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BACKGROUND

Supercritical CO, power cycle operating >700°C can improve the overall CSP
plant efficiency and help meet the SETO LCOE target of $0.05/kWh, with
12-h storage for Gen 3

Higher power cycle temperatures (>700°C) requires system components
(e.g., primary HXs for transferring heat from receivers to power block) that
can perform reliably

Ceramics can operate at those conditions without creep (at high
temperatures) and corrosion/oxidation challenges

Low-cost manufacturing approaches are needed for ceramics
s-CO,

T~540°C

P~ 20 MPa

T>650°C
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OBJECTIVES

* Development of ceramic HXs for CSP applications
* Corrosion and oxidation resistance of ceramics

* Optimization of HX design
*  Maximum heat transfer performance
° Stress requirements

Development of additive manufacturing (AM) approaches
* Fabrication of HX parts

* Physical and thermo-mechanical property characterizations
*  Measure properties of AM fabricated material and compare with desired
properties

* Demonstrate ceramic HX performance
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TECHNICAL APPROACH

Silicon carbide (SiC) as the material for HXs
= excellent corrosion and oxidation resistance
“ amenability to AM processes such as binder jetting

Design optimization
® heat transfer by using COMSOL Multiphysics
= stress analysis by using Multiphysics Object Oriented Simulation Environment (MOOSE)

Material development and AM
“  powder optimization

“ binder jetting printing

= densification

“  characterizations

Joining and integration approaches

Fabrication and testing of lab-scale prototypes
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COUNTER FLOW HX DESIGN

* Coupled heat transfer and stress analysis
“ Iterations of heat transfer performance and stress requirements
* Flow channel shape

= Semi-elliptical flow channel cross section 5CO, et

(540°C) Molten salt
outlet (570°C)

"  Minimum stress concentration

* Flow channel dimensions
Temperature (°C)
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“ Manufacturability
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PARAMETERIC STUDIES

* Key parameters

Flow channel height (h)
SiC thermal conductivity (k)

Module heat transfer rate

Module sizeof T mx 1 mx 1m
Heat transfer rate of 0.7 MW

Total module heat transfer rate (kW)
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BINDER JETTING PRINTING

Binder jetting printing process

Build box




POWDER OPTIMIZATION

Commercial a-SiC powders
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POWDER OPTIMIZATIONS

Commercial SiC powders

e Experiment: Tap density
- - -Modeling: Spherical

——Modeling: Irregular

Linear Powder Packing Model for Multi Component System
» packing density of each particle size

 volumetric fractions

* particle interaction functions
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Fraction of coarse (%) Powder packing model developed to

include angular particles
(Ceramics International., doi.org/10.1016/j.ceramint.2020.04.098, (2020))
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PROCESSING AND CHARACTERIZATIONS

Binder jet

De- Porous SiC

Binder curing powdering preform

printing

[ Porous SiC (binder jet printing) ]

\ 4
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Preceramic polymer Liquid silicon
infiltration + pyrolysis infiltration (LSI)

N

Physical and thermal characterizations
(density, phases, microstructures,
strength (RT & HT), toughness, thermal

conductivity, thermal shock Melt Infiltration System
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PRINTING AND DENSIFICATION OF SiC PLATES &
HX CHANNELS
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MICROSTRUCTURE, PHASE STRCUTURE, THERMAL
CONDUCTIVITY
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FABRICATION OF PROTOTYPES

Green part

After debinding

Post densification

Dimensional variations being monitored
at each step W110 x L55.5 x H38.5 mm? |Argonne &
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PROTOTYPE TESTING

Water-pressure leak testing

No leaks detected over
several hours of testing
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PROTOTYPE TESTING
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« Heat transfer rate as a function of flow rates

« The volumetric heat transfer rates of Integration of
the lab-scale tests are in the similar range of prototype to test loop
the full-scale ceramic HX
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SUMMARY AND FUTURE PLANS

Summary

* A modular SiC based primary HX for CSP plant for application at >700°C has been
designed

* AM technique has been used to fabricate simple shapes and parts with HX channels
° Material densification and characterization have been conducted

“  Thermo-mechanical property characterizations meet the target properties
* Lab-scale HX prototypes have been fabricated and tested

Future Plans

* Design optimization for a particle/s-CO2 system
* Process scale-up for the ceramic HX

* Develop integration approaches for the HX

* Demonstrate performance at temperatures in the range of 500°C-700°C; long-term
reliability
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