

Experience of building thin wall structures and heat exchanger units using L-PBF

Team Members:

Junwon Seo, Ziheng (Dino) Wu, Srujana Rao Yarasi, Nicholas Lamprinakos, Samikshya Subedi, <u>Anthony Rollett</u>

Also to colleagues at UC Davis: Prof. Vinod Narayanan and Dr. Erfan Rasouli

Team for 8536: Additively-Manufactured Molten salt-tosupercritical Carbon Dioxide Heat Exchanger

Funded by: SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

HEXCES ETAL POWDER UNIVERSITY OF CALIFORNIA **Cost Share Partners** Carnegie Mellon University HAYNE NATIONAL RENEWABLE ENERGY LABORATORY SCHOOL FOR ENVIRONMENT AND SUSTAINABILITY

HX Overall Design with 3D Printing

This presentation may have proprietary information and is protected from public release.

Laser Powder Bed Fusion (LPBF)

- 1. CAD model is sliced into layers
- Tool paths (laser scanning parameters) are chosen:
 Scanning strategy
 Support structure (for overhangs, etc.)
 Laser Power, Scan Speed, etc.
- **3**. Machine spreads powder layer thickness (20-60 μm)
- 4. Laser melts cross-section of part
- 5. Repeat 3-4 until part is complete
- 6. Cut off build plate, post process, etc.

Materials used: Haynes 230, Haynes 282

Materials

- Very few metallic alloys for high temperature service are supported by the LPBF manufacturers
- For Ni alloys, only IN625 and IN718 are available for 3D printing; our first experience in printing HXs was with IN718
- In general, alloys that have high creep strength are less weldable, which often translates to being unsuitable for printing
- The high operating temperatures, combined with corrosion issues, forced us to consider nonstandard materials with higher creep strength
- We built on the experience of the power generation industry
- Started with Haynes 230 because of the experience base with corrosion resistance: made it work with higher pre-heat, even though it had a reputation for cracking
- Moved to Haynes 282, which was easier for printing
- Also have experience with a Co-based alloy, MHA 3300
- Our hypothesis has been that low defect content should maximize creep strength, just as it does for fatigue strength
- Accordingly, we have used the *defect-based process window* approach for developing process parameters

Physics-based 3D Printing via Process Windows

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

"Defect Structure Process Maps for Laser Powder Bed Fusion Additive Manufacturing", J.V. Gordon, S.P. Narra, R.W. Cunningham, H. Liu, H. Chen, R.M. Suter, J.L. Beuth, A.D. Rollett, *Additive Manufacturing*, **36** 101552 (2020)

Unit cost for 2kW 3D printed heat sink overlaid on porosity data from Haynes 230 print testing.

Risk Update

Minimum creep rate in H230

- The minimum creep rate of AM Haynes 230 is lower than that of wrought Haynes 230 even at a higher temperature and a lower stress level.
- The creep exponents suggest dislocation climb is the rate limiting creep mechanism between 700 °C and 800 °C.
- Essentially no "steady state creep" observed.

Journal of Nuclear Materials (2013), Pataky *et al.*

Materials Science and Engineering (2011), Boehlert *et al.*

Residual stress, distortion: thin wall

- As the feature dimension approaches the melt pool size (< 1 mm), the dimensional accuracy is significantly influenced by melt pool size (process parameters), scan strategy (raster vs. single-bead), geometry (e.g., inclination angle), and materials
- As the build height increases, the open ends of the thin wall should be anchored on the thicker components to prevent severe distortion
- EOS M290 uses single-bead mode to build features smaller than 350 µm where the wall dimension is mainly dictated by the melt pool size
- Thin walls with maximum inclination angle of 60° and minimum thickness 100 μm can be built but it is recommended to build wall with thickness > 500 μm

This presentation may have proprietary information and is protected from public release.

a)

Residual stress, distortion: micro-pin

- Changing in P-V (power velocity) combination improved the surface finish but 4.2 aspect ratio was still not possible to fabricate.
- Aspect ratio of 1 when rectangular width is 200 µm was formed. However, when this dimensional feature was fabricated in a HX design, the pillars were indistinguishable from the walls
- Regardless of the design (rectangular or tear drop) given, circular fins are formed
- Cross-sectional diameter of 500 µm pillars were fabricated in a heat exchanger

Residual stress, distortion: micro-pin

Superelevation of unsupported thin walls caused collision with the hard recoater

 Tilted structures build with less distortion because of the self-supporting structures and smaller residual stress.

What have we learned?

- **Change pin dimension**: build thicker micro-pins (> 1 mm) to avoid issues from dimensional accuracy and thermal distortion
- **Change build direction**: build pins as overhangs so they are always supported on both ends during melting
- Use brush recoater blade to reduce the risk of collision

Dimensional accuracy of micro-pins

H230: overprinting with tear drop shape

- To build the micro-pins as overhangs caused variations of pin dimensions especially along the build direction
- The dimension variation is materials dependent; different pin cross-sections can be used to build circular pins in different materials

H282

Build direction

Summary

- Printing of counter-flow HX units with nonstandard nickel alloys is a robust manufacturing approach
- Graph of ∆P vs flow demonstrates reproducibility
- Integral headers are feasible but still in progress
- Creep properties of printed H230 are equivalent to standard version; in progress for other alloys
- Printing to 99.9 % dense is feasible with process window approach
- De-powdering can be done
- Many aspects of design adapted for 3D printing, i.e., co-design is crucial

SOLAR ENERGY TECHNOLOGIES OFFICE

Two different HX units (same design) printed at different times deliver identical ∆P versus flow rate

Questions Welcome