

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Building Optimization Testing Framework (BOPTEST)

Project Summary

Timeline:

Start date: 10/1/2019 (FY20) (Preliminary project started 1/1/2018) Planned end date: 9/30/2022 (FY22)

Key Milestones

- Test case repository added to GitHub; 9/30/2020
- Software version 0.1.0 release on GitHub; 6/30/2021

Budget:

Total Project \$ to Date:

- DOE: \$1.65 mil FY20-FY21 (Preliminary funding for FY18 & FY19 was \$1.25 mil)
- Cost Share: No direct, but leverage contributions from partner institutions through IBPSA Project 1 for FY18-FY22.

Total Project \$:

- DOE: \$2.4 mil FY20-FY22 (Including FY18 & FY19 \$3.65 mil)
- Cost Share: No direct, but leverage contributions from partner institutions through IBPSA Project 1 for FY18-FY22.

Key Partners:

Institutions from IBPSA Project 1 that jointly
develop Modelica & FMI for buildings, particularly:

Katholieke Universiteit (KU) Leuven	IK4 Tekniker
Southern Denmark University	SINTEF
Polytechnic University of Milan	ENGIE Lab
ETH Zurich / EMPA	DeltaQ
University of Colorado Boulder	

Project Outcome:

Enable benchmarking and rapid prototyping of building HVAC control algorithms, including advanced algorithms such as MPC and Reinforcement Learning, which are critical for grid-interactive efficient buildings. Done by:

- 1. Developing a rapidly, repeatably, deployable run-time environment (RTE) for building emulation with HTTP API.
- 2. Developing a set of common building emulators that utilize Modelica and FMI and make possible control signal overwriting by test controllers at the supervisory and local-loop level.
- 3. Specifying common Key Performance Indicators (KPI) calculated within the RTE using data from building emulators.

Team

Michael Wetter

David Blum

Sen Huang

Kyle Benne

Marjorie Schott Philip Gonzalez

Yeonjin Bae

Piljae Im

- Core software design and development
- Test case design and development
- Lead coordination with IBPSA Project 1 and IEA Annex 81

PNNL

Draguna Vrabie

- Core software design and development
- 15-zone office test case development
- Example feedback and MPC controller development and testing NREL and Devetry (sub to NREL)
- Web-service design and development
- Results dashboard design and development (with Devetry)

ORNL

FRP test case development and calibration

Challenge

Needs for Improved Controls

- Energy efficiency, grid-interactivity, resiliency
- New system architectures and onsite generation and storage

Challenge 1: Individualized Studies

- Different building, HVAC, climate, study period, performance metrics
- Demonstrated savings/advantages depend on comparative baseline ¹
- → Difficult to answer which approach is most effective and where more work needed

Examples of recent controls development

Challenge 2: Building Emulator Time and Effort

- Real buildings pose operational risks and have slow-changing operating conditions
- Realistic simulations require building modeling expertise and effort
- → Limits rapid prototyping and algorithm development opportunities from outside experts (e.g. process control, optimization, data science)

¹ For example for VAV Systems, range of 12-67% savings of "good practice" controls depending on if compared to "average" or "poor" practices [1]

Goals:

- Establish and benchmark state-of-the-art performance of control for building energy systems
- Accelerate building control software development and provide control developers with performance information
- Enable transition and encourage adoption of advanced building control algorithms

Achieved by:

- Developing a <u>software framework</u> for testing and evaluation of advanced building control
- Developing <u>common sets</u> of building emulators, test scenarios, and key performance indicators (KPI)
- User engagement to capture expected use cases and facilitate the utilization in the broad academic and industry R&D communities

Key Performance Indicator Scale

Software Framework

- Simulation management based on Functional Mockup Interface (FMI)
- Rapid, repeatable deployment locally or as web-service using Docker
- HTTP-based RESTful API for test set up, emulator-controller co-simulation, and KPI reporting
 RESTFUL HTTP API on 127.0.0.1:5000

API Endpoint	Description
GET measurements	Receive available measurement points
GET inputs	Receive available input points
PUT scenario	Set test scenario
PUT initialize	Initialize simulation
PUT step	Set control step
GET forecast	Receive forecasts
POST advance	Advance simulation with control input
PUT results	Receive historic point trajectory
GET kpi	Receive KPI values
Key RESTful H	TTP API Endpoints

Common Set of Building Emulators

- High-fidelity models with embedded baseline controllers in Modelica exported as FMUs
- All boundary condition data included (e.g. weather, schedules, electricity prices)
- Range of building types, sizes, and systems
- Overwrite supervisory or local-loop control
- Practical control and measurement points
- Documentation

Example Modelica model with read/write points

Hydronic	Air
Single zone + Radiator	Single zone + FCU
Single zone + TABS	5-Zone + 1 VAV AHU (distr. only)
8-Zone + Radiators and split cooling	10-zone + 1 VAV with DX, electric heating (FRP)
Single zone class + Radiator, AHU	15-Zone + 3 VAV AHU, chiller, boiler

- Completed and available in repo
- Implemented in Modelica but not finalized in repo
- Subset of planned building emulators defined under IBPSA Project 1

Common Evaluation Design

- Set of KPIs calculated by software framework for every test case
- Definition of testing scenarios for each emulator (e.g. time period and electricity prices)

DTE: ARROW WOULD SORT

Complete

Completed

Completed

Completed

7/19/19,

1:44 pm

2:44 pm

7/19/19

3:44 pm

7/19/19.

4-44 nm

Commercial single-zone air-baser

Commercial multi-zone hydronic

cial multi-zone air-based

Commercial complex multi-zone hydronic

Comr

- Capability for custom KPI calculation through access to test data
- Development of results sharing platform with initial implementation completed

B P_{TEST}

A

FILTERS

TEST CASE FILTERS

Residential multi-zone hydronic

Residential multi-zone air-based

tesidential single-zone hydronic

tesidential single-zone air-baser

mercial single-zone hydroni

= Filters

Name of building type here and

could wrap if that would work

ame of building type here and

t could wrap if that would work

t could wrap if that would work

Name of building type here and

- 1. Energy Use [kWh/m²]
- 2. Energy Cost [\$/m²]
- 3. Emissions [kg CO_2/m^2]
- 4. Thermal Discomfort [K h/zone]
- 5. IAQ Discomfort [ppm h /zone]
- 6. Computational Time Ratio [-]

Set of six KPIs evaluated for every test by software framework.

TEST RESULTS

2000 Results

Quality

Discomfor

XXX

XXX

XXX

ххх

Thermal

Discomfor [Kh]

XXX

XXX

ххх

ххх

Summer, XX/XX to XX/XX D Other time period

Other time period

Other time period

Other time perior

BY COLUMN

Energy [kWh]

23.04

13.25

15.67

18.3

PARAMETERS

Other

Other

Co-simulation Time (?)

Winter, XX/XX to XX/XX

Rows per page: 100-

Total

Operationa

Cost [\$ or Euro]

XXX

XXX

XXX

XXX

Uncertainty distribution (?)

Deterministic

Stochastic

oltip here to explai

Total

Energy

XXX

XXX

XXX

Price Scenario (?)

Highly Dynami

Constant

Dynamic

xxx - _

Online Repository

Sign in | Register

>

Computationa

Time Ratio

[-]

XXX

XXX

ххх

XXX

XXX

ххх

XXX

XXX

1 -100 of 2,000

Total CO₂

Emissions [kgCO,]

ххх

XXX

ххх

XXX

Impact

Accelerate Controls Development

- Improved rule-based controls for commercial buildings can save 2.7 quads/yr (3% 2015 U.S. primary energy) and reduce peak electricity demand by 16% ^[2]
- Optimization-based controls such as MPC and RL
 - HVAC and lighting energy savings typically range 15-30% ^[3-7]
 - Peak demand reduction, load shifting, and other grid services ^[8-9]

Enable Controls Benchmarking

- Common test cases and KPIs allow for comparison of different algorithms from different developers, informing investment by building owners and future R&D focus
- Reported results establish collective baseline for future comparison

Open Opportunities

- Reduce the barriers (risk, effort, cost, modeling expertise) for control algorithm evaluation on realistic test cases
- Encourage control development by experts outside buildings community, such as process controls, optimization, and data science

Impact

Advancing the State of the Art for Evaluation Frameworks

- Integration of high-fidelity building simulation with containerized software deployment capable of being deployed locally or on cloud serving multiple, remote clients
- Use of Modelica and FMI standards for emulator models allow for:
 - Leveraging ~10 years of international, open-source model development under IEA EBC Annex 60 and IBPSA Project 1 as well as tool development in other industries
 - Flexible control points from supervisory set points to local actuator signals
- Provision of forecasts (e.g. weather, electricity prices) enables testing with predictive control algorithms and eventual evaluation under specified uncertainty scenarios

Supporting and Leveraging Other DOE Efforts

- Utilize Modelica and FMI technologies developed under Spawn and Buildings Library
- Baseline controllers embedded in emulators and test controllers may be implemented using CDL from OpenBuildingControl
- Alfalfa architecture used to implement BOPTEST as a web-service
- Development underway of VOLTTRON agent
- Useful for controls development and evaluation under Sensors and Controls portfolio

Progress

BOPTEST v0.1.0 (https://github.com/ibpsa/project1-boptest)

- Fully functional software framework deployable locally or on cloud as service serving multiple test controller clients (called "boptest-service")
- Four building emulators available (+ three used for development purposes)
- Example test controllers in Python, Julia, and Javascript as well as MPC controller testing from 6 different institutions (IBPSA Project 1) validate the technical approach

34	# TEST CONTROLLER IMPORT
35	#
36	from examples.python.controllers import pid
37	#
30	# SET TEST PARAMETERS
40	# Set IIRI for test rase
41	url = 'http://127.0.0.1:5000'
42	# Set testing scenario
43	<pre>scenario = {'time period':'test day', 'electricity price':'dynamic'}</pre>
44	# Set control step
45	step = 300
46	#
47	# GET TEST INFORMATION
48	#
49	# Get test case name
50	<pre>name = requests.get('{0}/name'.format(url)).json()</pre>
51	# Get inputs available
52	" Get margarette qualitate
54	macurements - requests off [[A]/macurements' format(url)) ison()
55	#
56	# RUN TEST CASE
57	#
58	# Set control step
59	<pre>requests.put('{0}/step'.format(url), data={'step':step})</pre>
60	# Set test case scenario
61	<pre>y = requests.put('{0}/scenario'.format(url), data=scenario).json()['time_period']</pre>
62	# Record test start time
63	<pre>start_time = y['time']</pre>
64	# Simulation Loop
65	while y:
00	# Compute control signal
60	u = pld.compute_control(y)
69	y = coupers cost(1,0)(accel format(uc)) (ata=u) icon()
70	y = requests.post({0}/advance :rormat(art), data=0).jsoi()
71	# GET RESULTS
72	#
73	# Get KPIs
74	<pre>kpi = requests.get('{0}/kpi'.format(url)).json()</pre>
75	# Get zone temperature over test period
76	<pre>args = {'point_name':'TRooAir_y', 'start_time':start_time, 'final_time':np.inf}</pre>
77	<pre>res = requests.put('{0}/results'.format(url), data=args).json()</pre>
_	
F	vamnia controllar intartaca

code in Python

Controller	Energy [kWh/m²]	Cost [\$/m²]	Emission [kg CO ₂ /m ²]	Thermal Dis. [K h/zone]	IAQ Dis. [ppm h/zone]	Com. Ratio [-]
Baseline	2.226	0.1208	1.466	7.670	1222	1.192E-4
MPC	2.204	0.1186	1.442	23.69	1220	6.484E-3

Results of test using MPC with "BESTEST Air" case

Progress

Test Case Development - FRP

- Initial model implemented in Modelica
- Begun data collection in real system for calibration and demonstration of realistic control emulation

Example results from Modelica model

Schematic of ORNL FRP test building

Progress

Test Case Development – 15-Zone Office

- 3 multizone VAV AHU w/ reheat, chilled water plant, and boiler plant
- Model implemented with Modelica-EnergyPlus co-simulation
- Utilized for comparison between baseline control and MPC control

System schematic showing AHU, chilled water, and hot water systems

Example results comparing MPC with baseline

Stakeholder Engagement

IBPSA Project 1

- <u>https://ibpsa.github.io/project1</u>
- BIM/GIS and Modelica Framework for building and community energy system design and operation
- Work Package 1.2 MPC and BOPTEST
 - 25 participants from 13 institutions
 - Collaboration on emulator development, software development, and peer review
 - MPC testing and evaluation

Biannual Technical Advisory Group Meetings

- Representatives from academia and industry
- Feedback on project progress
- Average 11 participants

EBC IEA Annex 81 on Data-Driven Smart Buildings

- https://annex81.iea-ebc.org/
- Subtask B.3 evaluation of data-driven control strategies to utilize BOPTEST

Remaining Project Work

Near Term (Through FY22)

- Key Emulator Development
 - Develop and make available single-zone commercial packaged RTU test case
 - Calibrate and make available FRP test case
 - Make available 15-zone office test case and utilize Spawn
- Key Software Development
 - Improved user guide and error handling/messaging
 - Prototype added meta-data tagging for control and measurement points
 - Add capability of filtering controller and test characteristics to results dashboard
- Usage and Stakeholder Engagement
 - Additional MPC and RL testing through IBPSA Project 1 and Annex 81
 - Workshop scheduled at IBPSA BS21 Conference, organize Hackathon later FY22

Long Term (FY23-25)

- Maintain and enhance software components to provide more test content
- Grow partnerships with industry to promote usage

References

[1] X. Pang, M. A. Piette, and N. Zhou (2017). "Characterizing variations in variable air volume system controls." Energy and Buildings, vol. 135, pp. 166–175.

[2] Fernandez, J., Xie, Y., Katipamula, S., Zhao, M., Wang, W., and Corbin, C. (2017). "Impacts of Commercial Building Controls on Energy Savings and Peak Load Reduction." Pacific Northwest National Laboratory Technical Report PNNL-25985.

[3] Siroky, J., Oldewurtel, F., Cigler, J., and Privara, S. (2011). "Experimental analysis of model predictive control for an energy efficient building heating system." Applied Energy, 9, 3079-3087.

[4] Oldewurtel, F, Parisio, A, Jones, CN, Gyalistras, D, Gwerder, M, Stauch, V, Lehmann, B, and Morari, M. (2012). "Use of model predictive control and weather forecasts for energy efficient building climate control." Energy and Buildings, 45:15-27.

[5] Bengea, SC, Kelman, AD, Borrelli, F, Taylor, R, and Narayanan, S. (2014). "Implementation of model predictive control for an HVAC system in a mid-size commercial building." HVAC&R Research, 20(1): 121-135.

[6] West, S., Ward, J., and Wall, J. (2014). "Trial results from a model predictive control and optimisation system for commercial building HVAC." Energy and Buildings, 72, 271-279.

[7] Li, P., Vrabie, D., Li, D., Bengea, S., Mijanovic, S., and O'Neill, Z. (2015). "Simulation and experimental demonstration of model predictive control in a building HVAC system." Science and Technology for the Built Environment, 21(6), 721-732.

[8] Kim, D., and Braun, J. (2018). "Development, implementation and performance of a model predictive controller for packaged air conditioners in small and medium-sized commercial building applications." Energy and Buildings, 178, 49-60.

[9] Vrettos, E., Kara, E. C., MacDonald, J., Andersson, G., and Callaway, D. S. (2018). "Experimental Demonstration of Frequency Regulation by Commercial Buildings—Part II: Results and Performance Evaluation." IEEE Transactions on Smart Grid, 9(4), 3224-3234.

Thank You

LBNL, PNNL, NREL, ORNL, Devetry

David Blum, Ph.D. Principal Scientific Engineering Associate, LBNL dhblum@lbl.gov

REFERENCE SLIDES

Project Budget

Project Budget: FY20: \$250k each LBNL, PNNL, NREL, \$125k ORNL FY21: \$250k each PNNL, NREL, \$150k LBNL, \$125k ORNL FY22 (planned): \$250k each PNNL, NREL, \$150k LBNL, \$100k ORNL

Variances: Originally planned for \$250k in FY21,FY22 for LBNL but sufficient carry-over from FY20. Project plan not modified.

Cost to Date: \$1.65 mil FY20-FY21

***Additional Funding**: No direct, leverage contributions from 13 partnering institutions in IBPSA Project 1.

Budget History								
10/1/2019- FY 2020 (past)		FY 2021	(current)	FY 2022 – 9/30/2022 (planned)				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
\$875k	\$0*	\$775k	\$0*	\$750k	\$0*			

Project Plan and Schedule

Start Date: 10/1/2019, End Date: 9/30/2022		F Y20			FY21					FY	Y22		
Milestone Name (Lead Lab)	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Past Work (M = milestone completed, M = originally planned, G = Go/No-Go)					-					-			
M2.2.1 KPI specification posted to github (PNNL)	м												
M2.3 Test scenarios and methods documentation completed (PNNL)		М											
M2.4.1 Calibration metrics identified (ORNL)		М											
M1.1 Software demonstration with example controller (NREL)		М											
M2.2.2 Automated KPI calculation implemented in software (LBNL)		М											
M4.2.1 Bi-annual TAG meetings held, Q2 and Q4 each FY (LBNL)		м											
M2.1.1 Large office testcase completed (PNNL)			м										
M1.2 Automated test procedure and KPI report for a test controller (NREL)				М									
M3.1.1 Full repository of test cases baseline benchmarked (PNNL)				М									
M2.5.1 Test case repository version release on github (LBNL) (Go/No-Go)				G									
M4.2.2 Bi-annual TAG meetings held, Q2 and Q4 each FY (LBNL)				м									
M1.4 Continuous integration testing (NREL)					м								
M2.1.2 Medium office test case completed (LBNL)					м	м							
M2.1.3 Initial FRP test case developed (ORNL)						м							
M3.2.1 At least one repository test case benchmarked with MPC controller (PNNL)						м							
M4.2.3 Bi-annual TAG meetings held, Q2 and Q4 each FY (LBNL)						м							
M3.2.2 At least one repository test case benchmarked with Modified MPC controller (PNNL)							м						
M3.2. At least one repository test case benchmarked with ACS controller (LBNL)							м						
Updates to BOPTEST Service and BOPTEST Dasboard published on GitHub (NREL)							М						
M1.5.1 BOPTEST Software Version Release (LBNL) (Go/No-Go)							G						
Future Work													
M2.5.2 Test Case Repository Version Release (LBNL)								м					
M4.3.1 Workshop Held (LBNL)								м					
M1.3.2 Prototype API for interacting with control and sensor point metadata (NREL)								м					
M4.2.4 Bi-annual TAG meetings held, Q2 and Q4 each FY (LBNL)								м					
M3.1.2 Full repository of test cases baseline benchmarked (PNNL)								м					
M2.4.2 FRP test case calibrated (ORNL)									м				
M2.1.4 Single zone office test case completed (LBNL)									м				
M4.2.5 Bi-annual TAG meetings held, Q2 and Q4 each FY (LBNL)										м			
M2.1.5 Large office and power grid tool test case completed (PNNL)											м		
M4.3.2 Hackathon held (LBNL)											м		
M1.5.2 BOPTEST Software version release on github (LBNL)											м		
M1.6.1 BOPTEST-Service Available Online (NREL)											м		
M3.1.3 Full repository of test cases baseline benchmarked (PNNL)												М	
M2.5.3 Test case repository version release on github (LBNL)												М	
M4.2.6 Bi-annual TAG meetings held, Q2 and Q4 each FY (LBNL)												М	