests
 - Heat loss estimation with thermocouple pairs, thermocouple arrays inside the PCM-HX
 - Energy balance analysis for each melting and solidification process: maximum discrepancy under 6% (straight laminar), 8% (helix laminar), 17% (helix turbulent)
 - Water-side uncertainty in heat transfer:
 - Straight: laminar 2% [M] and 4% [S]
 - Helix: laminar ⁴/₂% [M] and ⁴/₂% [S], turbulent - ⁴/₂% [M] and ⁴/₆% [S]

Progress - Year-2 (Mid.) (cont'd)

Straight tube PCM-HX repeatability tests – PCM temperature distribution by layers

Helix tube PCM-HX repeatability tests – PCM average temperatures

- Both straight and helix tube PCM-HXs were cycled three times to verify the repeatability
- For the straight tube plots, the outer right hand side thermocouples from each layer was plotted for simplicity
 - (#-R_out), #: layer number, R: right hand side, out: outer
 - Layers 1 to 6 are evenly spaced out from the top to bottom of the PCM-HX
- For the helix tube plots, the average of the PCM temperatures were plotted for simplicity

Progress - Year-2 (Mid.) (cont'd)

Stakeholder Engagement

- Stakeholders: BTO, HVAC and TES OEMs, PCM material developers and suppliers, building energy modelers
- First semi-annual industry partner meeting was held on Apr. 23, 2021
- Participants: Rheem, Carrier, Daikin/Goodman, NETenergy, Active Energy Systems, Hussmann, Johnson Controls, Electrolux and Danfoss
- Plan: 4+ Annual meetings
- Reaching out to PCM manufacturers, to improve the database of material characteristics, potentially undertake material testing
- Collaboration Opportunities
 - Performers focusing on novel materials
 - Performers focusing on integrating PCM-HX in HVAC equipment

Remaining Project Work

Immediate Future Work

- Experimental
 - Finned-tube PCM-HX design and fabrication
 - Performance test of the finned-tube PCM-HX
 - Enhanced PCM-HX with copper foam/ graphite shavings
- Simulation
 - Development of resistance-capacitance-based model for enhanced PCM-HX
 - Development of reduced order model
 - Web-based tool
 - Use topology optimization to develop novel fin/surface structures
- Overall
 - Design of new PCM-HX prototypes for air conditioning and water heating application

Remaining Future Work

• Design and fabricate the final versions of PCM-HXs for performance testing and validation

Thank You

Performing Organization(s): University of Maryland, Heat Transfer Technologies LLC. PI: Dr. Vikrant Aute, Research Scientist 301-405-8726; vikrant@umd.edu

REFERENCE SLIDES

Project Budget

Project Budget: 1,750,000 (including cost share) Variances: NA Cost to Date: \$578,207 (including cost share) Additional Funding: None

Budget History								
<mark>4/8/2020</mark> – FY 2020 (past)		FY 2021 cumu	. (current, lative)	FY 2022 – <mark>4/7/2023</mark> (planned)				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
\$336,555	\$86,508	\$460,666	\$117,541	\$939,334	\$232,459			

Project Plan and Schedule

Tsk#	Task Name	Start	Finish	%	2021						2022					
	0			Comp	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	C
	DOE - PCM Framework	04/08/20	02/07/23													
M1.0	Intellectual property management plan (IPMP) development	04/08/20	07/08/20		_	Intellec	tual prop	erty mar	agement	plan (IP	MP) deve	lopment				
M1.1	Establish two applications of interest	04/08/20	10/08/20				Establi	sh two ap	oplications	s of inte	rest					
M1.2	Develop a new framework for design optimization	04/12/20	04/08/21		<u> </u>				Develop	anew	framewor	k for des	ign optim	nization		
	Conduct literature review on PCM-HX designs & modeling techniques	04/12/20	04/08/21		_			i	Conduc	t literatu	ire review	v on PCM	I-HX desi	gns & mo	deling te	chr
M1.3	Set up PCM property database	04/08/20	10/08/20		_		Set up	PCM pro	perty data	abase						
M1.4	Fabricate and test simple PCM-HX geometries for fundamental control volume validation	04/08/20	01/08/21		-			Fabrica	ate and te	st simpl	e PCM-H	X geome	tries for f	undamer	ital contr	ol v
G/NG 1.1	Go/No-Go 1.1	04/08/20	04/07/21		_				Go/No-0	Go 1.1						
G/NG 1.2	Go/No-Go 1.2	04/08/20	04/07/21		_				Go/No-0	Go 1.2						
M2.1	Update framework, generate reduced order performance map (ROMs) and test the integration in building simulation tools	04/08/20	04/07/22		-								Update	framewo	ork, gene	rat∈
M2.2	Fabricate the PCM-HXs (P1 and P2) developed in 2.1	04/08/20	12/07/21								F	abricate	the PCM	-HXs (P1	and P2) o	dev
M2.3	Develop Web/Desktop UI that incorporates the reduced order models	04/08/20	04/07/22		-								Develop	o Web/D€	sktop UI	tha
M3.4	Complete performance tests on prototypes	04/08/20	04/07/22										Comple	te perfor	mance te	ests
G/NG 2.1	First version of the tool released to select users	04/08/20	04/07/22										First ve	rsion of t	he tool re	elea
G/NG 2.2	Ultra-performing PCM-HXs design completed and ready for fabrication	04/08/20	04/07/22										Ultra-p	erforming	PCM-H	Ks (
G/NG 2.3	The second version of framework passes validation	04/08/20	04/07/22										The sec	cond vers	ion of fra	ame
M3.1	Fabricate and test the two PCM-HXs (P3 and P4) and validate the model	04/08/20	12/07/22												F	abri
M3.2	Second round of Performance map generation and integrate with UI	04/08/20	02/07/23													
M3.3	Final framework complete. and documentation delivery															

Computational Cost^[2]

CFD modeling is computationally expensive

[2] Bacellar, Daniel; Alam, Tanjebul; Ling, Jiazhen; Aute, Vikrant. A Study on Computational Cost Reduction of Simulations of Phase-Change Material (PCM) Embedded Heat Exchangers. 18th International Refrigeration and Air Conditioning Conference at Purdue, May 24-28, 2021

Approach – Barriers and Risks

PCM's Thermophysical Properties

- Limited published/readily available information^[1]
- Extremely low thermal conductivity
- Volume change
- Thermal and chemical stability

System Size, Cost and Complexity

- Increasing weight, volume, and cost upon integration
- Integration/retrofit concern with existing HVAC applications

for compactness

Novel PCM-HX design

Proper PCM selection

with industry partners

PCM thermal

conductivity

enhancement

