

Molten Salt Panel DOE Solar Energy Technologies Office Gen3 CSP Summit

Judith Vidal, Ph.D. August 25, 2021

Salt Chemistry Control and Regeneration

Chloride salts cause intergranular corrosion.

- Caused by impurities
- Corrosion depletes key alloying elements

Corrosion is problematic and expensive.

- Alloys corrode at unacceptable rates
- This requires expensive alloys and expensive maintenance

Controlling salt chemistry can mitigate corrosion.

 Salt-soluble *MgOHCl* in molten chlorides is one of the major species that reacts/corrodes metal *M* according to the reaction:

$xMgOHCl + M \rightarrow xMgO + MCl_x + (x/_2)H_2$

- Regenerating pure salts is important for plant operation

SEM of corroded H230 after molten chloride exposure

Corrosion Control During Plant Operation

A sealed and controlled environment mitigates formation of corrosive impurities

 MgOHCl forms when salt is exposed to moisture

Electrochemical purification can effectively remove corrosive impurities

 Even in sealed systems, corrosive species will form due to small leaks and moisture in ullage gas

> It can be controlled by electrochemical purification

$2MgOHCl \rightarrow 2MgOH^+ + 2Cl^-$	[molten salt]
$Mg^{2+} + 2Cl^{-} \rightarrow MgCl_{2}$	[molten salt]
$2MgOH^+ + 2e^- \rightarrow 2MgO + H_2(g)$	[cathode]
$Mg(s) \rightarrow Mg^{2+} + 2e^{-}$	[anode]
$2MgOHCl + Mg(s) \rightarrow MgCl_2 + 2MgO + H_2(g)$	[overall reaction]

NREL | 3

Operations and Maintenance

Developing Work, beyond Gen3

- NREL is designing, constructing, and validating a *flow electrochemical purification cell* for in-situ corrosion control during plant operation
- Corrosive MgOHCl will be removed as fast as it is formed, so it will not build up and corrode alloys
- Byproducts of purification, which are less harmful, will be removed via filtration and ullage gas sweep

In-line electrochemical purification cell

Sensors and Controls

To facilitate proper maintenance, sensors and controls are being developed for use during plant operation.

Salt Sensors

- Sensors use cyclic voltammetry to quantify impurities
- It detects corrosive MgOH⁺ and byproducts from corrosion

Klammer et al, *Analytical Chemistry*, 2020, 92, 3598-3604 Guo et al, *Journal of Electroanalytical Chemistry*, 2021, 115064

Titration

- Sensors are calibrated using accurate titration developed/optimized by NREL
- Easy procedure, no sophisticated instruments required

Gas Analysis

 Byproducts of purification such as H₂ can be monitored with gas sensors

System Resilience

Electrochemical purification cell will *substantially improve viability* of molten chloride saltbased systems.

- Decrease levelized cost of electricity
- Decrease operation and maintenance costs
- Enable use of less expensive containment alloys

<u>Top</u>: discolored chloride salt containing impurities <u>Bottom</u>: pure white chloride salts