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Project Summary
Timeline:
Start date: October 2018
Planned end date: March 2022
Key Milestones
1. Development of appropriate 

manufacturing process to accommodate 
desired operating pressure (>100 psi) 

2. Design, development and demonstration 
of ultra-efficient heat exchanger (200% 
higher UA compared to existing 
technology)

Project Outcome: 
• Next generation heat exchanger for air-to-

refrigerant heat transfer applications
o Development of cost-effective manufacturing

process
o Deployment of higher durability solution

compatible to high operating pressure

DOE funds Cost share
FY19 450K 50K
FY20 450K 50K
FY21 450K 50K

Budget: 

Next generation heat exchangers enabled by advanced manufacturing and novel materials 

Key Partners:
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Project Team

• Oak Ridge National Laboratory 
– Kashif Nawaz (Sr. R&D staff)
– Brian Fricke (Sr. R&D staff)
– Kai Li (R&D staff)
– Vlastimil Kunc(Sr. R&D staff)
– Ahmed Hassan(R&D staff)
– Edgar Lara-Curzio (Sr. R&D staff)
– Tyler Smith (Tech Staff)

• University of Oklahoma
– M. Cengiz Altan (Professor)

• Johnson Controls Inc. 
– Roy Crawford (Director Advanced R&D)

• TC Poly Inc. 
– Matthew Smith (Research Director)
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• Air-to-refrigerant heat exchanger are essential component of any heating, cooling
and dehumidifying application.

• Heat exchangers account for more than 50% of the energy consumption in a
typical HVAC&R system.

• Operating conditions can significantly impact the performance of heat exchanger.

Dry operation Wet operation Frosted operation

The development of an effective air-to-refrigerant heat exchanger can lead to at
least 500 TBtu/year of U.S. primary energy savings, due to merely 20-25%
improvement in heat exchanger efficiency.

Challenge
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• Depending on the operation, 60-80% of thermal resistance to heat transfer lies on
the air-side → often times extended surfaces are deployed.

• Conventionally metals (aluminum and copper) have been used to manufacture the
heat exchanger.

Louver fin Wavy fin

Staggered fin Plain fin
Coil weight= 1.2 kg
Pressure drop= 2.5 bars
Thickness= 18 mm
Manf Cost=~$40

https://www.cantas.com/urunpdf/sanhua_microchannel_cat.pdf

Coil weight= 6 kg
Pressure drop= 3.5 bars
Thickness= 36 mm
Manf Cost=>$55

Capacity= 5 kW
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Challenge
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Solution Approach

Bare aluminum surface

Teflon surface

What about polymer heat exchangers??
• Low thermal conductivity Hybrid materials (composites)
• Failure at high operating pressure Hybrid materials (composites)
• Compatibility with working fluids Appropriate treatment
• Manufacturability Advanced manufacturing
• Condensate drainage/self cleaning 3x better
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Solution Approach
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Project Impact

• Development of next generation heat exchanger with

– Unprecedented thermal-hydraulic performance (Indirect GHG emission 
reduction)

– 50% reduction in manufacturing cost

– Expanded operational life

– 3-4 times more compact compared to state of the art

• Enabling development for deployment of A2L and A3 refrigerants

– Reduction in refrigerant charge (Direct GHG emission reduction)

– Compatibility with emerging fluids over wide operating range

• Implications for additional processes

– Power generation, waste heat recovery, electronics cooling

• At least 500TBtu energy saving in air cooling and heating processes 

• Aligned with BTO goal to reduce the GHG emissions (direct and indirect). 
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Progress Overview 

Thermal conductivity 

Formulations Pitch fiber (%) Graphite (%) PETG (%)

6P_18Ga 6 18 76
10P_20G 10 20 70
13P_13G 13 14 73
20P_30G 20 30 50

Push Plastic
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Coefficient of Thermal Expansion (CTE)

• CTE of printed part increase with the temperature linearly during heating and cooling

• 20P_30G has lower CTE among the samples tested

• At 100 oC, the CTE is 20.7 ppm/oC, suggesting the printed part has a good thermal 

stability

Thermomechanical analyzer (TMA) 

19.2 mm × 5.6 mm 
× 3.5mm 

Progress Overview 
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Creep test
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• The creep behavior of exhibited a strong temperature dependence due to the glass 

transition (ca. 70 oC)

• At low temperatures (40-70 oC), the material exhibited low and almost a constant 

creep strain value of 0.08% due to the restricted mobility of the polymer chain

• At high temperature (>70 oC), creep strain increased 
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Progress Overview 
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Pressure and temperature testing

• Polymer tubes printed to test strength of printed parts at 
elevated pressures and temperatures
– Wall thickness varied from 0.5 mm to 2.0 mm

• Tube dimensions measured in 5 locations to compare 
deformation before and after testing
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Manufacturing Process 
• A variety of methods have been employed to create a 

polymer heat exchanger:
– One-piece build
– Multi-component designs:

• Body with fluid passages and cartridge-style fin 
inserts (1)

• Manifolds, fins, and tubes printed separately and 
combined with epoxy (2)

• Variations on these two designs
• Difficulties in leak-proofing

– High thermal conductivity produces stresses in parts 
while printing due to thermal stress (rapid heating and 
cooling). This causes splits between layers.

– Nozzle start and stop locations also create possible 
leak paths within a layer

– Post-process sealing may help

Progress Overview 
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• Smooth transitions, no sharp corners near 
fluid passages

• Printing in heated build chamber to reduce 
thermal stresses

• Print fluid passages in a separate tool path from 
other structures in a layer

• Post-printing annealing to reduce thermal 
stresses

Progress Overview 
Manufacturing Process 
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• IR images around the half the print height (~2.75in). Temperature gradients show a 
significant increase in temperature of the part as the print leaves the influence of the 
bed temperature.

• Signiant impact on the materials properties   

IR image of non-enclosure 
print

IR image of enclosure 
print

Modulus of Elasticity [MPa]
X-Dir 69
Z-Dir 30

Modulus of Elasticity [MPa]
X-Dir 224
Z-Dir 101

ASTM D638 Type 4

Progress Overview 
Manufacturing Process 
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• 3 different profiles: circle, ellipse, and
NACA0020 airfoil

• The same cross-sectional area
• Same amount of material

Circle

Ellipse

Airfoil

Boundary conditions:
• Inlet velocity: 0.5 – 4 m/s, 
• Inlet temp: 90 F
• Wall temp: 50 F

Progress Overview 
Design Analysis
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Stakeholder Engagement

• Industrial participation
– Requirement based system specifications
– Important design constraints
– Refrigerants replacement
– Manufacturing process for large scale

• Meetings with experts at technical platform
– ASHRAE (TC 8.5, TC 1.3)
– Purdue conference

• Presentations/Conference papers
– Review article based on state-of-the-art technology
– Articles on design, material and manufacturing aspects 

• Advertisement at HVAC&R consortium 
– ACRC (University of Illinois)
– CEEE (University of Maryland)
– Oklahoma State University 
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ORNL’s Building Technologies Research and Integration 
Center (BTRIC) has supported DOE BTO since 1993. BTRIC is 
comprised of 50,000+ ft2 of lab facilities conducting RD&D to 
support the DOE mission to equitably transition America to a carbon 
pollution-free electricity sector by 2035 and carbon free economy by 
2050. 

Scientific and Economic Results
238 publications in FY20
125 industry partners
27 university partners
10 R&D 100 awards
42 active CRADAs

Thank you
Oak Ridge National Laboratory
Kashif Nawaz 
(Group Leader- Multifunctional Equipment Integration)
865-241-0792, nawazk@ornl.gov

BTRIC is a 
DOE-Designated 

National User Facility 
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REFERENCE SLIDES
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Project Budget: $1.35M, $150K cost-share
Variances: None
Cost to Date: $47K
Additional Funding: None

Budget History

FY 2019- FY 2020
(past) FY 2021 (current) FY 2022

DOE Cost-share DOE Cost-share DOE Cost-share
$900K $100K $450K $50K

Project Budget
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Project Plan and Schedule


	Slide Number 1
	Project Summary
	Project Team
	Challenge
	Slide Number 5
	Solution Approach
	Solution Approach
	Project Impact
	Progress Overview 
	Coefficient of Thermal Expansion (CTE)
	Creep test
	Pressure and temperature testing
	Manufacturing Process 
	Manufacturing Process 
	Manufacturing Process 
	Design Analysis
	Stakeholder Engagement
	Slide Number 18
	Slide Number 19
	Project Budget
	Project Plan and Schedule

