Multi-Tower Systems with Centrifugal Particle Receiver Particle Receiver Panel, August 25, 2021

Dr. Reiner Buck

Introduction Centrifugal Particle Receiver "CentRec®"

Solar Flux

- Particle residence time / receiver outlet temperature controlled by adjusting rotational speed
- Thin, optical dense layer for all load conditions

CentRec500 – Test Campaign

- Jülich Test Campaign 2017 2018:
- first on-sun test of CentRec® receiver
- validation only possible on < 500 kW input from solar field (Hence, the receiver titled CentRec500)
- T_{out} = 965°C (at < 10 % part load) achieved
- only one suitable steady-state point acquired at Tout =702°C permitting permitting validation of simulation models

Recent Testing of 300kW Centrifugal Receiver

- Part of EU project "PEGASUS": use of particle technology for solar-driven sulfur cycle
- Receiver aperture diameter: 60cm
- Tests in DLR sun simulator "Synlight" in Jülich

PEGASUS Test Setup in Synlight Sun Simulator

Operation with fixed particle mass flow (changable orifice plates)

2 containers à 1 t particles

- \rightarrow Batch mode operation
- \rightarrow Particles cooled down at night with air

Test 05.05.2021 – Typical test run Operation time per test limited by infrastructure (batch mode, particle transport capacity)

PEGASUS Test Results

- 22 test days with "solar" operation, 25 h regular test time at various temperature levels
- Inhomogeneous mass flow distribution over circumference
 ⇒ Hot spots limit the maximum achievable temperature
- Max. measured outlet temperature: 720°C
- Errors in measured outlet temperature
 - Measured particle outlet temperature < particle temperature in storage (by about 50K)
- Currently analysis of reason for hot spots: particle distributor, cylinder tolerances, grid structure, ...

Results of Improved System Analysis (in cooperation with Jeremy Sment, SNL)

- Main assumptions according to Gen3 specifications
- Multi-tower system, 12 modules, each with 42MW_{th} centrifugal receiver and 14h tower-integrated storage
- Particle transport between modules and central power block: insulated containers, autonomous trucks
- + sCO₂ power cycle 565°C / 700°C, η = 48%
- Lower/upper boundary cost correlation for tower (1st marker "l" or "u")
- Lower/upper boundary cost correlation for primary HX (2nd marker "I" or "u")

Results of Improved System Analysis (in cooperation with Jeremy Sment, SNL)

- LCOE range from 49\$/MWh to 66\$/MWh
- Strong impact of assumptions for tower and HX cost correlation
- Strong impact of upper particle temperature
- Little impact of lower particle temperature

(no price escalation for DoE Gen3 parameters and other values considered)

Risks and Mitigation Measures

- Particle loss
 - Small chance for particle entrainment under high wind conditions
 - · Preparation of lab tests for validation
- Performance
 - · Too few "good" test data available yet
 - · Further tests with improved sensors and longer test time required
- Particle film characteristics
 - Inhomogeneous particle flow creates hot spots
 - Ongoing lab tests to evaluate impact of potential sources
 - Thermal conductivity of particle film
 - Mixing effect in flowing particle film?
 - PhD work to evaluate this effect near completion
- Cost
 - · Cost predictions need to be validated for
 - Receiver
 - (Particle ground transport)
- Potential for further cost reduction: hybrid CST/CPV receiver, multi-receiver tower, aim point switching, ...

Ongoing Activities

- HIFLEX
 - EC project to install and tests a complete particle demonstration system in Italy; 2.5MW_{th} receiver, ~ 10MWh storage, 620°C steam generator
- HEHTRES
 - DLR particle test infrastructure @ Solar Tower Jülich, 1MW_{th} receiver
- PreMa
 - EC project for manganese production, includes particle-to-air heat exchanger development
- KOSTPAR
 - BMWi project; receiver upscaling, steam generator development
- TCF / NoLimits
 - DoE/BMWi project: Full load demonstration of particle receiver @ SNL/NSTTF, 600kW_{th} receiver

Under preparation

- SpiCoPV (BMWi):
 - Integration of CPV into particle receiver aperture (to capture spillage)
- KOSTPAR-2 (BMWi):
 - Further receiver improvement, Steam generator demonstration

DLR

