Gas-Particle System: LCOE Analysis and System Design Optimization

2021 GEN3 Workshop Mike Wagner Asst. Professor, UW-Madison | Senior Researcher, NREL Co-Authors: Ty Neises, Matt Boyd (NREL)

Baseline Gen3 System (Baseload)

- 1. RCBC sCO₂ power block
- 2. Low temp. high press. sCO₂ piping
- 3. Low temperature flow valves
- 4. TES charging receivers
- 5. TES charging heat exchangers
- 6. TES low pressure particle shaft
- 7. TES hot particle storage silo
- 8. High temp. TES discharge heat exchanger
- 9. Low temp. TES discharge heat exchanger
- 10. TES cold particle storage silo
- 11. TES particle lift
 - Mass flow is dictated by power block
 - Heat input is constrained by peak allowable receiver material temp.
 - Control parameters shown in red

Modeling sCO2 cycle integrated w/ receiver

- Direct integration w/ CO2 receiver causes large ΔP (~15%) in design cycle
 - Compressor ΔP ~15% > Turbine ΔP
- Off-sun ΔP significantly smaller (<1%)
 - Compressor ΔP ~=Turbine ΔP
- Balancing turbomachinery to achieve higher efficiencies off-sun requires active cycle control
 - Modeling inventory control
 - May be able to reduce required inventory w/ compressor shaft speed control
- Higher off-sun efficiencies can result in unintuitively higher annual capacity factors

https://github.com/NREL/SAM/blob/develop/samples/CSP/sco2_analysis _python_V2/example/User_Guide.pdf

Design Optimization Methodology

- 11 optimization variables identified
- 24 key functions and correlations dependent on these variables were developed
- Incorporate all variables and functional relationships into SAM
- Develop wraparound code for optimization
 - Because of their non-continuous nature, 4 basic configurations formed the basis of the analysis:
 - Particle Transport: Skip Hoist, Bucket Elevator
 - Field Layout: North Field, Surround Field

FUNCTIONS AND CORRELATIONS	
Baseline System Availability	%
Receiver Efficiency	%
Receiver Pressure Drop	%
Receiver Specific Cost	\$/kW _t
TES Heat Exchanger Cost	\$/UA
TES Heat Exchanger DP	%
Power Block Efficiency	%
Power Block Cost	\$/kW _e
Tower Cost	\$/m
Foundation Cost	\$/m
Permitting Cost (Height)	\$/m
Permitting Cost (Power)	\$/kW _e
Permitting Cost (O&M)	\$/yr
Media Transport Power	kW _e
Media Transport Cost	\$
Media Transport Availability	%
Balance of TES System Cost	\$
Solar Field Efficiency	%
Solar Field Area	m ²
Solar Field Cost	\$/m ²
Riser/Down-Comer Cost	\$
EPC Costs	\$
O&M Labor Costs	\$/yr
O&M Non-Labor Costs	\$/yr

OPTIMIZATION VARIABLES	
Cycle design gross power	

Cycle design gross power	MW
Solar multiple	-
Tower height	m
Design-point DNI	W/m2
Receiver absorber height	m
Tube outer diameter	in
Riser pipe diameter	m
Down-comer pipe diameter	m
Hours full-load storage	hours
Charge HX approach temp.	deg C
Discharge HX approach temp.	deg C

Design Optimization Process

Goal: find set of design parameters that minimize LCOE

Variables and Constraints

Design Parameter	Units	Lower bound	Upper bound
Cycle design gross power	MW	50	120
Solar multiple	-	2.2	3.2
Tower height	m	50	200
Design-point DNI	W/m2	650	1200
Receiver absorber height	m	2	7
Tube outer diameter	in	0.25	0.375
Riser pipe inner diameter	m	0.3	0.75
Down-comer pipe inner diameter	m	0.3	0.75
Hours full-load storage	hours	4	20
Charge HX approach temp.	deg C	10	40
Discharge HX approach temp.	deg C	10	40

Constrained guess values

• Solar multiple (< max total receiver thermal power); Tube outer diameter; Riser/down-comer pipe diameter

Calculated design information

- Receiver dimensions, field size, optical and thermal efficiency, pressure drop; Cycle inlet temperature and efficiency; Physical size of TES
- Solar field and receiver lookup tables specific to tower height, thermal rating
- Capital costs

Objective Function Evaluation

Annual Simulation

- Implement detailed component model behavior with multi-dimensional lookups / reduced order models
 - Field optical efficiency vs solar position, tower height, power rating
 - Receiver thermal efficiency and pressure loss vs inlet temperature and mass flow rate
 - Cycle off-design performance
- Leverage SAM's annual simulation framework to control TES and startup/shutdown operations
- Use SAM's single-owner financial model to calculate LCOE

Moving Through the Design Space

"Black-box" optimizer

- Objective function derivatives not explicitly known
- Local nonlinear optimization (SLSQP)
- Custom objective penalty function to maintain minimum receiver heights as function of receiver power and tube diameter

Random starting points

- Design optimization is nonlinear and nonconvex, so need to try optimization from a large number of random starting points
- Approach generates lots of data to plot design parameter relationships

Baseload Configuration Pareto Fronts

Baseload Optimal Design

Design variable	Units	Optimal Value
Cycle design gross power	MW	83.0
Solar multiple	-	2.2
Tower height	m	110.7
Design-point DNI	W/m2	650
Receiver absorber height	m	4.34
Tube outer diameter	in	0.375
Riser pipe inner diameter	m	0.40
Down-comer pipe inner diameter	m	0.40
Hours full-load storage	hours	11.4
Charge HX approach temp.	deg C	31.0
Discharge HX approach temp.	deg C	23.3

Metric	Units	Value	MSPT (G2)
Annual energy	kWh	574,104,722	571,782,107
Capacity factor	%	87.7	63.1
LCOE (real)	c/kWh	5.03	
Subsystem	and total cos	ts:	
Site improvement	\$M	15.1	
Heliostats	\$M	113.3	
Tower	\$M	10.7	
Receiver	\$M	6.0	
Storage	\$M	67.2	
Power block	\$M	49.8	
Charge HX	\$M	27.2	
Discharge HX	\$M	12.3	
Riser	\$M	4.2	
Downcomer	\$M	4.3	
Contingency	\$M	21.3	
Net capital cost	\$M	387.6	
OM lifetime total	\$M	156.6	
Analycis period	year	30	
Annuai avera	ge performar	nce:	
Field efficiency	%	41.0	51.7
Receiver efficiency	%	82.0	82.8
Cycle efficiency	%	49.6	40.2
Cycle on-sun efficiency	%	47.4	38.7
Cycle off-sun efficiency	%	51.7	41.9

- <u>Field efficiency</u>: Low heliostat cost, Low tower height
- <u>Receiver efficiency</u>: Aided by lower max. operating temperature
- <u>Cycle efficiency</u>: 4.3% vs 2.8% gain mostly due to reduced cycle pressure drop (MSPT efficiency result does not include salt pump parasitic)

Design Optimization – Peaker

Plant modifications for "peaker" operation

- Indirect configuration moves CO₂ through receiver with hot circulator
 - Removes riser and downcomer
- Combines low- and high- temperature discharge heat exchanger
- Designs cycle for much smaller pressure drop across heat input
- Plant controller forces cycle off whenever price multiplier is <= 0
- Redesigning receivers to operate in parallel rather than in series should improve peaker performance
 - Dispatch optimization would help maximize production at most valuable hours

Gen3 System (Peaker)

- 1. RCBC sCO₂ power block
- 2. Low temp. high press. sCO₂ piping
- 3. Low temperature flow valves
- 4. TES charging receivers
- 5. TES charging heat exchangers
- 6. TES low pressure particle shaft
- 7. TES hot particle storage silo
- 8. High temp. TES discharge heat exchanger
- 9. Low temp. TES discharge heat exchanger
- 10. TES cold particle storage silo
- 11. TES particle lift
- 12. sCO₂ Circulator
- Receiver flow is dictated by circulator
- Heat input is constrained by peak allowable receiver material temp.
- Control parameters shown in red

Peaker Optimal Design

Design variable	Units	Optimal value
Cycle Power [MWe]	MWe	65
Solar Multiple	-	1.5
Hours of TES [hr]	hr	15.6
Receiver Height [m]	m	3.3
Tube OD [in]	in	0.375
Charge HX dT [C]	С	40
Discharge HX dT [C]	С	30
Tower Height [m]	m	70
DNI Design [W/m2]	W/m2	760

Results				
Metric	Units	Value		
Unweighted annual energy	kWh	207,919,349		
Capacity factor unweighted	%	40.573		
Capacity factor weighted	%	113.455		
LCOE (real)	c/kWh	2.83		
PPA price (year 1)	c/kWh	3.403		
Annual circulator energy	kWh	7,077,800		
TOD1 capacity factor	%	-3.201		
TOD2 capacity factor	%	97.64		
TOD3 capacity factor	%	79.667		
TOD4 capacity factor %	%	0		

Uncertainty Analysis

- Estimated input uncertainty based on variety of sources
 - Phase 2 testing
 - Brayton TES manufacturing roadmap
 - Vendor cost estimates
 - Engineering judgment
- Assumed normal distributions on all parameters, symmetric behavior
- Performed stochastic sampling with large (N=1000) population
 - Corresponding 90% CI for population mean is ±0.02 c/kWh
- Evaluated using annual performance simulation model

1σ standard deviation, Fraction of nominal value

LCOE Input	1-sigma estimate
Receiver thermal efficiency	0.028
Receiver pressure drop	0.318
Receiver Cost	0.3
TES HX Performance	0.15
TES Cost	0.3
Realized nominal cycle efficiency	0.055
Riser/Downcomer Specific Cost	0.3
Tower Cost	0.15
Particle Lift Cost	0.3
Particle Lift Efficiency	0.05
Particle Lift Availability	0.02
Particle Storage Cost	0.25
EPC Cost	0.10
O&M Cost	0.25

Uncertainty analysis results

Table (right) shows metrics describing system performance and cost. Shown are the nominal (mean) **value**, the values bounding the 10 & 90% range, and the population standard deviation (1σ) .

Histogram (bottom) of the population's LCOE values, with N=1000 samples grouped into B=25 bins.

Metric	Units	Value	P10/P90	Stdev
			[538,675,705 -	
Annual energy	kWh	574,104,722	583,952,180]	3.4%
Capacity factor	%	87.7	[82.3 - 89.2]	3.4%
LCOE (real)	c/kWh	5.03	[4.63 - 5.68]	8.2%
	Sub	system and to	otal costs:	
Site improvement	\$k	15,107	[14,644 - 15,613]	2.6%
Heliostats	\$k	113,300	[109,834 - 117,101]	2.6%
Tower	\$k	10,741	[8,841 - 12,804]	14.4%
Receiver	\$k	5,960	[3,831 - 8,343]	29.8%
Storage	\$k	67,246	[47,920 - 86,292]	22.0%
Power block	\$k	49,827	-	-
Charge HX	\$k	27,219	[16,353 - 37,102]	29.9%
Discharge HX	\$k	12,280	[7,373 - 16,739]	29.9%
Riser	\$k	4,230	[2,560 - 5,836]	29.8%
Downcomer	\$k	4,315	[2,611 - 5,954]	29.8%
Contingency	\$k	21,268	[19,613 - 22,950]	6.0%
Net capital cost	\$k	387,588	[357,526 - 417,599]	5.9%
OM lifetime total	\$k	156,567	[107,184 - 207,741]	25.2%
Analysis period	year	30		
	Annu	ial average pe	rformance	
Field efficiency	%	41		
Receiver efficiency	%	82		
Cycle efficiency	%	49.6		
Cycle on-sun				
efficiency	%	47.4		
Cycle off-sun				
efficiency	%	51.7		

Thank you!

Contact: mike.wagner@wisc.edu