Seam Welded Tube & Pipe

Track A: High-Temperature Nickel-Based Alloys

John Shingledecker, Ph.D.
Sr. Technical Executive

Gen 3 CSP Summit 2021
August 25, 2021 (Virtual)

Projects:
DE-EE0008367, DE-EE0009378
What effects cost?

Materials Selection
- Higher tensile and creep strength = higher allowable stresses
- Higher allowable stresses decrease wall thickness = reduced cost/lb & improved cyclic capability
- *Note: alloy composition has a significant effect on cost (but for this study, the nickel-based alloys all have similar cost)*

Product Form Selection
- Based on desired sizes
- Differences in product form costs are driven by:
 - Processing time
 - Energy intensity
 - Overall process yield
Putting it together: Techno-Economics

Techno-economic study
- Baseline N06230
- 10 typical/anticipated Gen 2/3 product forms
- 740H reduces cost by >20%
- 740H welded products can reduce costs by >40%
 - For very small diameters and thin tubes, welded production is the only cost-effective route

Tubing scenarios
1. Gen 2 CSP Baseline: 1200F, 2” OD
2. Gen 3 Molten Salt Baseline: Conceptual design in ANL 20/03 – 1391F, 1.575 OD
3. Gen 3 Molten Salt Alternative: Scenario 1 scaled to Gen 3: 1350F, 2” OD
4. Gen 3 Gas Pathway Receiver: Current design of 1346F, 0.375” OD
5. Gen 3 Generic 1” tube: Intermediate between Scenario 3 and 4: 1400F, 1” OD
6. Generic Heavy-wall tubing for sCO2: 1305F at high pressure and 3” OD

Piping Scenarios
1. Gen 3 Gas Pathway Piping: 1346F, 28.2” OD
2. Gen 3 Gas Pathway Multi-Pipe Estimate: Modified Scenario 1: 1346F, 9” OD
3. Gen 3 Headers: 1300F, 12” OD (lower stress application)
4. sCO2 Piping: higher stress for Scenario 3: 1300F, 14” OD
Project Activities: Inconel® Alloy 740H®

Manufacturing Development

- Supply chain engagement

- Plate
- Welded Tube
- Re-drawn tube
- Coil
- Seam-welded pipe

High-Temperature Testing & Analysis

- Relevant testing product forms (welded structures)
- New testing capabilities (multiaxial)

- Low Cycle Fatigue of Tubes
- Cross-weld creep
- Pressurized creep testing
- Post-test characterization
Successful Welded Tube Production: Inconel® Alloy 740H®

- Two successful trials:
 - Passed flattening tests
 - Passed NDE (eddy current)
- Yield and Tensile Strength
 - After aging, all tubes met ASME minimum criteria
- Tensile Ductility (Elongation)
 - All materials exceed ASME Min Requirement
- Pressurized room temperature burst test → failures outside of weld
- Demonstrated re-drawn tube (2” tube re-drawn to 1” – met tensile requirements)

Successful Fabrication Activities with Welded Tubes

- **Autogenous welding (EPRI/SMC) – 1 to 2” Diameter welded and redrawn tubing**
- **Tube Bending (courtesy of Tebunus Tube Bending/John Cockerill) – 2” Diameter Welded Tubing**
- **Solar Receiver Test Article (Courtesy of Brayton Energy) – 3/8” Diameter Welded+Redrawn 740H**
High-Temperature Performance of Welded Tubes

- Pressurized creep test program to evaluate long-term performance of welded tubes and develop stress allowables
 - Longest test durations >4,000 hrs
 - 740H shows a strength debit with failures at weld seam
 - 740H Re-drawn tube performance approaching base metal strength
 - N06230 welded tube also shows a strength reduction
 - Note: greater than is currently approved with ASME’s standard tube efficiency factor

- Currently engaging ASME with plans to incorporate this information into the code with new stress allowables in 2022
Welded Pipe: World’s First 740H Seam-Welded Pipe

- Start with 48 in x 240 in x 0.75 in annealed plate
- Form 14 in OD Pipe
- GTA weld (740H filler, 8 passes)
- Solution anneal (1107°C)
- Radiography showed acceptable level of porosity, no cracks or LOF
- UST per ASTM E 213 showed no rejectable indications

Pipe segment received by EPRI

20 ft long welded pipe (Swepco)
High-Temperature Performance of Seam-Welded Pipe

- Standard and large sample testing has now exceeded 10,000 hours
- Short-term tests also conducted on base metal and cross-welds from the induction pipe bend
- WSRFs >0.90 for all test and appear to be trending towards unity at long-times (open symbols are samples in-test)
Ongoing research to enable reliability in Gen 3 CSP

- Example: GTI/Optimus STEP Program sCO₂ (700C+) fired heater
 - ~3% of tube-to-tube butt welds exhibited cracking after PWHT
 - Failure analysis confirmed Stress Relaxation Cracking (SRxC) mechanism
 - Methods for field NDE developed
 - No cracking in tube-to-header, end plates, drains, etc.
- New DOE Study SRxC (EPRI, Lehigh, Special Metals)
 - Assess root cause from examples of 740H cracking
 - Gleeble studies to evaluate fabrication variables
 - Transfer learnings into a specification document

First large-scale application of 740H welding (>1,600 welds) including a range of weld geometries and thicknesses
Together...Shaping the Future of Energy™