

Non-contact Thermophysical Characterization of Solids and Fluids for Gen3 Concentrating Solar Power

Generation 3 Concentrating Solar Power Systems DE-EE0008379 Topic Area 2B - Gen3 Research and Analysis

> PI: Renkun Chen University of California, San Diego Email: <u>rkchen@ucsd.edu</u>

Co-PI: Prof. Perry Li (Univ. Arizona)

SETO CSP Program Summit August 25-26, 2021

Problem Statement

- Challenging and time-consuming to measure thermophysical properties of high-temperature heat transfer fluids (HTFs), e.g., particles and molten salts.
- Lack of in-situ diagnostic tools to monitor thermophysical properties of HTFs.

Objectives

- Develop and apply Modulation Photothermal Radiometry (MPR) as an *accurate and non-contact* method to characterize high-temperature thermophysical properties of HTFs.
- Characterize and understand the heat transfer mechanism of HTFs at the flowing state.
- In-situ diagnostics of HTFs plants and of their corrosion behaviors.

Impacts to Gen3 CSP

- Provide a convenient tool to measure thermophysical properties of emerging solids (e.g., particles) and fluids (e.g., molten salts) under both *stationary* and *moving* states for Gen3 CSP systems at high temperature
- Transfer the MPR technique a diagnostic tool for other laboratories and *in-situ* tests in other Gen3 projects.

Working Principles of MPR

- Thermal effusivity of medium e_m is obtained at low frequency; Thermal conductivity of shell and coating is obtained from the medium and high frequency ranges, respectively.
- Thermal conductivity of medium is obtained with literature or measured values of density ρ and specific heat c_p

MRP Setup

Measurement on Substrates and Coatings

Zeng *et al.* "Measurement of High-temperature Thermophysical Properties of Bulk and Coatings Using Modulated Photothermal Radiometry." *Intl. J Heat Mass Transf.* 170 (2021): 120989. 5

MPR Measurements on Stationary Particles

Configuration for *stationary* particle measurement

Typical thermal response of a three-layer system (coating-steel-particle)

MPR Measurements on Stationary Particles

Effective thermal conductivity (k_{eff}) of CARBO **HSP 40/70** (dia. ~ 430 µm) and **ID50** (~ 275 µm) agree well with that measured by the transient hot-wire (THW) method ^[1]

MPR Measurements on Moving Particles

MPR setup for high-temperature Moving Particle Measurement

- Multiple High-temperature heaters are used to achieve the target temperature (~ 700°C).
- High-capacity reservoir (> 30 Gallon) is used for high flowing velocity tests (~ 30 mm s⁻¹ for 4 mm channel and 60 mm s⁻¹ for 2 mm channel).

k_{eff} of Moving Carbo Particles

Thermal response of HSP 40/70 in the moving particle at

- (a) 0 mm s⁻¹ and (b) (b) 10 mm s⁻¹; k_{eff} of moving particles for (c) HSP4070 and (d) ID50 (channel depth: 4 mm)
- k_{eff} at 0 mm s⁻¹ is close to that measured by THW and stationary MPR setup
- k_{eff} at 10 mm s⁻¹ is **15-20% lower**

Comparison between ID 50 (\sim 275 µm) and HSP 40/70 (\sim 430 µm)

- Thermal conductivity decreases more for the HSP 40/70, possibly due to the large particle size.
- The effect of channel size is not significant in the tested velocity range for HSP 40/70.

Near-wall and Bulk Resistance of Moving Particles

Fitting of Moving ID-50 with different airgap thickness at (a) 0 mm s⁻¹ and (b) 20 mm s⁻¹ flowing velocity

- The finite-element model (COMSOL model, solid lines) captures the trend of the thermal response well
- To fit the experimental results, both the velocity and the airgap thickness effects should be included. Fitting results show $D_{air} = 20-40 \ \mu m$ for ID50 ($D_p \sim 275 \ \mu m$) at 20 mm s⁻¹.
- More measurements and analysis are being conducted to quantify both the near-wall air-gap resistance and bulk thermal conductivity of particles under various operation conditions.

MPR Measurement of Stagnant Fluids

d

Pyromark-coated SS316- KNO, T = 350°C

Tube

0.2

0.3 0.4

 $\omega^{-1/2} (rad s^{-1})^{-1/2}$

Molten

Salt

0.5 0.6

--- Raw data

6

(χ) |⁴₈|

1

٥ 0.0 0.1

Coating 2

$$\theta_s = q_s(\frac{1}{\boldsymbol{e_m}\sqrt{\omega}} + R_{sc})$$

- (b) Schematic of the MPR molten salt holder
- Photographs of the MPR setup; (c)
- (d) Plot of $|\theta_s|$ versus $\omega^{-1/2}$ of a typical MPR measurement of stagnant molten salts

MPR Measurement of Stagnant Fluid

The measured k of the molten NaNO₃, KNO₃ and solar salt mixture, NaNO₃-KNO₃ (wt.% 60-40) are higher than the LFA results and most of the literature values but agree well with the results from a frequency-domain THW method by Zhao et al. (UCSD).

(2) Chilatzou, Ch.D., et al. "Experimental determination of the thermal conductivity of 13 inorganic molessatis" and conductivity." *Journal of Chemical & I* (2) Chilatzou, Ch.D., et al. "Experimental determination of the thermal conductivity of 13 inorganic molessatis" *Journal of physical and chemical reference data* 47.3 (2018): 033104. [1] Zhao, Andrew Z., Matthew C. Wingert, and Javier E. Garay. "Frequency-Domain Hot-Wire Measurements of Molten Nitrate Salt Thermal Conductivity." Journal of Chemical & Engineering Data (2020).

- 4 Odawara, Osamu, Isao Okada, and Kazutaka Kawamura. "Measurement of the thermal diffusivity of HTS (a mixture of molten sodium nitrate-potassium nitrate-sodium nitrite; 7-44-49 mole%) by optical interferometry." Journal of Chemical and Engineering Data 22.2 (1977): 222-225.
- [5] Bloom, Ho, A. Doroszkowski, and S. B. Tricklebank. "Molten salt mixtures. IX. The thermal conductivities of molten nitrate systems." Australian Journal of Chemistry 18.8 (1965): 1171-1176. [6] Tufeu, R., et al. "Experimental determination of the thermal conductivity of molten pure salts and salt mixtures." International journal of thermophysics 6.4 (1985): 315-330
- 77 Omotani, T., Yuji Nagasaka, and A. Nagashima. "Measurement of the thermal conductivity of KNO 3-NaNO 3 mixtures using a transient hot-wire method with a liquid metal in a capillary probe." International Journal of Thermophysics 3.1 (1982): 17-26 [8] Santini, R., et al. "Measurement of thermal conductivity of molten salts in the range 100-500/sup 0/C." Int. J. Heat Mass Transfer (United Kingdom) 27.4 (1984).
- [9] McDonald, John, and Howard Ted Davis. "Thermal conductivity of binary mixtures of alkali nitrates." The Journal of Physical Chemistry 74.4 (1970): 725-730.
- 10] Pfleger, Nicole, et al. "Thermal energy storage-overview and specific insight into nitrate salts for sensible and latent heat storage." Beilstein journal of nanotechnology 6.1 (2015): 1487-1497
- 111 Serrano-López, Roberto, Jordi Fradera, and Santiago Cuesta-López. "Molten salts database for energy applications." Chemical Engineering and Processing: Process Intensification 73 (2013): 87-102

400

450

Tufeu, R., et al. "Experimental determination of the thermal conductivity of molten pure salts and salt mixtures." International journal of thermophysics 6.4 (1985): 315-330

MPR Measurement of Stagnant Fluid

Molten Chloride Salts

The measured k of the molten KCI-MgCl₂, MgCl₂-KCI-NaCl, and NaCl₂-KCI-ZnCl₂ are consistent with the reported values and the reported correlations

^[1] X. Xu, X. Wang, P. Li, Y. Li, Q. Hao, B. Xiao, H. Elsentriecy, D. Gervasio, Experimental test of properties of KCI–MgCl2 eutectic molten salt for heat transfer and thermal storage fluid in concentrated solar power systems, Journal of Solar Energy Engineering, 140(5) (2018)

^[2] M.S. Sohal, M.A. Ebner, P. Sabharwall, P. Sharpe, Engineering database of liquid salt thermophysical and thermochemical properties, Idaho National Laboratory (INL), 2010.
[3] R. Serrano-López, J. Fradera, S. Cuesta-López, Molten salts database for energy applications, Chemical Engineering and Processing: Process Intensification, 73 (2013) 87-102.

^[4] D. Williams, Assessment of candidate molten salt coolants for the NGNP/NHI heat-transfer loop, Oak Ridge National Lab (ORNL), Oak Ridge, TN (United States), 2006,

⁵ X. Wang, J.D. Rincon, P. Li, Y. Zhao, J. Vidal, Thermophysical Properties Experimentally Tested for NaCl-KCl-MgCl2 Eutectic Molten Salt as a Next-Generation High-Temperature Heat Transfer Fluids in Concentrated Solar Power Systems, Journal of Solar Energy Engineering, 143(4) (2021) 041005. 6] P. Li, E. Molina, K. Wang, X. Xu, G. Dehghani, A. Kohli, O. Hao, M.H. Kassaee, S.M. Jeter, A.S. Teja, Thermal and transport properties of NaCl-KCl-ZnCl2 eutectic salts for new generation high-temperature heat-transfer fluids, Journal of Solar Energy Engineering, 138(5) (2016)

MPR Measurement of Flowing Fluid

The intrinsic k_o of the flowing fluids can be obtained at a **low flow velocity**, where the forced convection effect is small.

Zeng et al., In-situ Thermal Transport Measurement of Flowing Fluid using Modulated Photothermal Radiometry. Intl. J. Heat Mass Transf. (in press, 2021)

Critical Conditions to Obtain k_o of Flowing Fluids

To obtain the intrinsic thermal conductivity (k_o) of flowing fluid, $Re_D^{1/2}Pr^{1/3}$ should be less than ~100, which agrees with the analysis (thermal penetration depth shorter than both the momentum and thermal boundary layers).

MPR on Flowing Molten Salt (in progress)

We have integrated the MPR section with the thin wall-thickness (100 μ m) and set up the MPR tools for the molten salt loop at U. Arizona . The MPR system is set up and the loop is being prepared for flowing molten salt test soon

(a) Schematics of molten salt loop with MPR setup;(b), (c) and (d) Photo and video of molten salt loop in test.

For Particles:

- Measured k_{eff} of stationary particles, which agrees well with that by THW.
- Measured k_{eff} of moving particles with temperature up to 700°C and velocity up to 60 mm s⁻¹. k_{eff} decreases by 10-40% depending on the particle morphology and velocity.
- MPR shows the potential to differentiate the near-wall thermal resistance and bulk thermal conductivity of moving particles in a particle heat exchanger.

For Molten salts:

- Measured k of a variety of nitrate and chloride salts using MPR up to 700°C.
- Systematic measurement and analysis of flowing fluid using MPR and identify the critical condition to obtain intrinsic thermal conductivity of flowing fluid.
- MPR tool integration with molten salt loop in U. Arizona and continuing work on the *In-operando* flowing molten salts measurement.

Discussions on Plans and Challenges for Future *In-operando* Measurements

Plan

For Moving Particles:

- Systematic measurement on CARBO ceramic particles and silica sands with a wide range operation conditions, i.e., particle sizes, channel sizes and velocity at high temperature
- Analysis of near-wall thermal resistance and bulk thermal conductivity of moving particles.

For Molten salts:

- Understand the difference between conventional thermal conductivity measurement method (i.e., steady-state method, transient hot wire, and LFA), compared with the MPR technique.
- Measure the thermal conductivity flowing molten salts and study the corrosion effect.

Challenges

For Moving Particles:

- Thermal noise and 2D heat spreading issue at the low frequency measurement (down to 0.1 Hz for the sensitivity on R_{NR}).
- Mechanical strength of the thin MPR section when integrated with particle heat exchangers.

For Molten salts:

• Corrosion and thermal stress on the thin MPR section in the flowing molten salt loop.