THE SILICON CONSORTIUM PROJECT

NATHAN R. NEALE
Next-Generation Materials Thrust
NREL
Nathan.Neale@nrel.gov

Project ID: bat498
Poster presentation
OVERVIEW

Timeline
• October 1st 2020 - September 30th 2025.
• Percent complete: 10%

Budget
• Funding for FY20: $7500K

Barriers
• Development of PHEV and EV batteries that meet or exceed the DOE and USABC goals. Specifically targeting the development of calendar life in silicon anode.
 – Cost, Performance and Safety

Timeline Diagram:
- Understanding
- Evaluating
- Making
- Science Gate
- Engineering Gate
- Feedback Loops
- Cell Deliverables
Timeline

- October 1st 2020 - September 30st 2025.
- Percent complete: 10%

Budget

- FY2021 funding: $7500K

OUTLINE

Barriers

- Development of PHEV and EV batteries that meet or exceed the DOE and USABC goals. Specifically targeting the development of calendar life in silicon anode.
- Cost, Performance and Safety

Research Thrusts

- Advanced characterization of the Si/SEI/electrolyte interfaces and interphases
- Electrochemical stability of the SEI
- Mechanical characterization of the SEI
- Next-generation materials discovery and development
- The science of manufacturing
- Cell manufacturing
MILESTONES

- Establish a pre-lithiation protocol that can be utilized by all partners Q1 (complete)
- Go/no-go on HF etching of silicon oxide-silicon as viable route to silicon Q2 (complete)
- Go/No go on the Moire interferometry at as a method of probing the calendar life of the silicon SEI? Q3 (complete)
- Produce 20 grams of next generation silicon’s with at least two different coatings, at least one of which exhibits enhanced calendar life over the baseline commercial silicon (NREL-centric) Q4 (on schedule)
- Advanced version of the calendar life protocols that quantifies calendar life in silicon-based anodes within 20% of the “real” calendar life predictions of calendar life. Q4 (on schedule)
- Synthesis and testing of 5 different metallic glasses with theoretical capacities > 1000 mAh/g Q4 (on schedule)
- Identify active cell components and cell designs to achieve stable calendar life electrode performance with a cell build demonstrating 300 cycles with <20% capacity fade. Q4 (on schedule)
Build from SEISta and Si Deep Dive project knowledge base: Non-engineered Si materials and interfaces exhibit poor cycle and calendar life in Si-based anode electrodes.

Main approaches to enhancing cycle and calendar life:
1. Electrolyte Formulation
2. Active Material Composition
3. Advanced Design Interfaces

Synergy and Partnership with Other Teams

Rapid feedback on materials modifications:
1. Advanced Characterization of the Si/SEI/electrolyte
2. Electrochemical Stability
3. Mechanical Characterization
4. Science of Manufacturing (processing)

Model Used to Set Electrode-Level Targets, Guide Development

Main take away points:
- Diminishing returns over 1000 mAh/g or mAh/cm3
- Energy more strongly dependent on areal loading
- Likely need ≥ 3 mAh/cm2 to hit milestones
HIGHLIGHT – TERNARY ZINTL PHASES

Motivation: Improving Calendar life of Silicon Anodes

Approach: Stabilization Inorganic SEI via Multivalent Electrolyte Additives (0.1 M Mg and Ca TFSI salts)

CaF$_2$ / MgF$_2$ formation contributes to robust in-situ SEI formation

- Ca additive showed lower current leakage during calendar aging.

- The average capacity decay rate of GenFC after one-month holding was 4.07 % and that after three-month holding was 6.98 %.

- The average coulombic efficiency of GenFC after one-month holding was 91.53 %, and it remained 86.54 % after three-month holding.
Laser quenching to form amorphous Si-Ti metallic glasses.
Raman spectra confirm lack of crystalline phases.
Successful fabrication of homogeneous laser quenched surfaces.

Conclusions: Laser quenching is a facile method to rapidly prepare Si alloy phase space as new Li-ion anodes.
Next step: Laser quenching in Ar or He flow (vs. air).
Interface Engineering as a Strategy to Enhance Calendar Lifetime

Strategies developed from knowledge obtained in the predecessor SEISta and Si Deep Dive projects

• Design and develop molecular organic and bulk carbonaceous surface coatings
 – Minimize direct Si-electrolyte contact
 – Enhance slurry processability and electrode morphology

• Use SiO$_x$ prelithiation, electrolyte and slurry additives to create inorganic SEI (LiF, Li$_x$SiO$_y$, Li$_2$O, Li$_2$CO$_3$, etc.)

• Understand how the surface chemistry affects SEI growth and dissolution, mass and charge transport across SEI
MILLING IN SACRIFICIAL REAGENTS TO COAT SILICON AND STABILIZE THE INTERFACE

Identified potentially stable surface functionalization that are stable with cycling

Purposely covalently bond to surface at >200g scale

Surface functionalization reduce corrosion currents while enabling extended cycling.
POUCH CELLS WITH PRELITHIATED SiOx ELECTRODES EXCEED 300 CYCLES WITH NMP AND AQUEOUS BINDERS

Osaka SiO Summary Data: LiPAA vs polyimide (PI a.k.a. P84)

Next Steps: 1. Use dQ/dV analysis to optimize electrochemical cycling protocol; 2. Increase areal capacity; 3. Screen against new electrolytes
SI@NMP COATING: PAA VS PI

Electrode fabrication:
- Intrinsic PECVD 5.9 nm Si@SiH\textsubscript{x}
- PAA Slurry: 30 Si@NMP : 45 PAA : 15 C45 in NMP
- PI Slurry: 30 Si@NMP : 45 PI : 15 C45 in NMP
- Cycling in Gen2 + 10% FEC Electrolyte

Full-cell cycling:
- No prelithiation
- ~1.8 mAh/cm2 LFP cathode
- ~0.7 mAh/cm2 Si (>150% excess Li-inventory)
- 4x @ C/3, 1x HPPC, 95x @ 1C, repeat (2.7-3.44V)

Target Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (mAh/g)</td>
<td>> 1000</td>
</tr>
<tr>
<td>Capacity (mAh/cm2)</td>
<td>> 1000</td>
</tr>
<tr>
<td>Capacity efficiency (%)</td>
<td>> 99.98%</td>
</tr>
<tr>
<td>Li-consumption (Amps/Ah)</td>
<td>< 1.826*10-5</td>
</tr>
</tbody>
</table>

Full cell

<table>
<thead>
<tr>
<th>Coating</th>
<th>Capacity (mAh/cm2) @ BOL</th>
<th>Capacity at Cycle 1000 (C/3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAA</td>
<td>1.32 mAh/cm2</td>
<td>~32% capacity retention at cycle 1000 (C/3)</td>
</tr>
<tr>
<td>PI</td>
<td>1.42 mAh/cm2</td>
<td>~60% capacity retention at cycle 1000 (C/3)</td>
</tr>
</tbody>
</table>

Half cell

<table>
<thead>
<tr>
<th>Coating</th>
<th>Capacity (mAh/cm2) @ BOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAA</td>
<td>1.32 mAh/cm2</td>
</tr>
<tr>
<td>PI</td>
<td>1.42 mAh/cm2</td>
</tr>
</tbody>
</table>

Next Steps:
1. Increase Si utilization (porosity);
2. Increase areal capacity;
3. Understand safety

Calendar life test

- 3x C/20 (0.01 – 1.5 V) then 1C 100x

Calendar Lifetime Protocol

- 0% to 100% charge/discharge cycles for 30 days
SI@PITCH: SP² + SP³ CARBON COATING

Electrode fabrication:
• Intrinsic PECVD 5.9 nm Si@SiHₓ
• Pitch coated and carbonized (50:50 Si:pitch)
• Slurry: 8 Si/pitch :1 Timcal C65 :1 P84 in NMP
• Cycling in Gen2 + 10% FEC Electrolyte

Full-cell cycling:
• Formed in half-cell: 3x C/20, 1x C/3 (10-750 mV vs. Li)
• ~1.8 mAh/cm² LFP cathode
• ~0.8 mAh/cm² Si/pitch anode
• 4x @ C/3, 1x HPPC, 95x @ 1C, repeat (2.7-3.44V)

Next Steps: 1. Understand porosity; 2. Increase areal capacity; 3. Alternative coatings
B-DOPED SI@LI SALT COATING

Electrode fabrication:
- Boron-doped PECVD 6.5 nm B:Si@SiH_x
- Slurry: 51% B:Si : 10% SWCNTs – COOH : 31% PAA : 8% Li-Acrylate in NMP or 55% Si : 5% SWCNTs – COOH : 30% PAA : 10% Li-Carbonate
- Cycling in Gen2 + 10% FEC Electrolyte

Full-cell cycling:
- Formation @ C/20 in half cell configuration (10-750 mV vs. Li)
- ~1.8 mAh/cm² LFP cathode
- ~0.6 mAh/cm² anode
- Formation @ C/20 in half cell configuration
- 5x @ C/3, 1x HPPC, 95x @ 1C, repeat (2.45-3.45V)

Half cell
- Si@Li acrylate
- 5x @ C/20, cycled @ C/3, repeat (0.01-1.5V)

Target Metrics
- > 1000 mAh/g
- > 1000 mAh/cm³
- > 3 mAh/cm²
- > 99.98% CE
- < 1.826*10⁻⁵ Amps/Ah Li-consumption

Next Steps:
1. Understand early-cycle CE;
2. Understand porosity;
3. Increase areal capacity
SI@POLY(PMI) CONDUCTIVE COATING

Electrode fabrication:
- Intrinsic 30 nm PECVD Si@SiHₓ coated with polyphenylmethylimine (polyPMI)
- Slurry: 8 Si@polyPMI (3:1 Si:polyPMI) : 2 C65 in dyglyme
- 300 °C electrode cure to complete polymerization
- Cycling in Gen2 + 10% FEC Electrolyte

Full-cell cycling:
- No prelithiation
- ~1.8 mAh/cm² LFP cathode
- ~0.7 mAh/cm² Si (>150% excess Li-inventory)
- 4x @ C/3, 1x HPPC, 95x @ 1C, repeat (2.7-3.44V)

Full cell
- ~0.7 mAh/cm² @ BOL
- vs ~1.8 mAh/cm² LFP
- ~80% capacity retention at cycle 400 (C/3)

Half cell
- 3x @ C/20, 100x @ C/3 (0.01-0.75V)

Target Metrics
- > 1000 mAh/g
- > 1000 mAh/cm²
- > 3 mAh/cm²
- > 99.98% CE
- < 1.826*10⁻⁵ Amps/Ah Li-consumption

Calendar Lifetime Protocol
- > 1000 mAh/cm²
- > 3 mAh/cm²
- > 99.98% CE
- < 1.826*10⁻⁵ Amps/Ah Li-consumption

Next Steps: 1. Understand high CE; 2. Increase areal capacity; 3. Alternative coating methods
SUMMARY: INTERFACE ENGINEERED SI

- Comparison of different interface engineered Si electrodes in the SCP

<table>
<thead>
<tr>
<th></th>
<th>CM Si@pitch</th>
<th>Osaka SiO</th>
<th>PECVD Si@NMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrode composition (Si:C45/C65:binder)</td>
<td>90:10 Si@pitch:C45:P84 80:10:10</td>
<td>SiO:C45:P84 70:10:20</td>
<td>Si@NMP:C45:P84 30:45:15</td>
</tr>
<tr>
<td>Electrolyte</td>
<td>Gen2</td>
<td>Gen2 + 4 wt% FEC</td>
<td>Gen2 + 10 wt% FEC</td>
</tr>
<tr>
<td>Prelithiation (Y/N)</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Specific stabilized capacity after forming in full-cell</td>
<td>N/A</td>
<td>1000 mAh/g (C/10)</td>
<td>500 mAh/g (C/3)</td>
</tr>
<tr>
<td>Stabilized Areal Loading (mAh/cm²)</td>
<td>0.47</td>
<td>1.3 (vs 1.5 mAh/cm² NMC622)</td>
<td>1.42 (vs 1.5 mAh/cm² NMC622)</td>
</tr>
<tr>
<td>Cycle lifetime (1C; slower C-rate every 100 cycles)</td>
<td>N/A</td>
<td>97% (C/10) at 300 cycles 88% (C/10) at 700 cycles</td>
<td>~80% at 300 cycles (C/3) ~60% at 1000 cycles (C/3)</td>
</tr>
<tr>
<td>Terminal current (A/Ah) after 180 h @ 0.1 V vs LFP</td>
<td>N/A</td>
<td>N/A</td>
<td>Invalid test (Li-ion inventory consumed)</td>
</tr>
</tbody>
</table>
SUMMARY: INTERFACE ENGINEERED SI

- Comparison of different interface engineered Si electrodes in the SCP

<table>
<thead>
<tr>
<th>Electrode composition (Si:C45/C65:binder)</th>
<th>PECVD Si@pitch: C65:P84 8:1:1</th>
<th>PECVD B:Si@Li$_2$CO$_3$: C65:P84 11:2 CNTs:PAA 65:5:30</th>
<th>PECVD Si@polyPMI: C45:P84 70:10:20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrolyte</td>
<td>Gen2 + 10 wt% FEC</td>
<td>Gen2 + 10 wt% FEC</td>
<td>Gen2 + 10 wt% FEC</td>
</tr>
<tr>
<td>Prelithiation (Y/N)</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Specific stabilized capacity after forming in full-cell</td>
<td>700 mAh/g (C/3)</td>
<td>900 mAh/g (C/3)</td>
<td>300 mAh/g (C/3)</td>
</tr>
<tr>
<td>Stabilized Areal Loading (mAh/cm2)</td>
<td>0.8 (vs 1.8 mAh/cm2 LFP)</td>
<td>0.6 (vs 1.8 mAh/cm2 LFP)</td>
<td>0.7 (vs 1.8 mAh/cm2 LFP)</td>
</tr>
<tr>
<td>Cycle lifetime</td>
<td>~90% at 300 cycles (C/3) ~57% at 900 cycles (C/3)</td>
<td>~86% at 300 cycles (C/3)</td>
<td>~86% at 300 cycles (C/3) ~80% at 400 cycles (C/3)</td>
</tr>
<tr>
<td>Terminal current (A/Ah) after 180 h @ 0.1 V vs LFP</td>
<td>3.9 x 10$^{-4}$</td>
<td>4.5 x 10$^{-4}$</td>
<td><3 x 10$^{-3}$</td>
</tr>
</tbody>
</table>
CONCLUSIONS AND NEXT STEPS

Initial progress toward Q4 Milestones

- Terminal current at 0.1 V hold approaching graphite for several systems
- Si-Ti metallic glass synthesized, electrochemical properties under study
- Several systems already exceed Q4 Milestone “300 cycles with <20% capacity fade”

Next Steps

1. Electrolyte formulation strategies ramping up
 - Additives (multivalent, polymerizable, commercial)
 - Reduce FEC concentration to ≤0.28 M (≤3 wt%)
 - Non-carbonate electrolytes

2. Continue non-equilibrium synthesis of Si alloys and understand their EChem properties

3. Interface Engineering
 - Promising early results from several approaches
 - Challenges observed with higher loading anodes (and cathodes)
 - Understand the evolution of porosity and its relationship to mechanical stresses

Any proposed future work is subject to change based on funding levels.
COLLABORATION AND ACKNOWLEDGEMENTS

Support for this work from the Office of Vehicle Technologies, DOE-EERE, is gratefully acknowledged –

Brian Cunningham, Steven Boyd, and David Howell

Alison Dunlop
Alzate Vargas, Lorena
Amy Marschilok
Andressa Prado
Andrew Colclasure
Andrew Jansen
Ankit Verma
Anthony Burrell
Arca Elisabetta
Baris Key
Bertrand Tremolet de Villers
Beth Armstrong
Brett Helms
Brett Lucht
Brian Cunningham
Byong Chae
Chai Engtrakul
Chelsea Cates
Chen Fang
Chongmin Wang
Chrissy Connor
Christopher Abplett
Christopher Johnson
Chun-Sheng (CS) Jiang
Chunsheng Wang
Daniel Abraham
David Arnott
David Hoelzer
Dennis Dees
Donal Finegan
Eric Allcorn
Eric Sivonxay
Fattebert, Jean-Luc
Fernando Urias-Cordero
Fulya Dogan
Gabriel Veith
Gao Liu
Glenn Teeter
Greg Pach
Guang Yang
Haiyan Croft
Hyungyeon Cha
Insun Yoon
Ira Bloom
Jack Deppe
Jack Vaughn
Jaclyn Coyle
Jagjit Nanda
Jason Zhang
Jie Xiao
John (Zhengcheng) Zhang
John Farrell
Joseph Quinn
Josephine McBrayer
Kae Fink
Katharine Harrison
Koffi Pierre Yao
Kristin Persson
Leah Rynearson
Lei Wang
Lisa Housel
Lu Zhang
M. Katie Burdette-Trofimov
Mallory Clites
Marco Tulio Fonseca
Rodrigues
Matt Keyser
Maxwell Schulze
Mike Carroll
Mingjian Wen
Minkyu Kim
Minok Park
Nathan Neale
Noah Johnson
Peter Faguy
Peter Weddle
Ritesh Uppuluri
Robert Kostecki
Robert Sacci
Sam Roger
Samm Gillard
Sanpei Zhang
Sarah Frisco
Simon Thompson
Stephen Trask
Steve Harvey
Thomas Malkowski
Tien Duong
Trevor Martin
Vasillia Zorba
Wenquan Lu
Xiang Li
Yeyoung Ha
Yueran Gu
BACKUP SLIDES
DESIGN AND FABRICATE POUCH CELLS WITH PRELITHIATED SILICON-BASED ELECTRODES

Procedure used for initial Osaka SiO trials

1. Select electrodes with capacities >1 mAh/cm²
2. Prelithiate SiOₓ anodes versus lithium metal
 1. Punch out anodes to xx3450 size (14.1 cm²) and vacuum dry
 2. Cut out oversized lithium foil sheets
 3. Assemble half cell in large reusable SS cell fixture from ATD Program
4. Use Gen2 electrolyte + 4 wt.% FEC in dry room
5. Apply formation cycles:
 1. Lithiate to 10 mv
 2. Cycle 6x between 700 – 50 mV
 3. End on delithiation at 850 mV
6. Harvest electrode in dry room, and rinse briefly (15 sec) with DMC
3. Use NMC electrode with capacity slightly less than SiOₓ reversible capacity.
4. Quickly assemble in dry room with fresh Gen2 + 4 wt.% FEC
5. Cycle in capacity-limited mode to “break in” cathode
6. Perform abbreviated rate test (3x C/10, 3x C/3, 3x 1C, 3x 2C)
7. Life cycle test at 1C (3.0 - 4.15 V); C/10 every 100 cycles