

Molten Chloride Thermophysical Properties, Chemical Optimization, and Purification

Gen3 CSP Summit August 25-26, 2021

Youyang Zhao Principal Investigator National Renewable Energy Laboratory

Project Teams: NREL, University of Arizona, University of Wisconsin-Madison, ICL Innovation Itd., Albemarle, Sandia National Laboratories, Argonne National Laboratory

NREL Award # 33870 (agreement number)

Raw Material Quality Can Differ

Major Phase

Three colored phases (white, yellow, and gray from left to right) of AC. Different moisture content and MgO content may have resulted in the color difference. Yellow is the primary phase in AC in terms of quantity.

		-	•				
	Salt Batch	Measurement by	Data	KCI	NaCI	MgCl ₂	
				wt%			
	Jan–Dec 2018*	ICL	Average	40.6	13.9	45.3	
			Stdev	0.69	0.43	0.63	
	Jan 2019	ICL	Average only	40.8	13.0	46.2	
	Aug 2019	ICL	Average only	41.4	12.8	45.9	
	Jan 2019**	NREL	Average	38.6	12.3	49.1	
			Stdev	0.97	0.43	0.68	

Composition of Raw AC Measured by ICL and NREL

* Based on multiple measurements on a monthly basis

** Based on three measurements

Composition of SPK Halite Measured by Albemarle and NREL

Salt Batab	Measurement	Data	KCI	NaCl	CaSO ₄ ·2H ₂ O	
Salt Balch	by		wt%			
Jan 2019	Albemarle	Average only	(5.96	92.5	1.41	
Jan 2019	NREL	Average only	8.57	90.7	0.70	

There are variations of raw materials even produced by the same suppliers.
There are variations of measurements even performed by the same entity.

Y. Zhao. 2020. Molten Chloride Thermophysical Properties, Chemical Optimization, and Purification. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5500-78047. https://www.nrel.gov/docs/fy21osti/78047.pdf

Therefore, Final Salt Can Also Differ

Average Composition and Standard Deviation (Stdev) of Purified AC + Halite Based on ICP-AES Measurements of 10 Samples from 7 Purification Batches

				MgCl ₂	KCI	NaCl				
			Composition		wt.%					
			Average	45.31	38.70	15.99			_	
		Stdev	1.40	1.46	1.27					
			Composition	mol.%		-				
	tside		Average	37.51	40.92	21.57			Just outside	
Just outside			Stdev	1.16	1.54	1.72				
one stdev	Compositions of UW-Madison's recent large-batch purifications							dev		
				MgCl ₂	KCI	Na	Cl			
	Ba	tch 1, wt.%	43.85	37.40	18.	75				
		Bat	tch 2, wt.%	43.44	38.41	18.	15		-	
It is slight prop	not tly. S ertie	sur Smal	prising that I compositio e not expecte	the fina n variatio	I salt con is acconsistent	composi ceptable sitive to	tions bec com	also ause posit	o vary e most tion.	

Y. Zhao. 2020. Molten Chloride Thermophysical Properties, Chemical Optimization, and Purification. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5500-78047. https://www.nrel.gov/docs/fy21osti/78047.pdf

9

Salt Purification/Optimization Criterion I: Minimized Melting Point

NaCl-KCl-MgCl₂ phase diagram calculated by FactSage showing the compositions of the purified baseline salt, AC, and SPK halite. The colored contours indicate the liquidus temperatures up to 500°C calculated by FactSage. The radius of the red dot corresponds to the highest standard deviation in composition measurement.

Y. Zhao. 2020. *Molten Chloride Thermophysical Properties, Chemical Optimization, and Purification*. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5500-78047. https://www.nrel.gov/docs/fy21osti/78047.pdf

Sensitivity of Melting Point to Composition Variation

Summary of Phase Transition Temperatures During Heating for Six Salt Compositions Orange cells indicate solidus temperatures and green cells indicate liquidus temperatures. Empty cells indicate that no clear transitions have been observed.

Y. Zhao. 2020. Molten Chloride Thermophysical Properties, Chemical Optimization, and Purification. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5500-78047. https://www.nrel.gov/docs/fy21osti/78047.pdf

NaCl-KCl-MgCl₂ phase diagram showing the locations of the baseline salt (red dot) and the six off-baseline compositions (blue dots) with their approximate liquidus temperature based on DSC measurements. The colored contours indicate the liquidus temperatures calculated by FactSage.

Salt Purification/Optimization Criterion II: Minimized MgOHCl

Y. Zhao. 2020. Molten Chloride Thermophysical Properties, Chemical Optimization, and Purification. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5500-78047. https://www.nrel.gov/docs/fy21osti/78047.pdf

Results in a Laboratory Setting

Fundamental engineering parameters for purification design:

- 1. Mg amount
- 2. Purification temperature
- 3. Sparging gas flow rate
- 4. Purification time

Y. Zhao and J. Vidal, "Potential Scalability of A Cost-effective Purification Method for MgCl2-Containing Salts for Nextgeneration Concentrating Solar Power Technologies," Sol. Energy Mater. Sol. Cells, vol. 215, no. June, p. 110663, 2020

Transferring Science to Engineering – Example

Flammability diagram of N₂-rich H₂-N₂-O₂ mixture at elevated temperatures. Note that the temperatures in the diagram are in Fahrenheit. The area bounded by the red lines is the flammability region at about 704°C.

Y. Zhao. 2020. Molten Chloride Thermophysical Properties, Chemical Optimization, and Purification. Golden, CO: National Renewable Energy Laboratory, NREL/TP-5500-78047, https://www.nrel.gov/docs/fv21osti/78047.pdf

added at the beginning. The H₂ concentration data were collected manually.

Transferring Science to Engineering – Example

- Engineering solution: Salt Melter needs to be designed accordingly to minimize H₂ risk.
- Ideally, separate melter chambers are needed, each with unique function.

Pilot-scale salt melter layout showing the salt transfer line (red) to the hot tank and sparge-gas transfer line (purple) heading to the scrubber (not shown) [1]

U.S. Department Of Energy

[1] C. Turchi, S. Gage, J. Martinek et al. 2021. CSP Gen3: Liquid-Phase Pathway to SunShot. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5700-79323. https://www.nrel.gov/docs/fy21osti/79323.pdf.

Remaining Unknown: Salt Vapor Composition

- Salt vapor pressure measured by University of Arizona [1] is significantly higher than thermodynamic software prediction (> 30x difference).
- Salt vapor can be complicated. For example, vapor above NaCl can be NaCl monomers, Na₂Cl₂ dimers, or even Na₃Cl₃ trimers [2].

We don't know:

- 1. Exact phases in the vapor complex polymeric K-Na-Mg-Cl?
- 2. Vapor condensation kinetics.

Hence, there are potential issues with:

- Design of TES tank ullage gas system,
- Clogging of TES tank vents and other components,
- Plugging of porous thermal insulation,
- Weight gain of tank ceiling refractory

[1] X. Wang, J. Del Rincon, P. Li, Y. Zhao, and J. Vidal, "Thermophysical Properties Experimentally Tested for NaCl-KCl-MgCl2 Eutectic Molten Salt as a Next-Generation High-Temperature Heat Transfer Fluids in Concentrated Solar Power Systems," J. Sol. Energy Eng., vol. 143, no. 4, pp. 1–8, 2021, doi: 10.1115/1.4049253.

[2] J. Berkowitz and W. A. Chupka, "Polymeric gaseous molecules in the vaporization of alkali halides," J. Chem. Phys., vol. 29, no. 3, pp. 653–657, 1958, doi: 10.1063/1.1744555