

Overview of the Gen3 Particle Pilot Plant (G3P3)

PRESENTED BY

Clifford K. Ho

Sandia National Laboratories, Albuquerque, NM, ckho@sandia.gov

Contributors:

SNL: Brantley Mills, Kevin J. Albrecht, Jeremy Sment, Nathan Schroeder, Henk Laubscher, Lindsey Yue, Org. 08923

Others: Georgia Tech, King Saud U., SEC, DLR, ANU, CSIRO, U. Adelaide, CNRS-PROMES, CARBO Ceramics, SolarDynamics, EPRI

SAND2021-10301 PE

Gen 3 CSP Program (FY19 – FY24)

Achieve higher temperatures, higher power-cycle efficiencies, and lower LCOE

Brayton Energy

Gas Phase Pathway

NREL

Liquid Phase Pathway

Sandia

Solid Phase Pathway

1

Introduction to the Team

Role	Team Members	
PI / Management	Sandia National Labs (PI, PMP, financial, facilities)	
R&D / Engineering	 Sandia National Laboratories Georgia Institute of Technology King Saud University German Aerospace Center CSIRO U. Adelaide Australian National University CNRS-PROMES 	
Integrators / EPC	 EPRI Bridgers & Paxton / Bohannan Huston 	
CSP Developers	• SolarDynamics	
Component Developers / Industry	 Carbo Ceramics Solex Thermal Science Vacuum Process Engineering FLSmidth Materials Handling Equipment Allied Mineral Products Matrix PDM 	
Utility	Saudi Electric Company	

Background and Value Proposition

High-Temperature Particle-Based CSP

Background and Value Proposition

Falling particle receiver

National Solar Thermal Test Facility Sandia National Laboratories

Background and Value Proposition

High-Temperature Particle-Based CSP

- Higher temperatures (>1000 °C) than molten nitrate salts
- Direct heating of particles vs. indirect heating of tubes
- No freezing or decomposition
 - Avoids costly heat tracing
- Direct storage of hot particles

G3P3-USA and G3P3-KSA

1

Gen3 Particle Pilot Plant (G3P3-USA)

Gen 3 Particle Pilot Plant

- ~1 2 MW_t receiver
- 6 MWh_t storage
- 1 MW_t particle-to-sCO₂ heat exchanger
- ~300 400 micron ceramic particles (CARBO HSP 40/70)

K. Albrecht, SNL

Gen3 Particle Pilot Plant (G3P3-USA)

High-Temperature Particle Storage Bin (Allied Mineral Products, Matrix PDM, Sandia)

Gen 3 Particle Pilot Plant

- ~1 2 MW_t receiver
- 6 MWh_t storage
- 1 MW_t particle-to-sCO₂ heat exchanger
- ~300 400 micron ceramic particles (CARBO HSP 40/70)

K. Albrecht, SNL

Gen3 Particle Pilot Plant (G3P3-USA)

High-Temperature Particle-to-sCO₂ Heat Exchanger (VPE, Solex, Sandia)

https://www.solexthermal.com/our-technology/cooling/

Gen 3 Particle Pilot Plant

- ~1 2 MW_t receiver
- 6 MWh_t storage
- 1 MW_t particle-to-sCO₂ heat exchanger
- ~300 400 micron ceramic particles (CARBO HSP 40/70)

K. Albrecht, SNL

Summary

Summary

- G3P3-USA and G3P3-KSA being developed
- Key components evaluated in G3P3 Phases 1 & 2
 - Receiver
 - Particle-to-sCO2 heat exchanger
 - Storage
- Key risks of G3P3
 - Particle and heat loss from open-aperture receiver
 - Heat loss from storage and bucket elevator
 - Low particle-side heat-transfer coefficients in heat exchanger
 - High cost of diffusion-bonded heat exchanger
- Contingencies
 - Fluidized-bed heat exchanger (Babcock & Wilcox, SandTES TU Wien)
 - Skip hoist for particle lift
 - Tower-integrated particle storage bins

Acknowledgments

- This work is funded in part or whole by the U.S. Department of Energy Solar Energy Technologies Office under Award Number 34211
 - DOE Project Managers: Matthew Bauer, Shane Powers, Vijay Rajgopal, Levi Irwin, Andru Prescod, Mark Lausten, Avi Shultz

G3P3-USA National Solar Thermal Test Facility (NSTTF), Albuquerque, NM

G3P3-USA National Solar Thermal Test Facility (NSTTF), Albuquerque, NM

Backup Slides

High-T, High-P Particle-to-sCO2 Heat Exchanger

100 kW particle-to-sCO2 heat exchanger

~100 kW sCO2 flow loop

On-sun testing of integrated system with falling particle receiver

Integration of heat exchanger and sCO2 flow loop in tower