

U.S. DEPARTMENT OF ENERGY Office of ENERGY EFFICIENCY & RENEWABLE ENERGY SOLAR ENERGY TECHNOLOGIES OFFICE

Gen3 CSP Summit 2021

August 25-26, 2021 Virtual Event

Gen3 Gas Phase System

Development and **Demonstration**

DE-EE00008368

We gratefully acknowledge the support and funding of the United States Department of Energy Office (via DE-EE0008368) without which this work would not have happened.

Shaun Sullivan sullivan@braytonenergy.com +1.603.205.6009

FrBraytonEnergy

an innovative R&D firm dedicated to making meaningful contributions in the field of environmentally responsible, sustainable energy production

- 5 Acre 38,000 ft² campus
- 50-person technical staff performing:
 - Engineering Research + Development
 - Design and Analysis
 - Rapid prototyping and testing
 - · Fabrication, assembly, on-site advanced precision machining

Alternative Fuels

- Pilot Production
- ✓ Turbomachinery
- Compact Heat Exchangers
- ✓ Distributed Generation/CHP
- 🗸 Concentrating Solar Thermal 🗸

- Hybrid Vehicles
- Nuclear Systems 🗹 Combustion
- Energy Storage 🛛 🗸 UAVs

2

Proprietary and Confidential – Do not duplicate or distribute without permission from Brayton Energy,

Gen3 Gas Phase System

- Develop a 100 MW_e commercial system that can absorb, store, and dispatch concentrated solar energy to a working fluid at conditions commensurate with an sCO₂ power cycle (700 °C, 25 MPa)
- Design a Megawatt-scale test facility to demonstrate and de-risk the technology innovations embodied in the commercial design

- ✓ Phase 1 (October 2018-December 2019)
 - System specification, design, modeling, analysis
- ✓ Phase 2 (January 2020-March 2021)
 - Component-level testing
 - Test facility design

Energy Efficiency & Renewable Energy

FiraytonEnergy

Governing Program Philosophy

- De-risk, working backwards from Commercial Design
 - Engineer the 100 MW_e Commercial System
 - Large scale initially identified as "preferable" via TAC
 - 100 MW_e represented "hardest case" technologies
 - De-risk the Commercial System via Phase 3 Test Facility
 - Emulate full-scale commercial system in Phase 3 design to the extent possible
 - De-risk new technologies and integrated system operation
 - Employ actual commercial component/subsystem geometries where possible
 - De-risk new Phase 3 technologies via Phase 2 Testing
 - Capture representative scale and conditions in test articles wherever possible
 - De-risk Phase 2 testing via Phase 1/Early Phase 2
 - Design, model, and refine Phase 1, Phase 2, Phase 3, Commercial elements
 - Perform subscale and component testing
 - e.g. TES HX coupon creep and fatigue testing, particle property characterization, TES cold flow testing
- Perform full system optimization to determine lowest-LCOE configuration
 - Iterate/Update the commercial and Phase 3 designs with optimization results

Target the DoE-specified down-select criteria

PrBraytonEnergy

Design Overview

- Nominally: employ "gaseous" phase working fluid in the receiver
- Utilize supercritical carbon dioxide (sCO₂) from the power block as the working fluid
 - Appropriate for baseload operation, leverages high-efficiency power block
 - "cold" riser and down-comer
 - "cold" working fluid control valves
 - Minimize capital costs by leveraging existing sCO₂ power block
- Supplemental analysis for peaker-type system (using hot sCO₂ circulator)

Pr Brayton Energy

PARAMETER	UNITS	COMMERCIAL	PHASE 3	PHASE 2
FACILITY				
Location	2	Barstow, CA	Arizona, USA	Hampton, NH
SOLAR FIELD				
Layout	2	Surround Field	Surround Field	North Field
Heliostat Provider	-	TBD	Heliogen	Southwest Solar Tech
Mirror Size	m²	TBD	1.5	9
Field Size	m²	1,510,666	~ 7,500	216
Field Power	MWt	~675	~ 5	0.15
TOWER				
Tower Height (optical)	m	111	~45	9.8 (recevier) 6.1 (TES)
Media Conveyance	2	Skip Hoist	Skip Hoist	batch swap
Skip Hoist Provider	-	ABB/Siemag/spg	ABB/Siemag	(forklift)
RECEIVER				
Configuration	-	Modular Tube Panels	Modular Tube Panels	Modular Tube Panels
Receiver Provider	-	Licensed Brayton Design	Brayton Energy, LLC	Brayton Energy, LLC
Working Fluid	2	sCO ₂	sCO ₂	sCO ₂
Nominal Fluid Temp.	°C	730	730	730
Nominal Fluid Press.	Mpa	25	25	25
Power	MWt	3 x 135	3 x 0.8	1 x 0.065
Sizes	0			
North Receiver	mxm	17.4 x 25.4	4.434 x 0.617	1.3 x 0.1
East/West Receiver	m x m	17.4 x 25.4	2.625 x 1.375	n/a
Peak Material Temp.	°C	761.9	761.9	761.9
Operating Life	hr	100,000 (30 years)	100,000 (30 years)	100,000 (30 years)
THERMAL ENERGY STORAGE				
Storage Type	2	Sensible Heat	Sensible Heat	Sensible Heat
Storage Media	2	300 µm Silica Sand	300 µm Silica Sand	300 μm Silica Sand
Capacity	MWht	2106	10	0.056
· · · · · · · · · · · · · · · · · · ·	hr	11.4	10	3.5
Heat Exchangers	-	Counterflow, Flowing Bed	Counterflow, Flowing Bed	Counterflow, Flowing Bed
Heat Rate	MWt	185	1	0.016
Configuration	-	Int-Supported Brazed Cell	Int-Supported Brazed Cell	Int-Supported Brazed Cell
Heat Exchanger Provider	25	Licensed Brayton Design	Brayton Energy, LLC	Brayton Energy, LLC
Operating Life	hr	100,000 (30 years)	100,000 (30 years)	100,000 (30 years)
CYCLE				
"Cycle"	2	sCO ₂ Brayton	sCO ₂ Circulator Analogue	sCO ₂ Circulator Analogue
Engine/Circulator Provider	2	TBD	Sandia National Lab.	Brayton/Echogen
Work (or Analogue)	2	Turbine Work Extraction	Heat Rejection to Amb.	Heat Rejection to Amb.
Heat Rate	MWt	100-150	1.0	0.1
Equiv. Cycle Power	MWe	50-75	~ 0.5	n/a

5

Baseline Gen3 System (Baseload)

- 1. RCBC sCO₂ power block
- 2. Low temp. high press. sCO₂ piping
- 3. Low temperature flow valves
- 4. TES charging receivers
- 5. TES charging heat exchangers
- 6. TES low pressure particle shaft
- 7. TES hot particle storage silo
- 8. High temp. TES discharge heat exchanger
- 9. Low temp. TES discharge heat exchanger
- 10. TES cold particle storage silo
- 11. TES particle lift
 - Mass flow is dictated by power block
 - Heat input is constrained by peak allowable receiver material temp.
 - Control parameters shown in red

PrBraytonEnergy

Particle-Side Schematic

- Charge heat exchanger particle outlet temperatures are controlled to 715 °C via sand flow rate
 - This temperature ensures that TIT can achieve 700 °C at design conditions, with design approach temperature
- Split discharge heat exchanger enables media to reject heat to sCO₂ inlet temperature (553 °C)
 - Otherwise, rejection temperature is limited to charging heat exchanger sCO₂ outlet conditions of 600 °C
 - This higher temp. is a result of heat exchanger approach temps.

-14

7

Solar Test Facility: January 2021

FrBraytonEnergy

Gas Phase: Key Results and Conclusions

- Novel Solar Receiver and TES Heat Exchanger designs
 - 30-year operating life under sCO₂ conditions (750 °C, 25 MPa)
 - Designs tested on-site at Brayton by January 2021
- Detailed Integrated Commercial System Design
 - **BASELOAD** system (83 MW): LCOE = $5.02 \text{ } \text{e}/\text{kWh}_{e}$
 - **PEAKER** system (65 MW_e): LCOE = 2.83 ϕ /kWh_e
 - PPA price (year 1) = $3.40 \text{ } \text{c/kWh}_{e}$
- Phase 3 Test Facility Design submitted
 - Emulates the form, fit, and function of the Commercial System
 - Incorporates commercial-scale components to showcase manufacturability and performance

LCOE (c/kWh

SOLAR ENERGY

TECHNOLOGIES OFFICI

Gen3CSP

Bringing together the people and the pieces for an

Thank You

We gratefully acknowledge the support and funding of the United States Department of Energy Office (via DE-EE0008368) without which this work would not have happened.

Shaun Sullivan BraytonEnergy sullivan@braytonenergy.com +1.603.205.6009