Electrostatic Dehumidification

Electric Power Research Institute (EPRI) Ron Domitrovic, Program Manager 865-218-8061

Project Summary

Timeline:

Start date: April 1, 2020 Planned end date: March 31, 2023

Key Milestones (insert 2-3 key milestones and dates)

- 1. Successful Modeling and Analysis; April 2021
- 2. Initial Prototype Design and Creation; June 2021
- 3. Test Stand Construction; July 2021

Budget:

Total Project \$ to Date: (through 6/30/21)

- **DOE:** \$523,280.84
- Cost Share: \$142,681.34

Total Project \$:

(Includes BP3 Funds Not Yet Released)

- **DOE:** \$1,300,000
- Cost Share: \$400,000

Key Partners:

Electric Power Research Institute

ORNL Center for Nanophase Materials Science

Optimized Thermal Systems

Southern Company

Tennessee Valley Authority

Project Outcome:

The targeted outcome of this project is to design, construct, and test the concept of using electrostatics to enable non-condensing air dehumidification through molecular sorting for application in heating, ventilation, and air conditioning (HVAC) and related industries.

Team

Ron Domitrovic - EPRI

Principal investigator

Joseph Jansen - EPRI

- Analysis of field physics and • electrode geometry
- Prototype design and fabrication

Matt Robinson - EPRI

- Thermodynamic analysis
- Test stand design and ٠ instrumentation

Nick Lavrik – ORNL CNMS

- Field physics
- Nano-scale design and fabrication

•

٠

Andrea Mammoli - EPRI

Thermodynamic analysis

Instrumentation design

Project coordination and

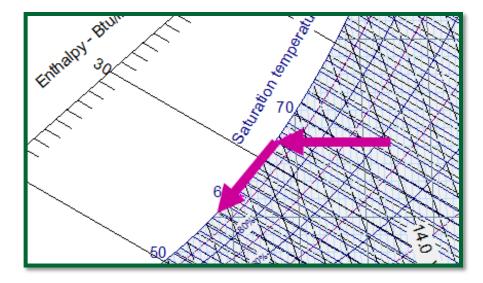
John Jansen - EPRI

- Analysis of field physics and molecular dynamics
- Electrical systems and measurement

Reinhard Radermacher - UMD

- Thermodynamic analysis
- Test stand and instrumentation design
- Commercialization

- Cara Martin OTS
- Market and commercialization research

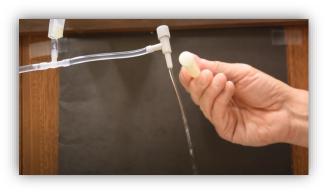

- Chase Cortner Southern Company
 - Commercialization, application and customer perspective

- Sam DeLay TVA
- Commercialization, application and customer perspective

Challenge

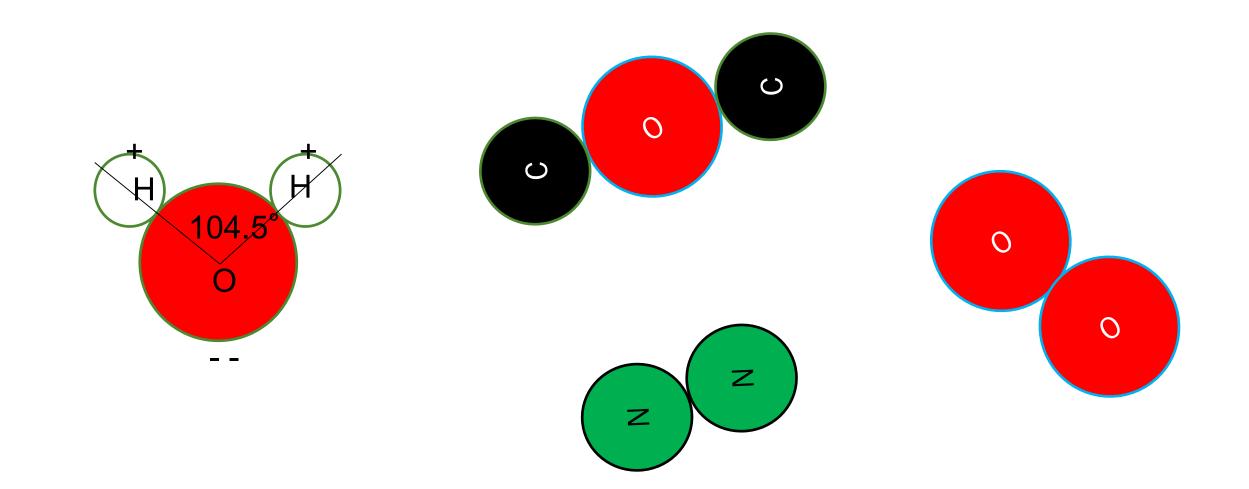
- Dehumidification consumes over 1 Quad per year in the U.S.
- $\sim 1/3$ of cooling energy is expended for dehumidification
 - \$90 for an average U.S. household per year (~\$270 for air conditioning)
 - 200M tons of CO₂ results
 - Requires 970Btu/Ib (2,260kJ/kg) for phase change of water

 Δ h Sensible: ~5 Btu/lb Δ h Latent: ~4 Btu/lb

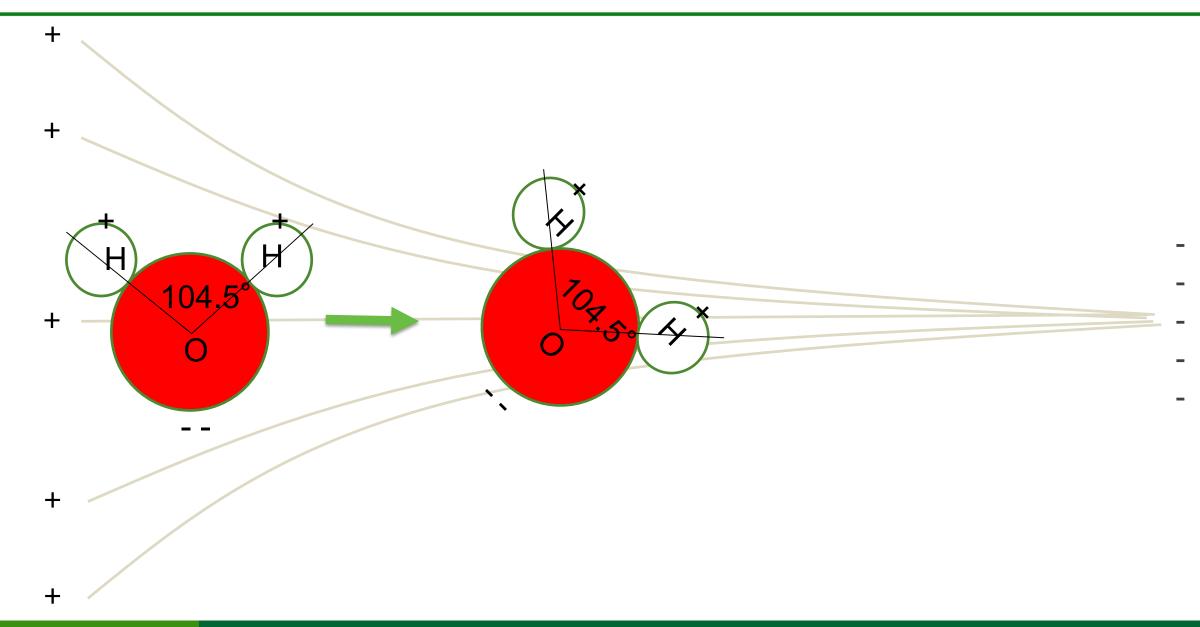

• What if water could be removed without phase change?

Approach

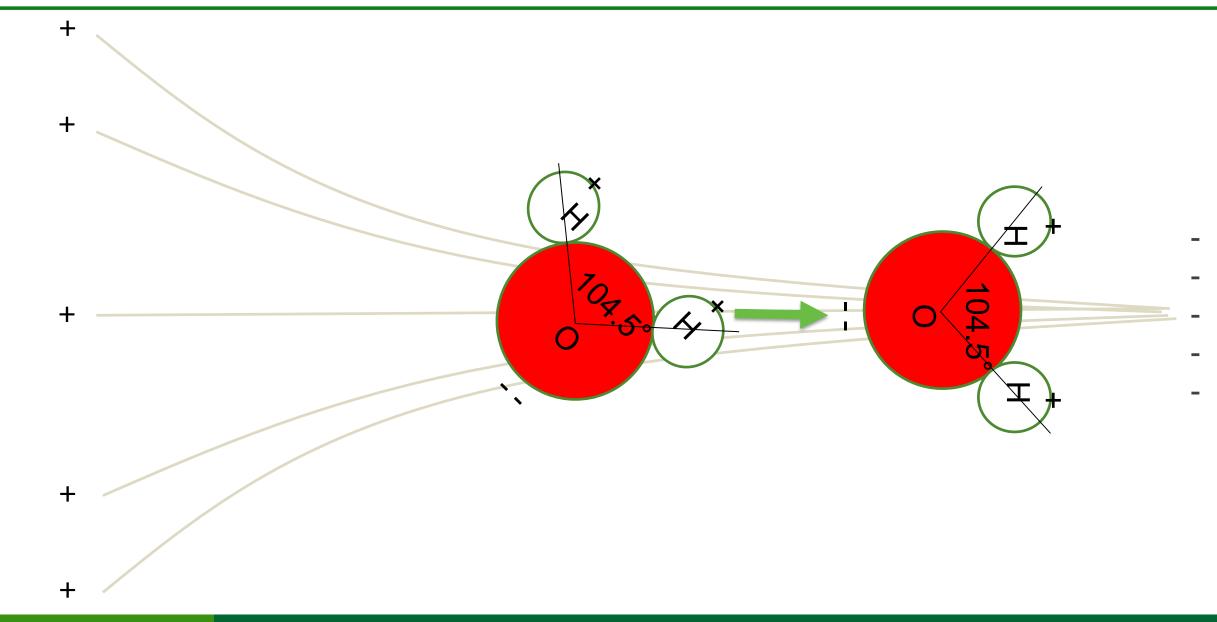
- Sort water molecules out of an air stream
 - In the vapor phase
 - Avoid the need for phase change
- Create a concentration gradient, dehumidifying one air mass, humidifying the other
 - Create electrostatic force on water molecules (only)
 - Cause flow of water molecules via the force
 - Minimal energy requirement with no phase change
- Objective is to test the concept
 - Design, construct and test an electrostatic dehumidifier (benchtop)
 - Gain understanding of underlying physics

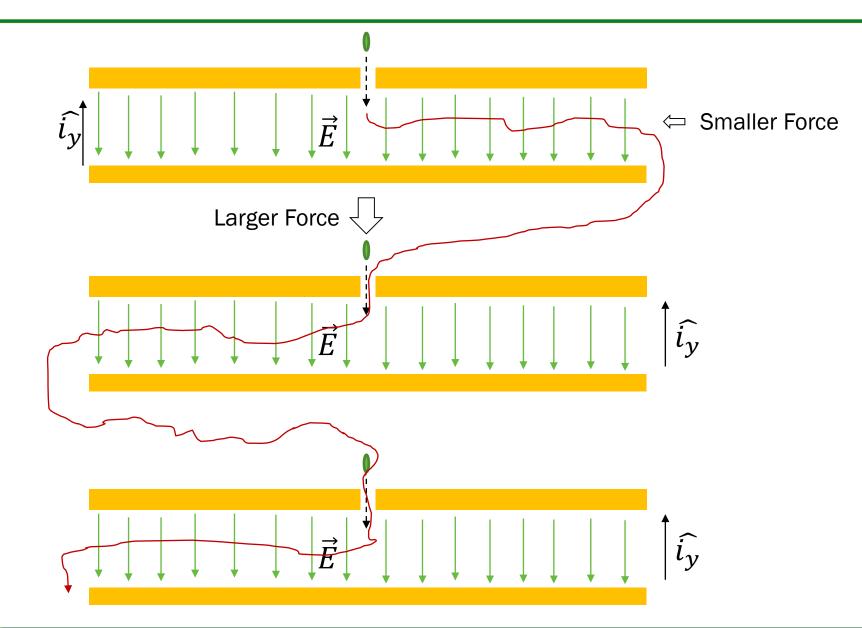

Key points about water in air

- ~1% concentration (by mole) in summer air
- Water molecules are naturally polar
- Mean free path ~100nm
- 1.85D dipole moment



- Primary challenge


Uniqueness of a Water Molecule

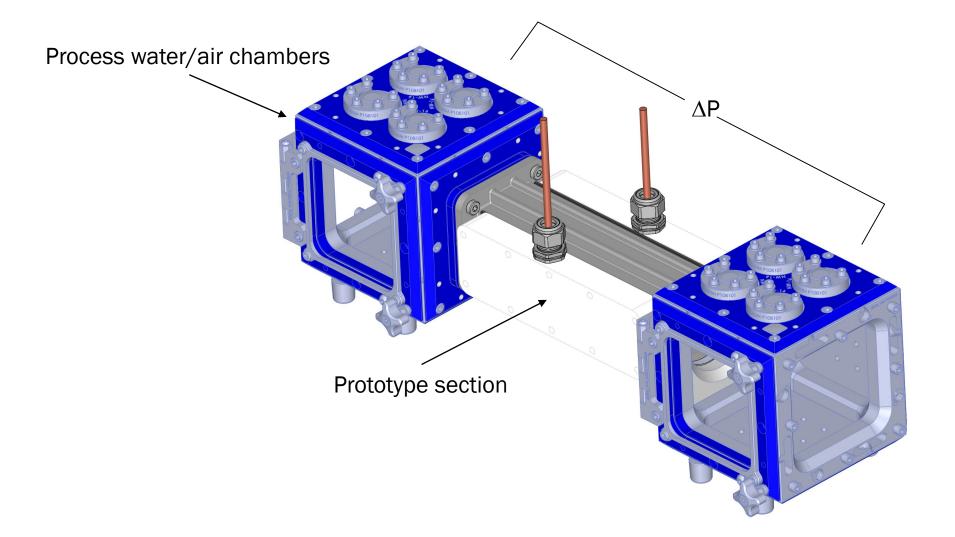

Uniqueness of a Water Molecule

Uniqueness of a Water Molecule

Step - Change Electric Field

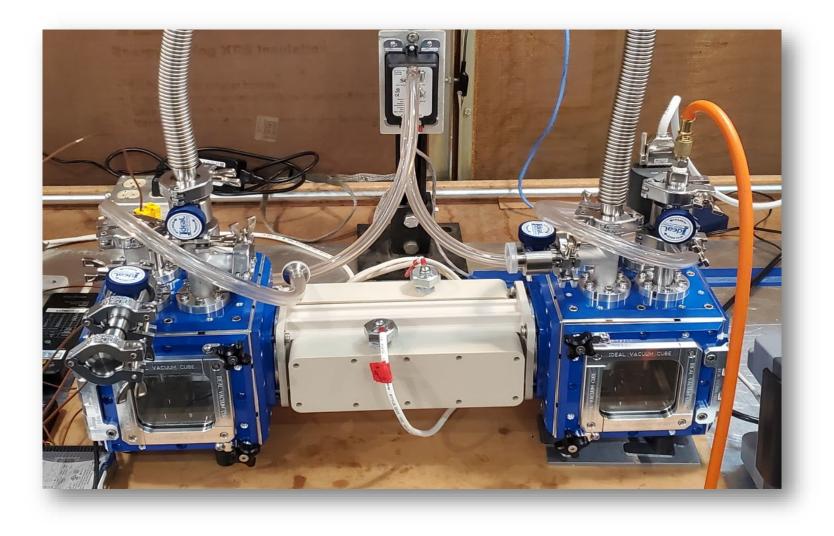
Impact – Molecular Sorting vs. Condensation

- Theoretical advantage
 - Condensation 500x energy compared to sorting (assuming 3.0 COP for vapor-compression condensation)
 - 2,260 kJ/kg vs ~1.5 kJ/kg
- Our target is 10x reduction (90% lower energy)
 - 0.9 Quad energy savings
 - \$81 savings for average U.S. household
 - 180 M Tons CO₂ reduction
- Creates new industry
 - Expansion for existing HVAC manufacturers
 - Expanded use of nanomanufacturing industry
- Creates potential new applications
 - Separation of latent/sensible cooling


- Target of project
 - Demonstrate concept
 - Quantify the effect
 - Identify paths for commercialization
 - HVAC, semiconductor, micro-fabrication industries
 - Identify engineering path for commercial product
 - Continuous flow and operation in buildings

	Year 1			Year 2				Year 3					
Task	Q1	Q2	Q3	Q4	Q5 太	Q6	Q7	Q8	Q9	Q10	Q11	Q12	
Task 1_Design Considerations													
Task 2_Analysis of Physics													
Task 3_Initial Design													
SMART Milestone; Go/No-Go #1 Successful modeling and analysis													
Task 4_Prototype Construction													
Task 5_Prototype Testing													
SMART Milestone; Go/No-Go #2 Measurable reduction in humidity													
Task 6_Design Re-Evaluation and Testing													
Task 7_Commercialization Assessment													
Task 8_Conclusions, Recommendations and Reporting													
	1.1—Project Kickoff Meeting	1.2—List of Design Considerations 2.1—First MAXWELL Model	3.1—Initial Design	SMART Milestone #1 Successful Modeling and Analysis	4.1—Initial Prototype	5.1—Test Plan 5.2—Test Setup Complete	5.3—Initial Testing Complete	SMART Milestone #2 Measurable reduction in humidity	6.1—2 nd -Stage Design Complete	6.2—2 nd -Stage Prototype Complete	7.1—Summary of Commercialization Considerations	8.1—Final Report	

Progress


- ~5 quarters into a 3-year project
- Conceptual agreement on approach by project team
 - Electrostatic and thermodynamic analysis
- Prototype design
- Testing approach and test stand design
- Test stand construction
- Prototype construction
- Assembly fully constructed
- Have begun a 2nd approach in parallel (nano-scale)
- All tasks to date completed on schedule and within budget
- <u>Challenges:</u>
 - All discussions meetings have been virtual
 - Unpredictable lead times for procurement of materials
 - Inflating prices for certain components and materials

Experimental Design

14

Experimental Design

15

Stakeholder Engagement

- Currently in early stage of technology (~TRL 1-2)
- ~40% into project period (5 quarters into 3 years)
- Engaged with U.S. utility industry
 - Southern Company and TVA are both directly involved in the project
- Engaged with other related technologies
 - PARC membrane technology
 - Separation of latent & sensible cooling techniques
- Strong relationships with many U.S. HVAC manufacturers
- **OTS** leading commercialization assessment activities
- Activity would dramatically increase upon successful testing

Remaining Project Work

- On track or ahead of schedule on all tasks presently
- Testing is a current major activity
- Design and testing improvements will happen in parallel
 - Currently exploring a nano-fabricated option
 - Considerations for transition from bench-top to engineered system
- Commercialization assessment will ramp, pending testing
- 2nd prototype design and testing
 - Targeting future commercialization
- Tech transfer
 - Reporting, etc.

Thank You

Electric Power Research Institute (EPRI) Ron Domitrovic, Program Manager 865-218-8061, rdomitrovic@epri.com

REFERENCE SLIDES

Project Budget

Project Budget: See charts below. **Cost to Date**: (*As of 6/30/21*) DOE: \$523,280.84 | Cost Share: \$142,681.34

Budget										
BP 1 (4/20 -	3/21)	BP2 (4/21 -	BP3 (4/22 - 3/23)							
DOE	Cost Share	DOE	Cost Share	DOE	Cost Share					
\$452,398	\$138,099	\$439,760	\$134,940	\$407,842	\$126,961					
\$590,49	7	\$574,7	00	\$534,803						

Expenditures									
BP 1 (T	otal)	BP2 (Apr-Jun 2021)							
DOE	Cost Share	DOE	Cost Share						
\$389,831	\$124,852	\$133,450	\$17,829						
\$514,	683	\$151,279							

Project Plan and Schedule

Project Start Date: April 1, 2020 Planned Completion Date: March 31, 2023

		Year 1				Year 2				Year 3			
Task	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	
Task 0 – Commercialization Assessment													
Task 1.1 – Preliminary Design Considerations													
Task 1.2 – Analysis of Field Physics & Molecular Dynamics													
SMART Milestone; Go/No-Go #1													
Successful Modeling and Analysis													
Task 1.3/2.1 – Initial Prototype Design													
Task 1.4/2.2 – Prototype Creation													
Task 2.3 – Prototype Testing and Evaluation													
Subtask 2.3.1 – Design and Testing Methodology													
Subtask 2.3.2 –Test Setup													
Subtask 2.3.3 –Testing													
Subtask 2.3.4 –Analysis of Results													
SMART Milestone; Go/No-Go #2													
Measurable Reduction in Humidity													
Task 2.4 – Design Re-Evaluation and Testing													
Task 3.1 – Design Re-Evaluation and Testing													
Subtask 3.1.1 – Design Review													
Subtask 3.1.2 – Second Stage Prototype Creation													
Subtask 3.1.3 – Second Stage Prototype Testing													
Subtask 3.1.4 – Second Stage Analysis of Results													
Task 3.2 – Conclusions, Recommendations, & Tech Transfer													