Open-source Alloy selection and Lifetime assessment tool for structural components in CSP - 37370

Beyond metals loss: the hidden corrosion induced degradation aspects

1. Impact
 - >30% reduction in development costs
 - 50% reduction in development time for CSP technologies
 - Accurate information on materials compatibility issues in CSP applications

2. Project Goal
 - Develop one of a kind material evaluation tool to predict mechanical and corrosion behavior of candidate materials for molten salt\'s\text{\textsubscript{\text{SC}}}2\text{\textsubscript{\text{O}}2} heat exchangers.

3. Method(s)
 - Compile existing creep + corrosion data for candidate materials: 740H, 282 and 625
 - Physics-based models to predict impact of creep-corrosion interactions on lifetimes

4. Outcomes
 - Successfully integrated underlying physics of creep-corrosion induced degradation processes in s\text{\textsubscript{\text{CO}}2}/molten chloride salts
 - Rapid evaluation of material behavior under specified operating conditions

5. Conclusion/Risks
 - Enhance tool to address additional degradation mechanisms and materials

6. Team
 - Rishi Pillai, Sebastien Dryepondt, ORNL
 - Jake Boxleitner, Brayton Energy

Figure 1. Model capable of predicting creep-corrosion interactions on degradation of Ni-based alloys during operation in s\text{\textsubscript{\text{CO}}2} and molten chloride salts