

# FlexAssist: A risk-based framework for dynamic prioritization of flexible building loads

Jared Langevin<sup>\*</sup>, Na Luo, Jeff Deason, Margaret Taylor, Jingjing Zhang, Handi Chandra-Putra, Sang Hoon Lee, Hung-Chia Yang, Mary Ann Piette, Tianzhen Hong, Hassan Obeid, Sarah Price

Lawrence Berkeley National Laboratory \*Principal Investigator

BTO Peer Review, August 2021

### **Project summary**

#### • Timeline:

- o Start date: 10/01/2018; planned end date: 09/30/2021
- Key milestones:
  - Initial surrogate modeling and discrete choice experiments complete (03/2020)
  - Initial demonstration of integrated recommender algorithm (07/2020)
  - Final testing and benchmarking of integrated recommender algorithm complete (09/2021)
- Budget:
  - Total project funds: \$1.6M (DOE, FY19-21); no cost share
- Key partners: OvationMR

#### Project outcomes:

- Recommender engine (<u>published</u> as a Python module on GitHub) tested across several simulated commercial demand response (DR) scenarios
- Suite of surrogate models for predicting likely changes in building demand and temperature under candidate DR strategies in multiple building contexts, developed based on synthetic data from large scale EnergyPlus simulations
- Weightings of candidate load flexibility choices, developed based on large scale discrete choice experiments with people who operate and work in office and retail buildings

### **Project team**

Overall project design and management



Jared Langevin (PI) Research Scientist Technical advisors





Mary Ann Piette Division Director Tianzhen Hong Staff Scientist, Deputy Head

Surrogate modeling of building demand and services Testing/integration



Na Luo Sc. Eng. Associate

Handi C. Putra ate Postdoctoral Fellow



Sang Hoon Lee Sc. Eng. Associate

Discrete choice modeling and data collection

vlor leff Deason

Margaret Taylor, Jeff Deason, Research Scientist Program Manager













Hassan Obeid Sarah Price Ph.D. Candidate Research Associate

**Challenge**: Commercial demand response (DR) cannot develop into a broad grid resource without building operator buy-in



Greater demand-side flexibility will aid the variable renewable energy transition, but will likely require more frequent and longer DR events in buildings Building operators are concerned about service interruptions, loss of comfort, and employee impacts Traditional DR programs do not address these operational risks, which would likely grow under future DR programs **Solution**: We develop a tool to inform next-gen DR response that is risk-aware, adaptive, and driven by operator preferences

### **Status quo:** Static, pre-defined response to infrequent DR calls from the grid



Design/test pre-defined strategy for DR call response



Receive advance notification of DR event



Respond to DR call using predefined strategy



Receive payments for standby capacity and energy reductions

**Primary product:** Recommender engine (published as a Python module on GitHub) tested across several simulated commercial DR scenarios

### FlexAssist: Adaptive, risk-aware response to frequent DR calls



Design/test pre-defined strategy for DR call response



Receive advance notification of DR event



FlexAssist recommends adjustment to default strategy (if warranted)



Respond to DR call using best available strategy



Receive payments for standby capacity and energy reductions



Adjust recommendation engine to reflect new event data

### **Impact**: Empowers end use customers in heavy-hitting segments of the building load flexibility market

- Develops decision support tools to encourage flexible load adjustments with large energy/demand impacts:
  - Focus on office/retail contexts, which comprise ~1/3 of all commercial electricity use
  - Focus on HVAC, lighting, and plug loads, which comprise ~2/3 of all office/retail electricity use
- Directly addresses multiple key action items identified in BTO's National Roadmap for Grid-Interactive Efficient Buildings and goals for the Building Controls sub-program:
  - Analyze user perceptions of demand flexibility value
  - $_{\odot}$  Quantify user preferences for building service levels
  - $_{\odot}$  Evaluate relationship between prices/load flexibility
  - Achieve economic worker comfort



# **Approach:** FlexAssist leverages a probabilistic decision network that integrates a risk-benefit tradeoff with operator preferences



- is probabilistic,
- incorporates prior expectations about model parameters, and
- enables parameter updating w/ new evidence

#### Existing approaches to modeling demand flexibility strategies:

- do not address risk/uncertainty,
- are not easily adaptable to real building settings, and
- only implicitly account for operator/occupant preferences (at best)



LAWRENCE BERKELEY NATIONAL LABORATORY | BUILDING TECHNOLOGY AND URBAN SYSTEMS DIVISION

**Approach**: Surrogate models predict changes in core building services and electricity demand under dynamic conditions





1. Define DR measures of HVAC, lighting, plug loads in EnergyPlus/Op enStudio 2. Simulate across all climates, building types, and vintages of interest 3. Compile results into synthetic database covering simulated energy and service outcomes

4. Use synthetic data to develop Bayesian surrogate models of building services and energy demand

 $y = XB + \epsilon$ 

5. Integrate surrogate models into operator decision network

LAWRENCE BERKELEY NATIONAL LABORATORY | BUILDING TECHNOLOGY AND URBAN SYSTEMS DIVISION

### **Approach**: Discrete choice experiments elicit load adjustment valuations by building operators & workers

- Discrete choice experiments (DCEs) about the building • condition outcomes of load adjustments during DR events provide the Bayesian priors for the decision weights in FlexAssist
- We implement DCEs with people who operate and work in office and retail buildings ("Operators" and "Workers," respectively)

#### ALTERNATIVES DISCRETE CHOICE EXPERIMENT (DCE) Α в ES (s)Economic benefit \$2,000 \$5,000 BUT S \* 3°F colder 2°F colder Pre-cooling (2 hours) Ц Ы Δ 2°F hotter 1°F hotter Increased temperature Reduced artificial lighting 15% 30%





**DCE 2 – 2030 SUMMER** 

Hot Afternoon

Decision

weights

# **Approach:** EnergyPlus and Python are coupled to demonstrate the integrated tool's performance across several dimensions



#### Exchange Variables

Outdoor Drybulb Temperature [°C] Site Outdoor Air Relative Humidity Zone Air Temperature [°C] Lights Electric Power [W] Electric Equipment Electric Power [W] People Occupant Count Zone Thermal Comfort Fanger Model PMV

Electric Equipment Schedule [fraction] Lighting Schedule [fraction] Cooling Setpoint Schedule [°C] Heating Set point Schedule [°C]

|                                    | Baseline                                                                                               | DR-Static                                                                                                          | DR-Dynamic                                  |  |  |  |  |  |  |
|------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|--|--|--|--|
| Climate zones                      | 2A (hot-                                                                                               | 2A (hot-humid), 3C (warm-marine), 6B (cold-dry)                                                                    |                                             |  |  |  |  |  |  |
| Building types                     | Medium/Large (<br>(100K )                                                                              | Medium/Large Office prototypes (52K sf/500K sf), Big Box Retail<br>(100K sf), Standalone Retail prototype (26K sf) |                                             |  |  |  |  |  |  |
| Building vintages                  | Newer (                                                                                                | Newer (2010, 2004), older (1980-2004, pre-1980)                                                                    |                                             |  |  |  |  |  |  |
| Time horizon                       | Summer (Jun-Sep)                                                                                       |                                                                                                                    |                                             |  |  |  |  |  |  |
| DR response                        | N/A                                                                                                    | Moderate temp.<br>increase always                                                                                  | FlexAssist algorithm*                       |  |  |  |  |  |  |
| DR event<br>frequency/<br>duration | N/A                                                                                                    | 3-4/week;<br>(event days/duratio                                                                                   | 1-6 hours/event<br>ns are randomly drawn)   |  |  |  |  |  |  |
| DR event reduction<br>incentives   |                                                                                                        | \$0.6-\$1.5/kWh during event, \$0.1/kWh<br>before/after event (incentives randomly drawn)                          |                                             |  |  |  |  |  |  |
| Demand reduction threshold**       | N/A                                                                                                    | N/A                                                                                                                | None, 25 kW, 100 kW<br>(large offices only) |  |  |  |  |  |  |
| Assessment metrics                 | Energy savings % (daily, during event), operator utility, thermal comfort (Predicted Mean Vote or PMV) |                                                                                                                    |                                             |  |  |  |  |  |  |

\* Assumes that doing nothing is not a possible choice.

\*\* When a reduction threshold is specified, the FlexAssist algorithm removes all strategies that are not predicted to meet the threshold from the choice set.

# **Progress**: FlexAssist predicts the probability of demand/service changes and choice probabilities under a given set of conditions

**Risk:** Temperature Increase





\*Predictions for: 2010 Std. Large Office, Climate 2A, (Hot-Humid), NO demand reduction threshold, \$3/kWh during event price signal, 3 hour event

**Outcome:** Strategy Choice

# **Progress:** The operation of the algorithm was tested across 43 hypothetical DR events in office and retail buildings



LAWRENCE BERKELEY NATIONAL LABORATORY | BUILDING TECHNOLOGY AND URBAN SYSTEMS DIVISION

# **Progress:** With a kW reduction threshold, FlexAssist yields better energy savings and mostly better operator utility than static DR

Static response (always moderate temp. increase)

- Response w/ FlexAssist
- Baseline energy/utility

\*Reflects application of 25 kW reduction threshold in medium office and standalone retail contexts (large office/big box retail forthcoming)





### **Progress**: Surrogate models predict changes in demand and indoor temperature under DR with good accuracy

|        | Change in Whole<br>Building Demand<br>during DR Period<br>(thermally-driven) |               | Demand changes<br>during DR period                                                                | Demand changes<br>during pre-cool period | Temperature changes<br>during DR period |  |  |  |  |  |
|--------|------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------|--|--|--|--|--|
| Output | Demand shed intensity (W/ft²)                                                | R-square      | > 0.88                                                                                            | > 0.81                                   | > 0.76                                  |  |  |  |  |  |
| Input  | Outdoor temperature (F)                                                      | ARE*          | > 83%                                                                                             | > 83%                                    | > 81%                                   |  |  |  |  |  |
|        | Outdoor humidity                                                             | MADP**        | < 16%                                                                                             | < 15%                                    | < 17%                                   |  |  |  |  |  |
|        | Occupancy fraction                                                           | VIF***        | F*** < 10 – No variable problematic collinearity among input variants                             |                                          |                                         |  |  |  |  |  |
|        | Cooling set pt. change (F)                                                   |               | *ARE: Absolute Relative Error (less than 20%)<br>**MADP: Mean Absolute Deviation Percentage Error |                                          |                                         |  |  |  |  |  |
|        | Lighting dimming (%)                                                         | **MADP: Me    |                                                                                                   |                                          |                                         |  |  |  |  |  |
|        | Plug loads reduction (%)                                                     | ***VIF: Varia | ance Inflation Factor                                                                             |                                          |                                         |  |  |  |  |  |
|        | Cooling set pt. lag (F)                                                      | Reference: I  | Luo. N., Langevin, J., and (                                                                      | Chandra Putra. H. (2021). Quantifyi      | ng the effect of multiple               |  |  |  |  |  |
|        | Hours since DR started                                                       | demand res    | demand response actions on electricity demand and building services via surrogate modeling.       |                                          |                                         |  |  |  |  |  |
|        | Hours since DR ended                                                         | Accepted: E   | Building Simulation 2021, E                                                                       | Bruges, Belgium, September 1-3.          |                                         |  |  |  |  |  |
|        | Cooling change * Outdoor temp.                                               |               |                                                                                                   |                                          |                                         |  |  |  |  |  |
|        | Cooling change * Occ. fraction                                               |               |                                                                                                   |                                          |                                         |  |  |  |  |  |
|        | Cooling change * Since DR                                                    |               |                                                                                                   |                                          |                                         |  |  |  |  |  |

started

### **Progress**: Choice experiments elicit adjustment preferences

|     | Attribute                                                                    | Valuation | Comments                                                                                                                                                                                                                    |
|-----|------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| \$  | Economic benefits                                                            | Positive  | <ul> <li>Respondents view this positively, with this attribute<br/>generally of the second-highest importance</li> </ul>                                                                                                    |
|     | Temperature increases in<br>summer (or decreases in<br>winter) during events | Negative  | <ul> <li>Respondents view this negatively, with this attribute generally of the highest importance</li> </ul>                                                                                                               |
| *   | Pre-cooling (or pre-<br>heating in winter) just<br>before events             | Positive  | <ul> <li>Respondents view this positively, with this attribute<br/>a way to mitigate during-event temperature change<br/>(but generally lesser importance)</li> </ul>                                                       |
| -ݣ- | Artificial lighting reduction                                                | Unclear   | <ul> <li>Additional responses will help clarify</li> <li>Preferences appear to be affected by building<br/>daylighting, with people in well-daylit buildings mor<br/>accepting of artificial lighting reductions</li> </ul> |

| Respondents (2020) | N   |
|--------------------|-----|
| Office Operator    | 138 |
| Retail Operator    | 17  |
| Total Responses    | 155 |

| Respondents (2021)* | Ν   |
|---------------------|-----|
| Office Operator     | 140 |
| Office Worker       | 240 |
| Retail Operator     | 199 |
| Retail Worker       | 75  |
| Total Responses     | 654 |

\*Data collection ongoing

**Stakeholder engagement**: Feedback on the tool's market potential is elicited from a diverse technical advisory group

- Technical advisory group includes aggregators, controls and equipment manufacturers, consultants/energy service providers, and facility managers
- Bi-annual TAG meetings to review progress and assess market relevance of key project outcomes
- Collected structured feedback organized by theme:
  - project concept and value proposition,
  - o discrete choice analysis,
  - models of building demand and services under DR, and
  - $\circ$   $\,$  testing and integration  $\,$



## **Remaining work**: Finish testing tool's application to new building types; complete integration and assessment of new choice data

- Complete testing and integration of the tool for new building types and given updated operator/worker choice data (09/2021)
  - Co-simulation testing reflects updated surrogate models and operator/worker load flexibility preferences, new building types (large office/big box retail)
  - Updated tool is published on GitHub with user documentation on ReadTheDocs
- Complete processing and assessment of operator/worker choice data from new discrete choice experiments (09/2021)

• Analysis comparing/contrasting operator and worker preferences is complete

- Finalize publications of key aspects of project work (09/2021)
   Surrogate modeling of building demand and services under DR (submitted)
  - $_{\odot}\,$  Discrete choice modeling of operator and worker load flexibility preferences
- Possible directions beyond FY21:
  - Shorter-term (~6 mo.-1 yr.): develop and test simple web-based interface for tool
  - Longer-term (~1-2 years): field testing of FlexAssist in real buildings

# BERKELEY LAB Thank you

Jared Langevin, Research Scientist jared.langevin@lbl.gov

Code: <u>https://github.com/jtlangevin/flex-bldgs</u> Docs: <u>https://flexible-buildings.readthedocs.io/en/latest/</u>

### **REFERENCE SLIDES**

### Project plan and schedule

| Project Schedule                                                                               |                                |              |              |              |              |              |              |              |              |              |              |              |
|------------------------------------------------------------------------------------------------|--------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Project Start: 10/01/2018 Completed Work                                                       |                                |              |              |              |              |              |              |              |              |              |              |              |
| Projected End: 09/30/2021                                                                      | Active Task (in progress work) |              |              |              |              |              |              |              |              |              |              |              |
|                                                                                                |                                | Mile         | estone       | e/Deli       | verat        | ole (Pl      | anne         | d)           |              |              |              |              |
|                                                                                                |                                | Mile         | estone       | e/Deli       | verat        | ole (Co      | omple        | eted)        |              |              |              |              |
|                                                                                                | FY2019 FY2020 FY20             |              |              |              |              | 021          |              |              |              |              |              |              |
| Task                                                                                           | Q1 (Oct-Dec)                   | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) |
| Past Work                                                                                      |                                |              |              |              |              |              |              |              |              |              |              |              |
| Overall decision network design and selection of load flexibility strategies to model complete |                                |              |              |              |              |              |              |              |              |              |              | $\square$    |
| Initial surrogate models for medium office/standalone retail complete                          |                                |              |              |              |              |              |              |              |              |              |              | $\square$    |
| Discrete choice experiment design for office/retail operators complete                         |                                |              |              |              |              |              |              |              |              |              |              |              |
| Discrete choice experiments on office/retail operators complete                                |                                |              |              |              |              |              |              |              |              |              |              |              |
| Validation of the tool's market potential and approach by technical advisory group             |                                |              |              |              |              |              |              |              |              |              |              |              |
| Initial demonstration of integrated tool via case study co-simulations                         |                                |              |              |              |              |              |              | •            |              |              |              |              |
| Initial benchmarking of integrated tool's performance                                          |                                |              |              |              |              |              |              |              |              |              |              |              |
| Refinements to medium office/standalone retail surrogate models complete                       |                                |              |              |              |              |              |              |              |              |              |              |              |
| Expanded discrete choice experiment design for operators/workers complete                      |                                |              |              |              |              |              |              |              |              |              |              |              |
| New surrogate models for large office/big box retail complete                                  |                                |              |              |              |              |              |              |              |              |              |              |              |
| Initial data from expanded discrete choice experiments integrated into decision tool           |                                |              |              |              |              |              |              |              |              |              |              |              |
| Current/Future Work                                                                            |                                |              |              |              |              |              |              |              |              |              |              |              |
| Revised discrete choice experiments and analysis comparing operator/worker prefs. complete     |                                |              |              |              |              |              |              |              |              |              |              |              |
| Demonstration and benchmarking of expanded decision tool complete                              |                                |              |              |              |              |              |              |              |              |              |              |              |
| Journal manuscripts on surrogate modeling and discrete choice experiments complete             |                                |              |              |              |              |              |              |              |              |              |              |              |

### Project budget

| Budget History                         |            |                                       |            |  |  |  |  |  |
|----------------------------------------|------------|---------------------------------------|------------|--|--|--|--|--|
| 10/01/2018 – FY 2020 (                 | past)      | FY 2021 (current) - 09/30,            | /2021      |  |  |  |  |  |
| DOE                                    | Cost-share | DOE                                   | Cost-share |  |  |  |  |  |
| \$1.2M<br>(\$238K carryover into FY21) | N/A        | \$400K<br>(\$288K spent by July 2021) | N/A        |  |  |  |  |  |

# FlexAssist makes a day-ahead recommendations of response strategy, implements/records the response, and updates models

(1) Night before event: receive event notification, forecast conditions, recommend response. (2) During event and hours just before/after: implement strategy, record demand/service impacts.

(2a) If pre-cooling

(3) Night after event: update demand/service models based on recorded event data



(1a) Forecast weather conditions, occupancy schedules for event day



**(1b)** Forecast event information (duration, incentive levels)



(1c) Prob(select strategy)
= f(predicted \$ benefit,
reduction in services)
given 1a-b



(1d) Recommend strategy with highest overall frequency of selection given 1c



strategy is implemented, record temperature/demand changes during the precooling period



(2b) Record change in all demand/service variables during the event hours



(2c) Record change in all demand/service variables in the rebound hour after the event 40

(3a) Demand/service models updated based on observed change in demand/services /w DR strategy relative to base case (from 2a-2c)



(3b) Operator choice models can be updated based on whether or not recommended strategy was selected (\*currently testing)

LAWRENCE BERKELEY NATIONAL LABORATORY | BUILDING TECHNOLOGY AND URBAN SYSTEMS DIVISION

The operator choice function translates the likelihood of benefits (\$ savings) and risks (service losses) into a utility value

#### Where:

 $U_i$  = Operator utility, alternative j

 $x_{\$,j}, x_{t_p,j}, x_{t,j}, x_{l,j}, x_{e,j}$  = Predicted alternative j attributes (economic benefit, pre-cool temperature change, event temperature change, event lighting change, event plug power change)

 $\beta_{\$}, \beta_{t_p}, \beta_{t_l}, \beta_{l_l}, \beta_{e}$  = Choice attribute weights from discrete choice experiments (DCE)

### Tested DR strategies cover temperature, lighting, and plug load adjustments at low, medium and high levels

|               | DR Strategy                            | Levels of Adjustment                                                                              |
|---------------|----------------------------------------|---------------------------------------------------------------------------------------------------|
|               | Global Temperature<br>Adjustment (GTA) | +2ºF (low), +4ºF (med), +6ºF (high) during event                                                  |
|               | GTA + Precooling                       | +2ºF (low), +4ºF (med), +6ºF (high) during event;<br>-2ºF 4 hours preceding event (all levels)    |
| -Ò́-          | Dimming Lights                         | -20% (low), -40% (med), -60% (high) during event                                                  |
| Ē             | Plug Load Reduction                    | -10% (low), -30% (med), -50% (high) during event                                                  |
| <b></b>       | Package<br>(GTA+Dim+Plug)              | Low, medium, and high levels of GTA AND dimming AND plug load reduction during event              |
| <b>`-</b> -C* | Package + Precooling                   | Package low, medium, and high settings during event;<br>-2°F 4 hours preceding event (all levels) |

Updates to underlying models of change in building demand and services under DR recalibrate to building-specific dynamics



### Summary of surrogate model inputs and outputs and synthetic data cleaning approach

|          | Whole Building Demand<br>(DR, Non-thermal related) | Whole Building Demand<br>(DR, Thermal related) | Whole Building Demand<br>(Pre-cool)    | Indoor Temperature<br>(DR)          |
|----------|----------------------------------------------------|------------------------------------------------|----------------------------------------|-------------------------------------|
| Output   | Demand shed per sf. (W/sq.ft.)                     | Demand shed per sf. (W/sq.ft.)                 | Demand shed per sf. (W/sq.ft.)         | Indoor temperature change (F)       |
| Input    | Lighting dimming (%)                               | Outdoor temperature (F)                        | Outdoor temperature (F)                | Outdoor temperature (F)             |
|          | Plug loads reduction (%)                           | Outdoor humidity                               | Outdoor humidity                       | Outdoor humidity                    |
|          |                                                    | Occupancy fraction                             | Occupancy fraction                     | Occupancy fraction                  |
|          |                                                    | Cooling set pt. change (F)                     | Cooling set pt. change (F)             | Cooling set pt. change (F)          |
|          |                                                    | Lighting dimming (%)                           | Hours since pre-cool started           | Cooling set pt. lag (F)             |
|          |                                                    | Plug loads reduction (%)                       | Cooling change * Outdoor temp.         | Hours since DR started              |
|          |                                                    | Cooling set pt. lag (F)                        | Cooling change * Occ. fraction         | Pre-cool set pt. change (F)         |
|          |                                                    | Hours since DR started                         | Cooling change * Since Precool started | Pre-cool duration                   |
|          |                                                    | Hours since DR ended                           |                                        | Cooling change * Outdoor temp.      |
|          |                                                    | Cooling change * Outdoor temp.                 |                                        | Cooling change * Occ. fraction      |
|          |                                                    | Cooling change * Occ. fraction                 |                                        | Cooling change * Since DR started   |
|          |                                                    | Cooling change * Since DR started              |                                        | Pre-cool change * Pre-cool duration |
| Data     | Weekday only                                       | Weekday only                                   | Weekday only                           | Weekday only                        |
| restrict | 4-hour of DR                                       | 4-hour of DR + 1-hour of rebound               | Pre-cool hours (1 to 6 hours)          | 4-hour of DR                        |
|          | Across the whole year                              | Summer season only                             | Summer season only                     | Summer season only                  |
|          |                                                    | Outdoor temperature > 70F                      | Outdoor temperature > 70F              | Outdoor temperature > 70F           |

Dozens of DR measures are simulated across office/retail under a range of adjustment settings, yielding a synthetic database

|                             |                                          | Magni | tude of adju    | Duration of          |                              |  |
|-----------------------------|------------------------------------------|-------|-----------------|----------------------|------------------------------|--|
| Category                    | Measure                                  | Low ← | formly distribu | <i>ted</i><br>→ High | adjustment                   |  |
| HVAC                        | Global cooling temp.<br>adjustment (GTA) | +1F   | ~               | +6F                  | 3-7PM                        |  |
|                             | GTA                                      | +1F ~ |                 | +6F                  | 3-7PM +<br>1 to 6-hour ahead |  |
|                             | + pre-cooling                            | -11-  | ~               | -4F                  | (Uniformly distributed)      |  |
| Lighting                    | Dimming                                  | 0.01  |                 | 10.00/               |                              |  |
| Plug Loads<br>(office only) | Low-priority device switching            | 0%    | ~               | -100%                | 3-7PM                        |  |

- Representative climate zones: 2A, 3C, 4A, 6B (covering hot to cold; moist, dry to marine regions)
- 5 Building types: medium office, large office, all electric large office, standalone retail, big box retail

### Checks on the distribution of model input parameters and outputs demonstrate performance of Bayesian surrogate models

Frequency

Thermally-driven demand model. std. large office, 2010 vintage



Posterior predictive checks, demand change output





Observed

Posterior predicted



Thermally-driven demand model. std. large office, 1980-2004 vintage

### Office worker discrete choice experiment results to date

Model includes two interaction effects: (1) pre-cooling & during-event temp. change; (2) artificial lighting reduction with daylighting %

#### Two preference variables are significant across all 3 scenarios:

- Buring-event temperature change (*respondents disfavor, with average elasticity range -.15 to -.45*)
- (S) Economic benefit (*respondents favor, with average elasticity range 0.17 to 0.21*)

#### One preference variable is significant across 2 scenarios:

Pre-cooling if during event temp change >2°F (*respondents favor, with average elasticity range 0.05 to 0.06*)

#### One preference variable is significant across 1 scenario:

Pre-cooling if during event temp change <=2°F (*respondents favor, with average elasticity 0.03*)

|                | CS  | FS  | FW  |
|----------------|-----|-----|-----|
| Office Workers | 240 | 116 | 124 |
| Retail Workers | 75  | 34  | 41  |
| Total workers  | 315 | 150 | 165 |

| Preference For:                                                                                         | Curr                    | ent Sum               | nmer    | Future Summer           |                       | Future Winter |                         |                       |         |
|---------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|---------|-------------------------|-----------------------|---------------|-------------------------|-----------------------|---------|
|                                                                                                         | Coefficient<br>estimate | Average<br>elasticity | P-value | Coefficient<br>estimate | Average<br>elasticity | P-value       | Coefficient<br>estimate | Average<br>elasticity | P-value |
| Economic benefit for organization                                                                       | <b>§</b> 0.000120       | 0.197770              | 0.0000  | 0.000125                | 0.208228              | 0.0000        | 0.000106                | 0.167713              | 0.0000  |
| Temperature decrease (increase*) before event if temperature increase<br>(decrease*) during event <=2°F | 0.140768                | 0.033826              | 0.0027  | 0.046929                | 0.012084              | 0.4593        | 0.012712                | 0.002944              | 0.8415  |
| Temperature decrease (increase*) before event if temperature increase<br>(decrease*) during event >2°F  | 0.081117                | 0.048970              | 0.0193  | 0.104574                | 0.064740              | 0.0394        | -0.005410               | -0.002997             | 0.9124  |
| Temperature increase (decrease*) during event                                                           | -0.196725               | -0.445087             | 0.0000  | -0.197252               | -0.443165             | 0.0000        | -0.074237               | -0.151905             | 0.0088  |
| Artificial lighting reduction                                                                           | -0.539548               | -0.103400             | 0.0512  | -0.556691               | -0.110051             | 0.1389        | -0.396805               | -0.067984             | 0.3320  |
| Artificial lighting reduction interacted with building daylighting %                                    | 0.006384                | 0.063198              | 0.1585  | 0.002724                | 0.025803              | 0.6818        | 0.002768                | 0.025883              | 0.6672  |
| Plug-load reduction -d                                                                                  | <b>B</b> N/A            | N/A                   | N/A     | -0.062000               | -0.008825             | 0.8259        | -0.378875               | -0.047676             | 0.1260  |
| Outdoor air flow reduction                                                                              | N/A                     | N/A                   | N/A     | 0.069400                | 0.008725              | 0.7949        | -0.069228               | -0.008063             | 0.7795  |

#### \* = For winter DCEs

### Retail worker discrete choice experiment results to date

Model includes two interaction effects: (1) pre-cooling & during-event temperature change; (2) artificial lighting reduction with building daylighting %

One preference variable is significant across all 3 scenarios:

S Economic benefit (*respondents favor, with average elasticity range 0.12 to 0.22*)

One preference variable is significant across 2 scenarios:

During-event temperature change (*respondents disfavor, with average elasticity range -.25 to -.47*)

|                | CS  | FS  | FW  |
|----------------|-----|-----|-----|
| Office Workers | 240 | 116 | 124 |
| Retail Workers | 75  | 34  | 41  |
| Total workers  | 315 | 150 | 165 |

| Preference For:                                                                                         |       | Current Summer          |                       |         | Future Summer           |                       |         | Future Winter           |                       |         |
|---------------------------------------------------------------------------------------------------------|-------|-------------------------|-----------------------|---------|-------------------------|-----------------------|---------|-------------------------|-----------------------|---------|
|                                                                                                         |       | Coefficient<br>estimate | Average<br>elasticity | P-value | Coefficient<br>estimate | Average<br>elasticity | P-value | Coefficient<br>estimate | Average<br>elasticity | P-value |
| Economic benefit for organization                                                                       | \$    | 0.000111                | 0.180296              | 0.0000  | 0.000143                | 0.224549              | 0.0000  | 0.000100                | 0.128724              | 0.0000  |
| Temperature decrease (increase*) before event if temperature increase<br>(decrease*) during event <=2°F | *     | 0.065055                | 0.015033              | 0.4354  | 0.068029                | 0.013792              | 0.5961  | -0.070689               | -0.012986             | 0.5485  |
| Temperature decrease (increase*) before event if temperature increase<br>(decrease*) during event >2°F  | *     | 0.088440                | 0.049984              | 0.1645  | 0.096688                | 0.051443              | 0.2937  | -0.016266               | -0.007498             | 0.8415  |
| Temperature increase (decrease*) during event                                                           |       | -0.217252               | -0.473580             | 0.0000  | -0.127418               | -0.252253             | 0.0271  | -0.055295               | -0.095464             | 0.2501  |
| Artificial lighting reduction                                                                           | -ð.   | -0.113306               | -0.021117             | 0.8181  | -0.696280               | -0.125253             | 0.3472  | -0.546707               | -0.081859             | 0.3843  |
| Artificial lighting reduction interacted with building daylighting %                                    | -̈̈́Ċ | 0.009977                | 0.085461              | 0.2501  | 0.004831                | 0.039565              | 0.7114  | 0.016656                | 0.114778              | 0.1389  |
| Plug-load reduction                                                                                     | G     | N/A                     | N/A                   | N/A     | 0.159897                | 0.020576              | 0.7490  | 0.539617                | 0.057434              | 0.2041  |
| Outdoor air flow reduction                                                                              | *     | N/A                     | N/A                   | N/A     | -0.078058               | -0.008522             | 0.8808  | -0.044358               | -0.003993             | 0.9203  |

#### \* = For winter DCEs

N