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BACKGROUND
• Supercritical CO2 power cycle operating >700°C can improve the overall CSP 

plant efficiency and help meet the SETO LCOE target of $0.05/kWhe with 
12-h storage for Gen 3

• Higher power cycle temperatures (>700°C) requires system components 
(e.g., primary HXs for transferring heat from receivers to power block)  that 
can perform reliably

• Ceramics can operate at those conditions without creep (at high 
temperatures) and corrosion/oxidation challenges

• Low-cost manufacturing approaches are needed for ceramics
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OBJECTIVES
• Development of ceramic HXs for CSP applications
• Corrosion and oxidation resistance of ceramics

• Optimization of HX design
• Maximum heat transfer performance
• Stress requirements

• Development of additive manufacturing (AM) approaches
• Fabrication of HX parts

• Physical and thermo-mechanical property characterizations
• Measure properties of AM fabricated material and compare with desired 

properties

• Demonstrate ceramic HX performance



TECHNICAL APPROACH
• Silicon carbide (SiC) as the material for HXs

§ excellent corrosion and oxidation resistance
§ amenability to AM processes such as binder jetting

• Design optimization
§ heat transfer by using COMSOL Multiphysics
§ stress analysis by using Multiphysics Object Oriented Simulation Environment (MOOSE)

• Material development and AM 
§ powder optimization
§ binder jetting printing
§ densification
§ characterizations

• Joining and integration approaches

• Fabrication and testing of lab-scale prototypes



COUNTER FLOW HX DESIGN

• Coupled heat transfer and stress analysis
§ Iterations of heat transfer performance and stress requirements

• Flow channel shape
§ Semi-elliptical flow channel cross section
§ Minimum stress concentration

• Flow channel dimensions
§ Maximum heat transfer
§ Manufacturability

65-MPa maximum principal stress

sCO2 inlet 
(540°C)

sCO2 outlet 
(700°C)

Molten salt
inlet (750°C)

Molten salt
outlet (570°C)

Temperature (°C)



PARAMETERIC STUDIES

• Key parameters
§ Flow channel height (h)
§ SiC thermal conductivity (k)

• Module heat transfer rate
§ Module size of 1 m × 1 m × 1m
§ Heat transfer rate of 0.7 MW
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BINDER JETTING PRINTING

Binder jetting printing process

Build box Powder dispenser Binder jet head



POWDER OPTIMIZATION
Commercial a-SiC powders 
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Figure 3.4. Particle size distribution of the (a) 50 
µm powder, (b) 10 µm powder, and (c) 1 µm 

powder. 

 

Particle size distributions 
measured using
Dynamic Laser Scattering

50 µm 10 µm 1 µm



POWDER OPTIMIZATIONS 

50 µm unimodal 10 µm unimodal 50 and10 µm bimodal

Commercial SiC powders 

Linear Powder Packing Model for Multi Component System
• packing density of each particle size
• volumetric fractions
• particle interaction functions  

Powder packing model developed to 
include angular particles
(Ceramics International., doi.org/10.1016/j.ceramint.2020.04.098, (2020))

50 µm and 10 µm SiC powders



PROCESSING AND CHARACTERIZATIONS

Melt Infiltration System

Porous SiC (binder jet printing)

Preceramic polymer 
infiltration + pyrolysis

Liquid silicon 
infiltration (LSI)

Physical and thermal characterizations
(density, phases, microstructures, 

strength (RT & HT), toughness, thermal 
conductivity, thermal shock

Binder jet 
printing

De-
powderingBinder curing Porous SiC

preform



PRINTING AND DENSIFICATION OF SiC PLATES & 
HX CHANNELS

Printed green plate
120 mm × 50 mm × 10 mm 

Polymer derived ceramic densified plate

Printed green part with 
channels and post 
densification

Excellent dimensional 
control and repeatability

Bi-modal powders result in 
higher green part density



MICROSTRUCTURE, PHASE STRCUTURE, THERMAL 
CONDUCTIVITY

SiC post densification crystalline SiC formed
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Mechanical properties meet the target strength requirements   
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FABRICATION OF PROTOTYPES 

Green part

After debinding

Dimensional variations being monitored 
at each step W110 x L55.5 x H38.5 mm3

Post densification

(a) (b)



PROTOTYPE TESTING

Water-pressure leak testing

No leaks detected over 
several hours of testing



PROTOTYPE TESTING
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Test Loop for Ceramic HX testing

Insulated test prototype

Integration of
prototype to test loop
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• Heat transfer rate as a function of flow rates
• The volumetric heat transfer rates of 

the lab-scale tests are in the similar range of 
the full-scale ceramic HX



SUMMARY AND FUTURE PLANS
Summary
• A modular SiC based primary HX for CSP plant for application at >700°C has been

designed
• AM technique has been used to fabricate simple shapes and parts with HX channels
• Material densification and characterization have been conducted

§ Thermo-mechanical property characterizations meet the target properties
• Lab-scale HX prototypes have been fabricated and tested

Future Plans
• Design optimization for a particle/s-CO2 system
• Process scale-up for the ceramic HX
• Develop integration approaches for the HX
• Demonstrate performance at temperatures in the range of 500°C-700°C; long-term
reliability
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