Lighting and **CONTROL**

Opportunity and Incentives for Innovation

Now:

Pacific Northwest National Laboratory

Data-driven lighting: using data for digital validation and verification, energy management, maintenance, and grid-interaction

Previous:

Semiconductor Industry

Multiple jobs: ON Semiconductor, Magnachip, Motorola Multiple roles: R&D, Design, Reliability

Michigan

MSE Electrical Engineering, Solid-State Physics

Michael Poplawski

Star Davis

Now: Starting something new

Previous: WeWork Global Head of Lighting

Arup Project Manager + Lighting Consultant

Carpenter Norris Daylighting Designer

Wharton	EMBA candidate (current)
Parsons	MFA Architectural Lighting
Duke	BSE Structural + Architectural Engineering

Now:

Pacific Northwest National Lab

Lighting Research Engineer New tech evaluations, simulations, digital design

Previous:

Lighting Designer

Parsons MFA Architectural	Lighting
---------------------------	----------

RPI Architecture

Jessica Collier

(Many) Lessons Learned

A Typical Project Organization . . .

Real Estate Developer Org

Institutional Organization . . .

Vertically Integrated Organization ...

Process: Parallel + Aligned

Design Build Operate

WeWork is unique vs. a typical design-build firm in that we are not only designing and building, but also sourcing our spaces and operating them after construction is complete.

Vertically Integrated Feedback Loop

Evolve Sustainably

experiences

Reinvent iterate + improve

Vertical Integration Efficiencies

- 1. Reduce repetitive workflows
- 2. Reduce errors as the same base model moves from phase to phase
- 3. True Collaboration with Trust (!) less CYA
- 4. Automation: from document production to commissioning
- 5. Automate error checking, code compliance and standard verification
- 6. Operations feedback into design evolution

1. Reduce Repetitive Workflows

2. Reduce Errors through

Data Continuity

3. True Collaboration with Trust

4. Automation Efficiencies

Starts with standards (not with computers)

01 →	02 →	Ø3 →	04
Define: the extents of "standard" solutions (80/20) Set clear, achievable targets	Design: Think systemically, simple, modular. LIMIT YOUR TOOLBOX	Automate Listen, Adapt, + Evolve	Let go. Use the new space and time to be creative again!

Standards are Boring excellent.

Favorite Solutions

systematized

for

implementation

80% 20% Standard Unique

Automate what you can ...

Focus on the FUN!

Buildings = Data

The WeWork Porfolio

Wouldn't it be nice?

Save time ... Save money

Prevent Errors

Allow for Progress?

We've come a long way

新新新教

Ancient History: Hand Drawing **Past:** 2D CAD

Now:

- BIM

- BIM Integrated

Tools

- Automation

•••

Implemented + in Progress

Level of Detail:

The way a model looks. The level of detail refers to <u>the</u> <u>input</u> of the model.

Example: Specific shapes and measurable location of steel pipes in a model.

<u>Level of Development:</u>

The depth of thinking applied to the model. The level of development refers to *the reliability* of the model.

Example: Whether the pipes in a model have been engineered and the permanence of their placement.

source: United Bim: https://www.united-bim.com/bim-level-of-development-lod-100-200-300-350-400-500/

Implemented + in Progress BIM Integrations

ElumTools

(by LightingAnalysts)

More Opportunities

- Automate Pre-Cx of control systems
- Semi-automate commissioning

- Reduce time and labor
- Allow for more complexity in the solution without adding risk of failure
- Reduce energy demand
- Verify performance
- Bring operations into the loop early + hand over completely.

Q: Why are we stuck right now?A: No incentive.

Advanced controls cost more, take more time and have low return for the owner

Can be resolved!

Accountability for Errors

Feedback is a gift! The greatest learning comes from mistakes!

5: Align Incentives for Change

This is not a technology barrier – it's been done! This is a people/industry behavior problem

- Automate Install and Labor
- Reduce Errors/Checking
- Support Ops Handover
- Verify Performance
- Communicate with Facilities

SAVE costs upfront & long term!

How do we get there - what's next?

	The anchors are here	The industry is here	The leaders are mainly here	The evangelists are here	Some enlightened companies are here
	-1	0	1	2	3
Contribution of Architect/Engineer/Designer	Design Intent only. Paper based deliverables.	Design Intent with some discussion. Introducing an independent digital approach.	Design Intent with increasing digital collaboration. May now be part of GC team.	Design incorporating catalog parts and DfMA approach.	Design by assembling catalog parts

Digital Communication & Collaboration

Identify workflow weaknesses and develop tools to fill gaps in traditional project communication and collaboration.

Where are the gaps and needs?

- Vertical integration and software can deliver significant improvements
- Independent disciplines (e.g., architects, designers, contractors) can evolve too, but will need to rely on software and data even more
- Workflows need to be discovered and demonstrated, software gaps need to be identified and resolved, standards need to be targeted for the critical paths

Connecting the dots

High-Fidelity Model Development

Medium Office Prototype Building

PNNL Modifications:

- Interior Architecture
- Furniture (Occupancy)
- Lighting and Control System

Modeled in Autodesk Revit

- Explore capabilities and limitations
- Understand dataflows and associations behind building information modeling

High-Fidelity Model Development

Medium Office Prototype Building

- 53,000 sq ft.
- 286 Occupants
- 12 Space types

 (e.g., enclosed/open office, conference, storage, dining/food
 prop)
- prep l 2 luminaire types

Automation & Data Export

- How can you intentionally automate and standardize your workflows?
- Just because you have reached the limitations of one piece of software doesn't mean it is impossible.
- Patchwork solutions are here to stay, but will lead to standardization and development of best practices.

Dynamo

A visual programming plug-in for Autodesk Revit.

- Automate repetitive processes
 - Associations
 - Sheet creation
- Minimize human error
 - Coordinating tags and notes
- Export data
 - 2-way data flow with excel
- Generative design analysis
 - Explore design options
 - Verify design performance
 - Automate standard designs

Dynamo

A visual programming plug-in for Autodesk Revit.

Project Parameters:

- X, Y, and Z coordinates
- Unique identification number
- Associated room number

ODBC Export

A database management protocol that organizes all the Revit BIM data in a set of structured and coordinated tables.

PROS

- Contains detailed component tables and relational tables
- Repeatable and predictable
- Searchable and queryable
- Link to other software
- Platform for real-world building system or occupant data

CONS

- Additional work required to associate components between tables
- Lots of data! Can be difficult to decode and find what you need

ODBC Export

A database management protocol that organizes all the Revit BIM data in a set of structured and coordinated tables.

S
<u> </u>
50
00
Ъ,
D D
ing
ting
nting
hting
ghting
ighting
.ighting

STANDARD COMPONENT PARAMETERS						EFINED (COMPONE	NT PARAMETERS
ld	Typeld	PhaseCreated	Dimming	Emergency Luminaire	COORD_X	COORD_Y	COORD_Z	Room-luminaire Association
862573	862665	118390	0.8	0	130.1	49.7	9.6	125
862767	869652	118390	0.8	1	112.5	74.2	9.5	123
862835	869652	118390	0.8	1	100.0	78.2	22.5	210
871042	845374	118390	0.9	1	82.0	8.2	9.6	101
872232	845981	118390	0.9	0	103.0	44.3	9.6	102

ODBC Export

A database management protocol that organizes all the Revit BIM data in a set of structured and coordinated tables.

STANDARD COMPONENT PARAMETERS

USER DEFINED COMPONENT PARAMETERS

Id	Typeld	PhaseCreated	Dimming	Emergency Luminaire	COORD_X	COORD_Y	COORD_Z	Room-Iuminaire Association
862573	862665	118390	0.8	0	130.1	49.7	9.6	125

Id	Type Name	Description	Mounting	Efficacy	Wattage	Color Temperature	Photometric Web File	Luminous Flux
862665	G	Perimeter slot linear LED wall grazer	Recessed in ceiling	73	28	3500	Type G WG.ies	2044

Design and Information Models

Id	Occupancy	Area	Number	Name
698132	4	25	120	Private Office
698133	1	19	116	Private Office
698134	1	19	117	Private Office
698153	1	20	115	Private Office
698154		43	109	Storage
698155		24	107	Mechanical
698156		25	137	Restroom
698158		33	103	Lobby
698159	6	33	114	Private Office
698160	4	27	113	Private Office
698161	12	37	112	Conference Room
698162	12	37	135	Conference Room

Verification & Validation

Part 1: Define Part 2: Data Part 3: Document

Design Validation

Design data > design intent

- Validation and verification procedures can support specifications and reduce assumptions
- Verification can be as simple as evidence of meeting a specification or project goal
- Avoid room for interpretation
- Not just about filling BIM with data validation measures raise flags that enforce boundaries when they are passed along project channels

Link simulation outcomes to design model

Opportunities for Validation and Verification

REPLACE PATCHWORK SOLUTIONS WITH A REIMAGINED STANDARD PRACTICE

Near-Term

PNNL research activities

LPD Verification

• Automated in real-time, including control strategies

Control Narrative Errors/Omissions

 Define expected performance, verify sufficient data to accomplish commissioning Long-Term

Industry standardization activities

Control Narrative Templates

 Greater standardization would pave the path for automated configuration

System Performance

• Data-producing building systems monitor and verify over time

What's Next?

- Be the change ask for more!
- Be open to the possibilities, but don't expect an easy experience
- Consider developing and implementing near-term, lowhanging fruit solutions
- Imagine (and plan for!) long term wants and goals
- Recognize your strengths and out source when you need to

Reconsider your current practice and contract terms regarding BIM and LOD: Design data > design intent

Final deliverables will include the contract drawings, not the BIM file. If the general contractor would like to use the BIM file for their purposes, a standard release form will need to be signed.

- If you want to work at a more mature level, find others with the same vision and look to the future!
- If you want to help define, develop, demonstrate, and standardize new digital tools and workflows, contact us!