

Greg Jackson

Mechanical Engineering, Colorado School of Mines

SETO Gen3 CSP Summit – Particle HX Session August 26, 2021

knowledgements of Collaborators and Funding

Energy • Environment

Colorado School of Mines

ny at Mines currently contribute to particle-O₂ HX development:

urrent Contributors – Research Assoc. Jesse Fosheim, rof. Ivar Reimanis, Students: Winfred Arthur-Arhin, Azariah hompson, Yahya Bokhary, Julia Billman

rrent Collaborators on particle-sCO₂ HX velopment

andia National Laboratories – Kevin Albrecht, Chrisowen, Andrea Ambrosini

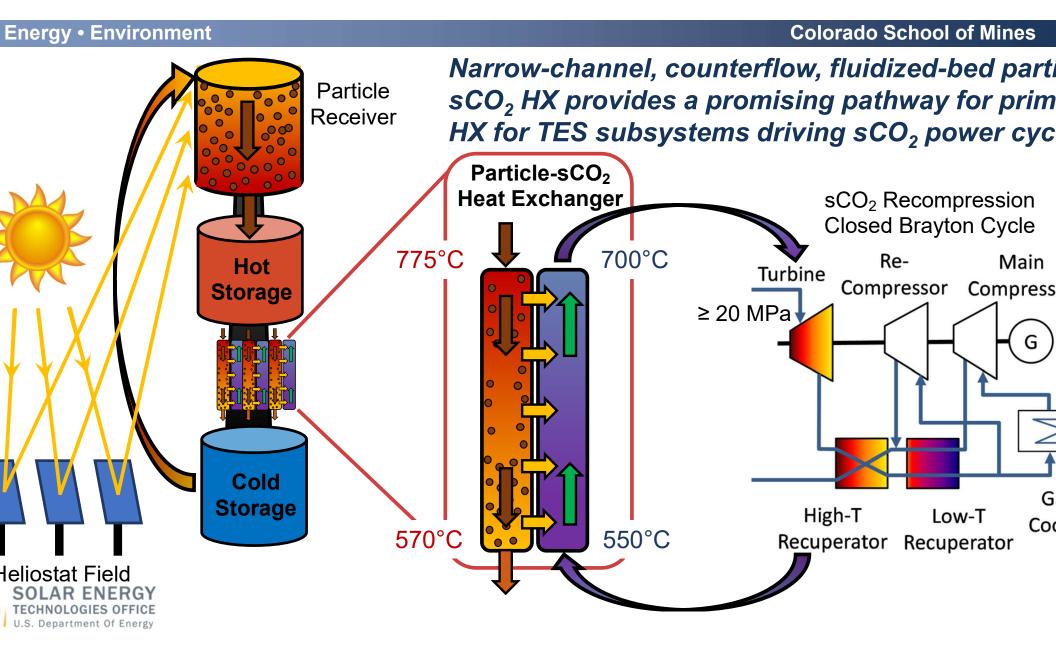
ARBO Ceramics – Brett Wilson

evious collaborations

REL- Zhiwen Ma, Janna Martinek, Judy Netter

rayton Energy - Bill Caruso, Megan Kirschmeier

team acknowledges the support of **DOE SETO** under the


P:ELEMENTS (DE-EE0006537) & SETO FY2018 (DE-0008538) programs.

ticle-Based TES for CSP-sCO₂ Brayton Power Cycle

row-channel, fluidized bed particle-sCO2 HX design

Energy • Environment

Colorado School of Mines

HX

core

Particle-ga

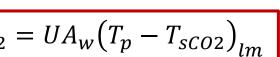
separation

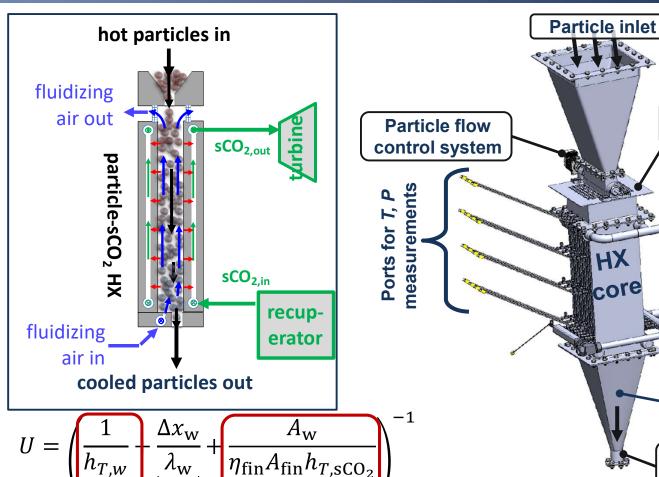
sCO₂

 sCO_2

.nlet

Outlet pa hopp


Particle outl


to load cel

outlet

w-channel fluidized with mild fluidization eve high particle-wall associated with flux ng thermal resistance ive to micro-channel flows).

ization $\frac{\dot{m}_g}{\dot{m}_p} < 2\%$ eves optimal $h_{T,w}$.

Narrow-Channel Fluidized Beds:

 $h_{T,W} \ge 1000 \text{ W m}^{-2} \text{K}^{-1}$

 $\approx 2000 \text{ W m}^{-2} \text{K}^{-1}$

SOLAR ENERGY U.S. Department Of Energy

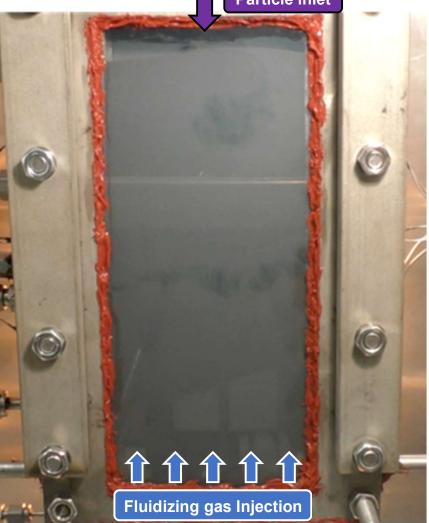
Igle-channel Test Facility for Particle-Wall $h_{\mathsf{T},\mathsf{w}}$ in Narrow-Channel Fluidized Beds

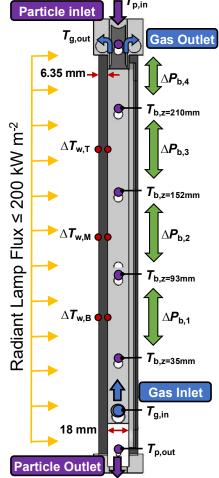
Particle inlet

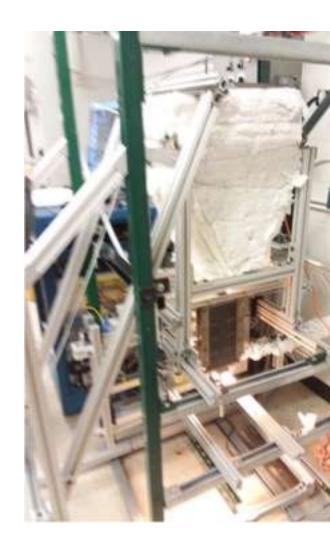
Particle inlet

Particle inlet

Particle inlet


Particle inlet

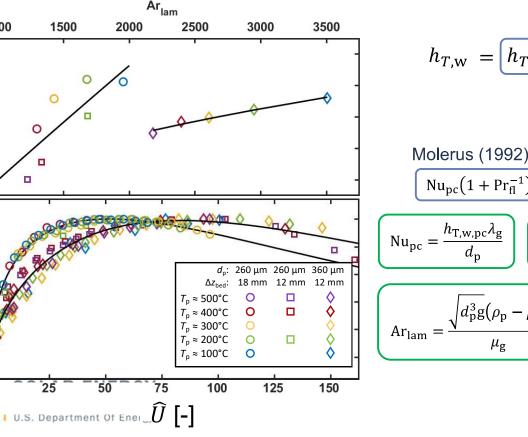

T_{g,out}

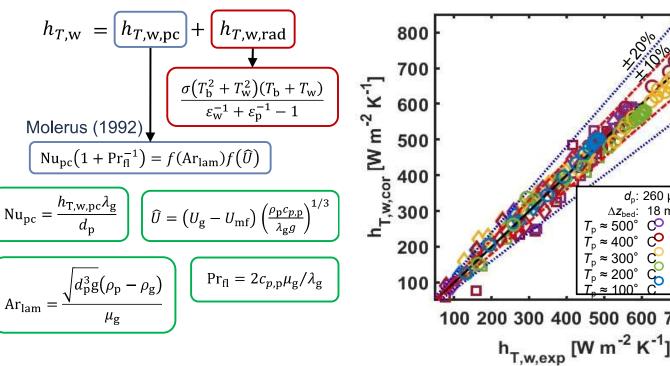

Gas Outle

6.35 mm

AP_{b,4}

Colorado School of Mines

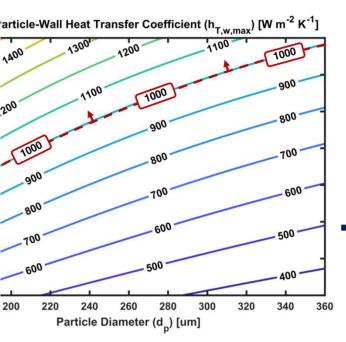

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

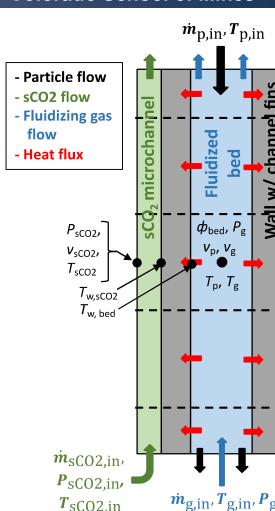

gle-channel h_{T.w} Measurements and Correlations

Energy • Environment

Colorado School of Mines

date, $h_{\mathsf{T,w}}$ measurements at 6 locations in 0.25 m high bed for two channel depths (12 and), mean particle diameters (260 and 360 µm CARBO HSP), and bed temperatures up to 5 relations based on Molerus (1992) approach with dependencies on Ar and \hat{U} for convective combined with radiative contribution to provide reliable predictions of local $h_{\mathsf{T,w}}$ in the bed.

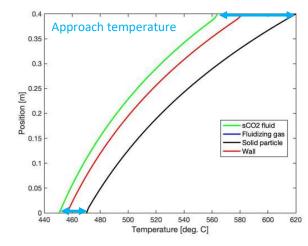


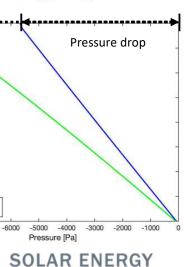

nverting Experimental Results into Heat Exchanger Sizes and Responses

Energy • Environment

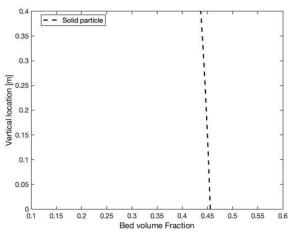
Colorado School of Mines

- h_{T,w} correlations are integrated into vertically discretized 1-D model (MATLAB) of narrow-channel, counterflow fluidized-bed particle-sCO₂ HX to design demonstration HX geometry and assess performance at test conditions.
 - The 1-D model employs a twophase mass, momentum, and energy, fluidized bed sub-model coupled to a mass, momentum, and energy, plug-flow, microchannel sCO2 sub-model.


del-based 40-kW_{th} Particle-sCO₂ HX Design

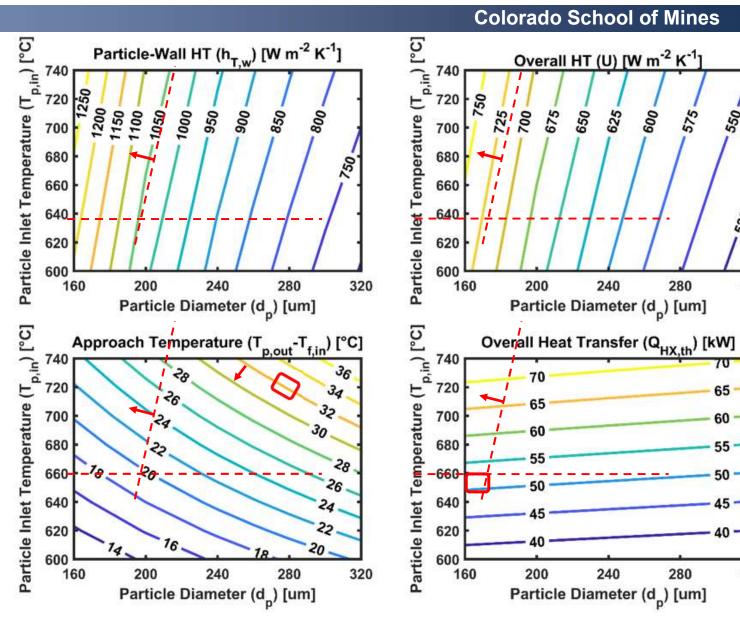

Energy • Environment

Counterflow Fluidized Bed Model Profiles


Colorado School of Mines

Direction of flow Direction of flow 1.5 2 2.5 Velocity [m/s or cm/s]

TECHNOLOGIES OFFICE U.S. Department Of Energy


Parameter	Baseline
$\dot{m}_{ m p,in,bed}$, particle flow rate per bed	18.7 g
$T_{p,in}$, particle inlet temperature	620°0
d _p . particle diameter	260 µ
$\dot{m}_{\rm g,in,bed}$, fluidizing air flow rate per bed	0.281 g
$T_{g,in}$, fluidizing air inlet temperature	450°0
$\dot{m}_{\rm sCO2,in,bed}$, sCO ₂ flow rate per bed	22.4 g
$T_{sCO2,in}$, sCO_2 inlet temperature	450°0
$\Delta y_{bed,tot}$, bed height	0.4 n
Δx_{bed} , bed width	0.2 n
$\Delta z_{ m bed}$, bed depth	0.015
# of beds	13
n _{channel,bed} , sCO ₂ microchannels per bed	130
d _{h,channel} , sCO ₂ channel hydraulic diameter	0.75 m

formance of Particle-sCO₂ HX Design Space to valuate Costs per kW

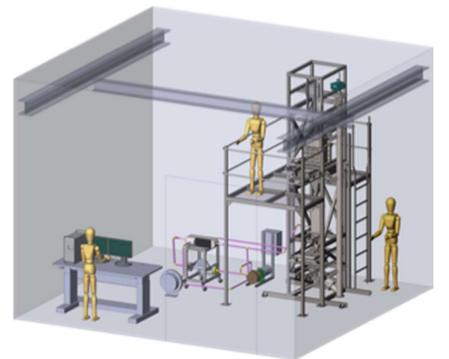
Lnordy	Environm	ANT

Parameter	Value
\dot{m} p,in,bed	18.7 g s ⁻¹
\dot{m} g,in,bed	0.281 g s ⁻¹
$T_{g,in}$	450°C
nsCO2,in,bed	22.4 g s ⁻¹
$T_{sCO2,in}$	450°C
$\Delta z_{ m bed}$,	0.015 m
# of beds	13
n _{channel,bed}	130
$D_{h,channel}$	0.75 mm

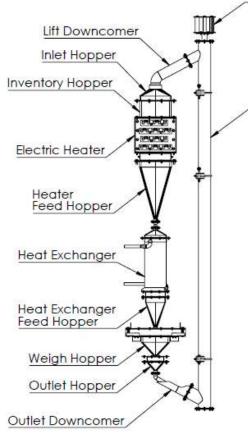
kW_{th} Particle-sCO₂ HX for Test at Sandia Natl. Labs

Energy • Environment

Colorado School of Mines

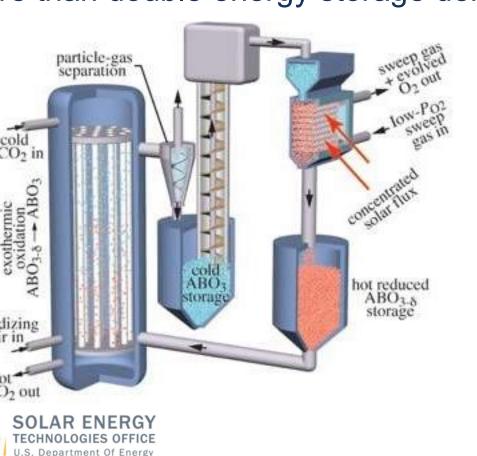

oration with Sandia (Kevin Albrecht and Chris Bowen) has supported the design and tion of multi-channel SS diffusion bonded 12-parallel bed HX with microchannel-sCO₂ flow

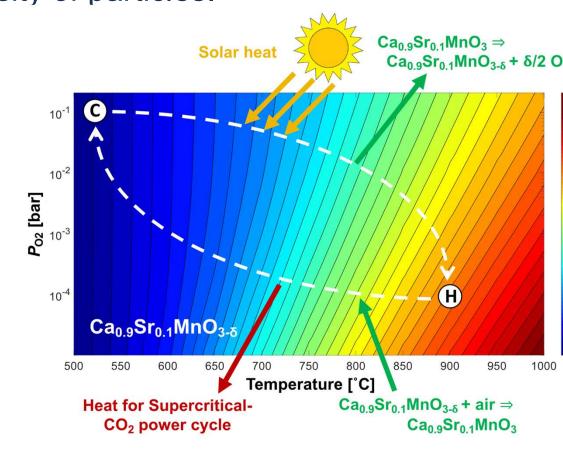
at Sandia this fall will explore particle heat transfer at $T_{\rm p,in}$ up to 600°C at 40-kW_{th} scale.



icated SS particle-sCO₂ HX

Schematic of Sandia particlesCO₂ HX test facility




Interflow Fluidized Beds Can Support hermochemical Energy Storage (TCES) for CSP

Energy • Environment

Colorado School of Mines

mpleted Mines-led CSP-ELEMENTS program with NREL collaboration lored fluidized bed design for redox active perovskites (doped CaMnO_{3- δ}) to the than double energy storage density of particles.

ncluding Remarks and Path Forward

Energy • Environment Colorado School of Mines

_w correlation developed from single channel rig for narrow-channel fluidized ds to include new data obtained at 100–500°C with 260 and 360 μm particl 12 & 18 mm deep beds for a range of gas-to-particle mass flow ratios.

D discretized models using $h_{\mathsf{T,w}}$ correlation enabled assessment of geometr rameters and operating conditions to design a 40-kW_{th} prototype HX fabrications. VPE for testing at Sandia National Labs this fall.

experience $h_{\text{T,w}} \approx 700 \text{ W m}^{-2} \text{ K}^{-1}$, overall $U \approx 500 \text{ W m}^{-2} \text{ K}^{-1}$, $\epsilon_{\text{HX}} \approx 0.80$, $q_{\text{w,avg}}^{\text{w}} \approx 24 \text{ kW m}^{-2}$ bredicted with CARBOBEAD HSP40/70 at planned test conditions.

eat transfer models can be utilized for scale-up and for exploring more comp stem designs for other applications such as thermochemical energy storage

