

Full Loop Thermodynamic Corrosion Inhibition and Sensing in Molten Chloride Systems (33871)

Novel Self-Healing Coatings and Sensing Methods Developed for Molten Chloride CSP Systems

1. Impact

Ability to achieve 30 year lifetime with CSP molten chloride heat transfer systems.

2. Project Goal

Develop novel methods of distributed redox control along with methods to monitor redox control in CSP systems.

3. Method(s)

Alloys were coated galvanically with active metals to prevent corrosion and exposed to air and molten salt. Electroanalytical methods were used to monitor caused by impurities.

4. Outcome(s)

Demonstrated self-healing Zr and Ti coatings that could eliminate corrosion of the base alloy (e.g. Haynes 230). Sensing methods were identified.

5. Conclusion/Risks

Galvanic self-healing coatings prevented corrosion, but coating thickness was harder to control. Worked with NREL and ORNL to adapt techniques for Mg-based redox control.

6. Team

Brenda Garcia-Diaz, Luke Olson, Chris Dandeneau, Prabhu Ganesan, Sirivatch Shimpalee, John Weidner

Visuals

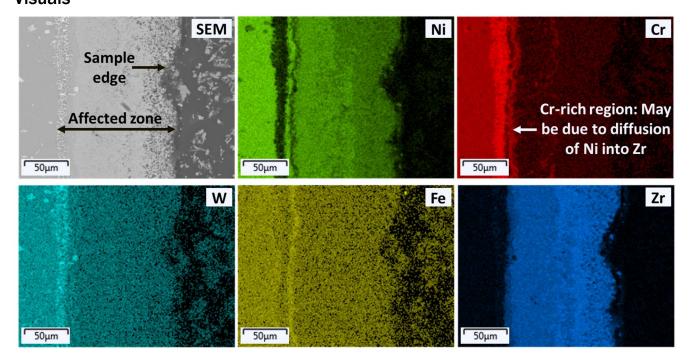


Figure 1. Galvanic Active Metal Coating for Redox Control