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Overview

TIMELINE

• Start date: October 1, 2019 
• Project End date: September 30, 2022
• Percent complete: 50%

BUDGET

• Total Project Funding
− DOE Share: $1 M / 3years  
− Contractor Share: $0.25 M / 3 years

• FY 2020 Funding: $303,137
• FY 2021 Funding: $353,703 

BARRIERS

High energy density battery chemistry beyond 
Li-ion (Solid-state lithium-sulfur)
− Need novel solid-state electrolytes with fast 

ion conduction and stability against lithium
− Interfacial issues at the anode and cathode
− Low cycle life and loss of capacity

PARTNERS

• Interactions/Collaborations
− Hui Wang (U. Louisville, Co-PI)
− Gamini Sumanasekera (U. Louisville, Co-PI)
− Jacek Jasinski (U. Louisville, Co-PI)

• Project lead: University of Louisville
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Relevance
All solid-state lithium sulfur batteries (ASLSBs) offer high-energy density, pronounced safety, 
and suppress polysulfide shuttle; yet they remain far from commercialization

Objectives
• Advance atomic-scale understanding of ion-transport, chemical reactions, 

and material evolution in solid-state Li-S batteries
• Develop novel atomistic interaction models to accurately capture electro-

chemical processes over tens of nanometers and tens of nanoseconds
• Computationally-guided design of novel electrolytes, cathode 

architectures, and interfaces; and realize promising candidates in 
laboratory

Impact
Electrolyte chemistries, cathode architecture, and interfacial functionalization to deliver solid-state 
Li/S cells with high S-loading (>6 mg/cm2) that operate for 1000 cycles at > 600 Wh/kg (@C/3)  

Solid State Li-S battery
Yang et al., Chem. Soc. Rev. 49, 2140 (2020)

Main Roadblock
Lack of fundamental understanding of electrochemistry in these systems over 
atomic scale
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Milestones

Time Description of Milestone or Go/no-Go decision Status

FY
 2

02
0

Dec. 2019 Demonstrate scalable electrolyte synthesis with precise composition control Complete

Mar. 2020 Optimize electrolyte composition for high Li+ conductivity and stability against lithium Complete

Jun. 2020 Fabricate battery with optimized electrolyte for baseline performance Complete

Sep. 2020 Develop interatomic potential models for a representative sulfide electrolyte system Complete

Sep. 2020 
Go/No-Go)

Optimize electrolyte composition, and interatomic potential models Complete

FY
 2

02
1

Dec. 2020 Extend the interatomic potential model to include cathode, anode, and interfaces Complete

Mar. 2021 Optimize ionic liquid functionalization of cathode/electrolyte interfaces and 
characterization

Complete

Jun. 2021 Validate interatomic potential model, and coin cell testing with increased S-loading On schedule

Sep. 2021
(Go/No-go)

Fundamental understanding of evolution of cathode/electrolyte interfaces and effect of 
ionic liquid functionalization

On schedule
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Approach

Target systems
• Halogen doped sulfide argyrodite 

electrolytes (mixed doping with F) 
– LiF is known to stabilize anode-
electrolyte interface

• Mesoporous cathode architectures 
with carbon nanocages

• Functionalization of cathode-
electrolyte interface with ionic liquid

Key Innovations
• Machine learning based automated framework for developing interatomic potentials
• Development of economical and scalable liquid-based synthesis of electrolyte with good composition 

control
• Using our patented in situ metal templating method for preparing mesoporous cathode with prescribed 

architectures

Overview of our proposed integrated approach to design high-performance ASLSBs
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Technical Accomplishments
Barriers addressed 
• Scalable synthesis of solid-state electrolyte with precise composition control

− Developed a scalable and economic solvent-based method to produce solid-state electrolytes 
(SSE) with excellent composition control; this method enables fluorine doping of sulfide electrolytes

• Achieving SSEs that offer fast ion conduction and stable interface with lithium 
− Identified atomic-scale origin of fast ion conduction and high stability in fluorine containing SSE
− Optimized composition of SSE with multiple halogen dopants that provides a) enhanced Li+

conductivity (~10-3 S/cm), and (b) improved stability against Li anode

• Atomic-scale modeling of solid-state lithium sulfur battery systems
− Developed accurate physics-based interatomic potential models using machine learning 

framework to enable classical molecular dynamics simulations of ion transport and material evolution

• Interfacial impedance at the cathode electrolyte interface 
− Identified functionalizing ionic liquids (IL) that enable good contact between Sulfur-carbon cathode 

and sulfide electrolytes; batteries with IL functionalized cathodes and optimized SSEs show capacity 
retention of ~550 mAh/g after 100 cycles
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Technical Accomplishments
Solvent synthesis of sulfide electrolyte with precise composition control  

Milestone Q1/Y1: Demonstrated scalable electrolyte synthesis with precise composition control

Li2S,
Li3PS4
LiX

Evaporation 
90 °C

Precipitation Li6PS5X (X=F, Cl, Br, I)

Rapid | Economic | Low temperature | Enables F doping
• Synthesized electrolytes show 

high phase purity and 
crystallinity 

X-ray diffraction of representative electrolytes synthesized by this method

SE
M

ED
S
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Technical Accomplishments
Design of sulfide electrolytes with mixed halogen doping

Milestone Q2/Y1: Optimized electrolyte composition for high Li+ conductivity

Doping argyrodite electrolytes with two different halogens yields higher Li+ conductivity as compared 
to one halogen. AIMD simulations identify Li6PS5F0.5Cl0.5 as having highest Li+ conductivity 

𝜎 =
𝑁𝑞!

𝑉𝑘𝑇𝐷

From mean square displacement 
in 100 ps long AIMD 

Room Temperature 𝜎 predicted 
by AIMD

Optimization of electrolyte composition using AIMD simulations Our AIMD predictions are 
consistent with experiments

Room Temperature 𝜎
measured by experimentF Cl

Li6PS5F0.5Cl0.5
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Technical Accomplishments
Atomistic origin of fast Li-ion conduction   

Milestone Q2/Y1: Optimized electrolyte composition for high Li+ conductivity

Jump Frequency
at 750 K (1010 s-1)

Li6PS5F Li6PS5Cl Li6PS5F0.5Cl0.5

Inter-cage 2.29 3.04 3.83
Intra-cage 35.4 48.1 48.6

Li6PS5F Li6PS5Cl Li6PS5F0.5Cl0.5

Lithium probability distribution map over entire AIMD trajectory at 750 K (100 ps)

(0.32 mS/cm)𝜎Li at RT (0.9 mS/cm) (2.2 mS/cm)
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Technical Accomplishments
Disorder in F suppresses both intra- and inter-cage hops   

Milestone Q2/Y1: Optimized electrolyte composition for high Li+ conductivity

Temporal trajectory of halogens (top) and PS4 tetrahedra 
(bottom) over 100 ps long AIMD trajectory at 750 K 

P

S

Intracage hops
• Li coordination around cage centers F (~4), S 

(~6), Cl (~5) à fastest hopping around F 
• Pronounced motion of F enhances vibration 

in PS4 à suppresses hopping 

Inter-cage hops
• Hops mediated by face center Cl are ~2 times 

faster than F (stronger Li-F bond)
• In Li6PS5F, disorder in F further slows down 

hops due to association with multiple F atoms 
(~3x slower than 1 F mediated hops)

Li6PS5F Li6PS5Cl Li6PS5F0.5Cl0.5
(0.32 mS/cm)𝜎Li @ RT (0.9 mS/cm) (2.2 mS/cm)

Li6PS5F0.5Cl0.5 provides best combination
• F in cage center
• Low motion (disorder) of face center F
• High fraction of Cl mediated inter-cage 

jumps (~1.5 that by F)

F Cl

Cage 
center

Cage 
center

ClF

F

Face 
center

Face 
center
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Technical Accomplishments

Milestone Q2/Y1: Optimized electrolyte composition for high Li+ conductivity and 
stability against Li 

• Li6PS5F0.5Cl0.5SE can cycle at high current density of 
0.15 mA/cm2, while the other cells failed at lower current 
densities

• AIMD shows that all electrolytes undergo reductive 
decomposition of PS4 – 13% of Li from anode moves into 
electrolyte forming new Li-P, and Li-S bonds. Li-X bonds 
form at interface

Voltage profiles of Li symmetric cells 

Density distribution of different atoms across interface 
obtained from AIMD simulations at 300 K 

Doping with multiple halogen also enhances 
stability against Li-anode
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Technical Accomplishments

Go/No-Go/Y1: Optimized electrolyte composition for high Li+ conductivity and stability 
against Li – Li6PS5F0.5Cl0.5 provides good combination of conductivity and stability

Composition of SEI from AIMD simulations and XPS characterization

Pe
rc

en
ta

ge
 o

f P

Li6PS5
F

Li6PS5C
l

Pe
rc

en
ta

ge
 o

f S

Li6PS5F Li6PS5Cl Li6PS5F0.5Cl0.5

Reduction levels classified using Bader 
analysis of interfacial structure from AIMD

(Li2S)

• Li | Li6PS5Cl : LixS + PSx
n- (mostly PS2) + PS4 + LiCl (No Li3P)

• Li | Li6PS5F0.5Cl0.5 : LixS + PSx
n- (mostly PS3) + PS4 + Li3P + LiF + LiCl

• Li | Li6PS5F : LixS + PSx
n- (mostly PS3) + PS4 + Li3P + LiCl + LiF

Ionic conductivity of Li3P ~10 mS/cm à SEI for F containing electrolytes 
show lower impedance.

Our AIMD findings are consistent with our XPS characterization

(LixS)
(PSxn-)

(Li3P)
(PSxn-)
(PS43-)
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Technical Accomplishments

Q4/Y1 and Go/No-Go/Y1: Developed interatomic potential for electrolyte

Developed a reactive force field for Li-P-S ternary system with good predictive 
power 

15 meV/atom 1%
21.336

Av
er

ag
e 

Er
ro

r (
%

) 

16%

Energy Lattice 
constants

ReaxFF prediction error relative to DFT 

Elastic 
constants

Errors in ReaxFF predictions for selected phases
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Technical Accomplishments: Material evolution at interfaces predicted by 
ReaxFF agree with previous first principles calculations 

Q1/Y2: Extended interatomic potential to interfaces
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Technical Accomplishments

Milestone Q3/Y1: Fabricate battery with optimized electrolyte for baseline performance 

Fabrication of battery using optimized electrolyte | C-S cathode: Super P-S (3:2 ) - 88 wt%,
AB binder – 2 wt%, CMC - 5 wt%, SBR – 5 wt%; dr blade coating - 350 µm (1.3 – 1.5 mg/cm2) /
Li6PS5F0.5Cl0.5 SSE / Li anode 

IL

Ionic liquid (IL) functionalization

Cathode

SSE

• Batteries with fully solid cathode/electrolyte interface suffers from poor contact.  They show poor 
discharge capacity (~50 mAh/g) and fail to charge after first cycle 

• Functionalizing cathode with IL (e.g., 40 µL of 0.6 M LiTFSI in PYR-IL) shows good promise with capacity 
retention of 200 mAh/g after 100 cycles
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Technical Accomplishments

Milestone Q2/Y2: Optimize ionic liquid functionalization of cathode/electrolyte interfaces 
and characterization

Fabrication of battery using optimized electrolyte

• Diluting IL with DOL improves performance. Optimum 
battery performances for low sulfur loading (0.7 mg/cm2) 
was achieved with 40 µL of 2M LiTFSI in PYR:DOL=1:1.

• Porosity of the cathode needs to be engineered to reach 
higher S-loading 

XPS of cathode/electrolyte interface shows 
formation of  bridging S-S bonds (P2Sx)

S loading: 0.7 mg/cm2

S loading: 0.7 mg/cm2

Poor electrical 
conduction in 
cathode
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Response to Previous Year Reviewers’ Comments 

This project started in FY 2020. It was not evaluated last year 
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Collaboration and Coordination with other institutions
Team: The project is a collaboration between four faculty-led groups who are all co-located at 
University of Louisville. 

• Narayanan (PI) – First-principles atomic-scale modeling, interatomic potential 
development

• Wang (co-I) -- Synthesis of sulfide electrolytes
• Sumanasekera (co-I) – Synthesis of cathode architectures and battery fabrication
• Jasinski (co-I) – Electrochemical Characterization 

Argonne National Laboratory
Anh T. Ngo, Larry Curtiss, Subramanian Sankaranarayanan
• First-principles data for interatomic potential development
• Machine learning strategies and frameworks

Oak Ridge National Laboratory
Yan Chen, Jagjit Nanda, Niina Jalarvo
• Initiated discussion for neutron-diffraction studies of electrolytes to gain insights into 

structure (site disordering) sulfide electrolytes synthesized by liquid phase synthesis
18
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Remaining Challenges and Barriers

• Identify effect of crystallinity, and extended defects (e.g., grain boundary) on Li-ion 
conduction in sulfide electrolyte

• Fundamental understanding of long-time nanoscale dynamics of evolution of 
electrified interfaces: reactions, rates, composition of SEI/CEI, ion-transport across 
interfaces, effect of electric field

• Identify reasons for failure of cathode architectures at high sulfur loading, and 
successes of ionic liquid functionalization

• Synthesis of mesoporous composite cathodes co-infiltrated with solid electrolyte 
and sulfur (high loading > 6 mg/cm2) while maintaining good electronic and ionic 
conductivity: Currently used cathode formulation fails beyond S-loading of 3 mg/cm2

• Minimize the amount of liquid functionalizing agents (i.e., ionic liquids)

19
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Future Work
Rest of FY 2021 
• Rigorous validation of ReaxFF predictions of dynamic properties (ion 

transport) and interface evolution against first-principles calculations, and 
experiments 

• ReaxFF-MD to understand effect of crystallinity and extended defects on ion 
conduction in sulfide electrolytes

• Advanced characterization and first principles modeling to understand role of 
IL at cathode/electrolyte interface

• Develop coin cell batteries with cathodes at S-loading > 5 mg/cm2 without 
compromising on capacity retention at ~100 cycles. Adding CNT and SSE in 
cathode; and use 3D current collectors to optimize ionic/electronic conduction

FY 2022 
• MD simulations to understand nanosecond atomic-scale dynamics of interfacial evolution: identify reactions, rates, 

and ion transport across SEI, electric field effects. kMC models informed by MD can access higher length/time scale
• MD simulations to gain insights into the connections between ion-conduction, sulfur reduction, and strain in 

composite cathodes made of network of carbon nanocages (CNCs)
• Produce CNC based composite cathodes with prescribed architectures guided by computation, to achieve S-loading > 

6 mg/cm2 that can retain capacity of 600 Wh/kg over at least 500 cycles.

a

Our preliminary work on CNC composite 
cathode shows good promise for achieving 
S-loading > 6 mg/cm2

Any proposed future work is subject to change based on funding levels  20
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Summary
Relevance: Enable electrolyte chemistries, cathode architecture, and interfacial functionalization 
to deliver solid-state Li/S cells with high S-loading (>6 mg/cm2) that operate for 1000 cycles at > 600 
Wh/kg (@C/3)  
Approach: Our integrated approach involves 1) liquid phase synthesis, 2) first-principles and 
atomic-scale modeling, 3) machine-learning to develop physics-based reactive models, 4) battery 
fabrication, and 5) advanced electrochemical characterization.
Technical Accomplishments: Developed an economical, scalable, and rapid solution-based 
synthesis method for sulfide electrolytes with excellent control over composition and phase purity; 
identified electrolyte composition to simultaneously achieve fast Li ion conduction and form stable 
SEI at Li anode; identified the reactions between sulfide electrolyte and anode; developed a new  
reactive interatomic potential model for Li-P-S ternary system; identified IL functionalizing agents 
that improve contact at the cathode/electrolyte interface
Collaborations: 3 co-PIs at U. Louisville with expertise in synthesis, characterization and battery 
fabrication;  first-principles data and machine learning strategies for model development (ANL); 
initiated discussion for neutron scattering experiments on sulfide electrolytes (ORNL)
Future Work: Gain insights into ion-conduction, material evolution, and reactions at electrified  
interfaces; computationally guided design of composite cathodes; development of coin cells that 
operate at S-loading (> 6 mg/cm2) 21
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TECHNICAL BACK-UP SLIDES

22
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Li ion conductivity of electrolytes synthesized by our solvent-based method 
are on par with that obtained from state-of-the-art ball milling methods 

Arnold et al. J. Power Sources 464, 228158 (2020)
23
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AIMD simulations of anode/electrolyte interfaces
3 ✕ 3 Li (001) || 1 ✕ 1 Li6PS5X (001) for 20 ps at 300 K 

• 6 layers of Li on each side of the electrolyte 
• Epitaxial strain at the interface < 1 %
• (001) facets are known to be the most stable surface for Li and Li6PS5X

~10.3 Å

~45 Å

• AIMD calculations are performed using VASP
• 300 K, 20 ps
• Perdew-Burke-Ernzerhof functional (GGA-PBE) 
• Plane-Wave Energy cut off: 500 eV
• K point sampled at 𝚪-point only 
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Automated machine learning workflow to develop interatomic potentials
Large datasets obtained from first-principles calculations are employed

Narayanan et al., J. Phys Chem. C (2016)
Narayanan et al., Nanoscale (2017)
K. S*, Narayanan* et al., Chem. Mater. (2017)
H.C.*, M.C,* Narayanan* et al., Nat. Commun. (2019)

www.acs.org

THE JOURNAL OF
PHYSICAL
CHEMISTRY C

JP
CC

CK

pubs.acs.org/JPCC

ENERGY CONVERSION AND STORAGE; CATALYSIS; OPTICAL, ELECTRONIC, 
AND MAGNETIC PROPERTIES AND PROCESSES; INTERFACES; 

NANOMATERIALS AND HYBRID MATERIALS

MARCH 28, 2019

VOLUME 123

NUMBER 12

Automated Machine 
Learning Workflow 
To Develop 
Force-Fields For 
Molecular Dynamics 
Simulations

H. Chan*, B. Narayanan*, Sankaranarayanan et al., 
J. Phys Chem. C (2019) (*Equal contribution)
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Large training set from quantum calculations 
Li-P-S ternary system 
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• Equation of state
• Elastic constants
• Structure, energies, and charges from AIMD snapshots 

~2000 structures/energy
~40 condensed phases 
(lattice parameters)
~100 elastic constants
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Battery cycling with S loading of 1.5 mg/cm2

C-S cathode: Super P-S (3:2 ) - 88 wt%, AB binder – 2 wt%, CMC - 5 wt%, SBR – 5 
wt%; dr blade coating - 350 µm (1.3 – 1.5 mg/cm2) / Li6PS5F0.5Cl0.5 SSE / Li anode
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Cathode functionalization: 40 µL of 2M LiTFSI in PYR:DOL=1:1.
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