

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Low-cost, high-performance polymer composite heat exchangers manufactured by additive manufacturing

Oak Ridge National Laboratory

Kashif Nawaz (Group Leader- Multifunctional Equipment Integration)

865-241-0792, nawazk@ornl.gov

Project Summary

<u>Timeline</u>:

Start date: October 2018

Planned end date: March 2022

Key Milestones

- 1. Development of appropriate manufacturing process to accommodate desired operating pressure (>100 psi)
- 2. Design, development and demonstration of ultra-efficient heat exchanger (200% higher UA compared to existing technology)

Budget:

	DOE funds	Cost share
FY19	450K	50K
FY20	450K	50K
FY21	450K	50K

Key Partners:

Johnson

Controls

Mitsubishi Chemical America

Project Outcome:

- Next generation heat exchanger for air-torefrigerant heat transfer applications
- Development of cost-effective manufacturing process
- Deployment of higher durability solution compatible to high operating pressure

Next generation heat exchangers enabled by advanced manufacturing and novel materials

Project Team

- Oak Ridge National Laboratory
 - Kashif Nawaz (Sr. R&D staff)
 - Brian Fricke (Sr. R&D staff)
 - Kai Li (R&D staff)
 - Vlastimil Kunc(Sr. R&D staff)
 - Ahmed Hassan(R&D staff)
 - Edgar Lara-Curzio (Sr. R&D staff)
 - Tyler Smith (Tech Staff)
- University of Oklahoma
 - M. Cengiz Altan (Professor)
- Johnson Controls Inc.
 - Roy Crawford (Director Advanced R&D)
- TC Poly Inc.
 - Matthew Smith (Research Director)

Challenge

- Air-to-refrigerant heat exchanger are essential component of any heating, cooling and dehumidifying application.
- Heat exchangers account for more than 50% of the energy consumption in a typical HVAC&R system.
- Operating conditions can significantly impact the performance of heat exchanger.

Dry operation

Wet operation

Frosted operation

The development of an effective <u>air-to-refrigerant heat exchanger</u> can lead to at least **500 TBtu/year** of U.S. primary energy savings, due to merely **20-25%** improvement in heat exchanger efficiency.

Challenge

- Depending on the operation, 60-80% of thermal resistance to heat transfer lies on the air-side \rightarrow often times extended surfaces are deployed.
- Conventionally metals (aluminum and copper) have been used to manufacture the heat exchanger.

Capacity= 5 kW

https://www.cantas.com/urunpdf/sanhua_microchannel_cat.pdf

Solution Approach

What about polymer heat exchangers??

- Low thermal conductivity
- Failure at high operating pressure
- Compatibility with working fluids
- Manufacturability
- Condensate drainage/self cleaning

Hybrid materials (composites) Hybrid materials (composites) Appropriate treatment Advanced manufacturing 3x better

Bare aluminum surface

Teflon surface

Solution Approach

Project Impact

- Development of next generation heat exchanger with
 - Unprecedented thermal-hydraulic performance (Indirect GHG emission reduction)
 - 50% reduction in manufacturing cost
 - Expanded operational life
 - 3-4 times more compact compared to state of the art
- Enabling development for deployment of A2L and A3 refrigerants
 - Reduction in refrigerant charge (Direct GHG emission reduction)
 - Compatibility with emerging fluids over wide operating range
- Implications for additional processes
 - Power generation, waste heat recovery, electronics cooling
- At least 500TBtu energy saving in air cooling and heating processes
- Aligned with BTO goal to reduce the GHG emissions (direct and indirect).

Formulations	Pitch fiber (%)	Graphite (%)	PETG (%)	
6P_18G ^a	6	18	76	
10P_20G	10	20	70	Push Plastic
13P_13G	13	14	73	
20P_30G	20	30	50	CHEMICAL

Mitsubishi Chemical America

- CTE of printed part increase with the temperature linearly during heating and cooling
- 20P_30G has lower CTE among the samples tested
- At 100 °C, the CTE is 20.7 ppm/°C, suggesting the printed part has a good thermal stability

- The creep behavior of exhibited a strong temperature dependence due to the glass transition (ca. 70 °C)
- At low temperatures (40-70 °C), the material exhibited low and almost a constant creep strain value of 0.08% due to the restricted mobility of the polymer chain
- At high temperature (>70 °C), creep strain increased

Pressure and temperature testing

- Polymer tubes printed to test strength of printed parts at elevated pressures and temperatures
 - Wall thickness varied from 0.5 mm to 2.0 mm
- Tube dimensions measured in 5 locations to compare deformation before and after testing

Manufacturing Process

- A variety of methods have been employed to create a polymer heat exchanger:
 - One-piece build
 - Multi-component designs:
 - Body with fluid passages and cartridge-style fin inserts (1)
 - Manifolds, fins, and tubes printed separately and combined with epoxy (2)
 - Variations on these two designs
- Difficulties in leak-proofing
 - High thermal conductivity produces stresses in parts while printing due to thermal stress (rapid heating and cooling). This causes splits between layers.
 - Nozzle start and stop locations also create possible leak paths within a layer
 - Post-process sealing may help

Manufacturing Process

- Print fluid passages in a separate tool path from other structures in a layer
- Post-printing annealing to reduce thermal stresses

- Smooth transitions, no sharp corners near fluid passages
- Printing in heated build chamber to reduce thermal stresses

Manufacturing Process

- IR images around the half the print height (~2.75in). Temperature gradients show a significant increase in temperature of the part as the print leaves the influence of the bed temperature.
- Signiant impact on the materials properties

IR image of non-enclosure

Modulus of Elasticity [MPa]

X-Dir	69
Z-Dir	30

IR image of enclosure

Modulus of Elasticity [MPa]X-Dir224Z-Dir101

ASTM D638 Type 4

Design Analysis

- 3 different profiles: circle, ellipse, and NACA0020 airfoil
- The same cross-sectional area
- Same amount of material

Circle

Stakeholder Engagement

Industrial participation

- Requirement based system specifications
- Important design constraints
- Refrigerants replacement
- Manufacturing process for large scale
- Meetings with experts at technical platform
 - ASHRAE (TC 8.5, TC 1.3)
 - Purdue conference

Presentations/Conference papers

- Review article based on state-of-the-art technology
- Articles on design, material and manufacturing aspects
- Advertisement at HVAC&R consortium
 - ACRC (University of Illinois)
 - CEEE (University of Maryland)
 - Oklahoma State University

Thank you

Oak Ridge National Laboratory

Kashif Nawaz

(Group Leader- Multifunctional Equipment Integration) 865-241-0792, nawazk@ornl.gov

ORNL's Building Technologies Research and Integration Center (BTRIC) has supported DOE BTO since 1993. BTRIC is comprised of 50,000+ ft² of lab facilities conducting RD&D to support the DOE mission to equitably transition America to a carbon pollution-free electricity sector by 2035 and carbon free economy by 2050.

Scientific and Economic Results

238 publications in FY20125 industry partners27 university partners10 R&D 100 awards42 active CRADAs

BTRIC is a DOE-Designated National User Facility

REFERENCE SLIDES

Project Budget

Project Budget: \$1.35M, \$150K cost-share Variances: None Cost to Date: \$47K Additional Funding: None

Budget History								
FY 2019- FY 2020 (past)		FY 2021	. (current)	FY 2022				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
\$900K	900K \$100K \$450K		\$50K					

Project Plan and Schedule

Project Schedule													
Project Start: 10-01-2018	Completed W			d Woi	ork								
Projected End: 09-30-2021		Active Task (in progress work)											
	•	Milestone/Deliverable (Originally Planned)											
		Milestone/Deliverable (Actual)											
		FY2019 FY2020					FY2021						
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	
Past Work													
Review of state of the art													
CFD Simulations													
Topology optimization													
Material selection and characteriztaion													
Manufacturing process optimization													
Techno-economic analysis													
Demonstration and Evaluation													
Field validation													