
Predictive Engineering of Interfaces and Cathodes for High Performance All Solid-State Lithium-Sulfur Batteries

PI: Badri Narayanan University of Louisville, Kentucky

Project ID: BAT491

June 24, 2021

2021 DOE Vehicle Technologies Office Annual Merit Review

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

TIMELINE

- Start date: October 1, 2019
- Project End date: September 30, 2022
- Percent complete: 50%

BUDGET

- Total Project Funding
 - DOE Share: \$1 M / 3years
 - Contractor Share: \$0.25 M / 3 years
- FY 2020 Funding: \$303,137
- FY 2021 Funding: \$353,703

BARRIERS

High energy density battery chemistry beyond Li-ion (Solid-state lithium-sulfur)

- Need novel solid-state electrolytes with fast ion conduction and stability against lithium
- Interfacial issues at the anode and cathode
- Low cycle life and loss of capacity

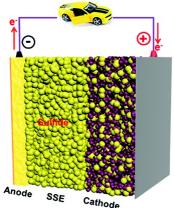
PARTNERS

- Interactions/Collaborations
 - Hui Wang (U. Louisville, Co-PI)
 - Gamini Sumanasekera (U. Louisville, Co-PI)
 - Jacek Jasinski (U. Louisville, Co-PI)
 - Project lead: University of Louisville

Relevance

All solid-state lithium sulfur batteries (ASLSBs) offer high-energy density, pronounced safety, and suppress polysulfide shuttle; yet they remain far from commercialization

Main Roadblock


Lack of fundamental understanding of electrochemistry in these systems over atomic scale

Objectives

- Advance atomic-scale understanding of ion-transport, chemical reactions, and material evolution in solid-state Li-S batteries
- Develop novel atomistic interaction models to accurately capture electrochemical processes over tens of nanometers and tens of nanoseconds
- Computationally-guided design of novel electrolytes, cathode architectures, and interfaces; and realize promising candidates in laboratory

Impact

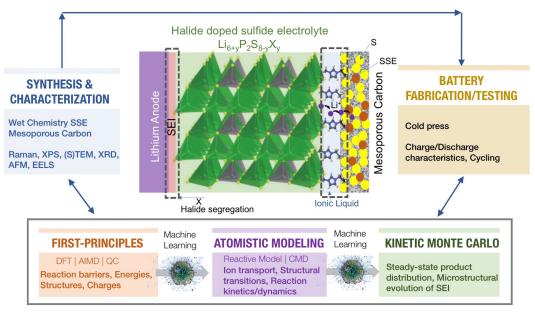
Electrolyte chemistries, cathode architecture, and interfacial functionalization to deliver solid-state Li/S cells with high S-loading (>6 mg/cm²) that operate for 1000 cycles at > 600 Wh/kg (@C/3) 3

Solid State Li-S battery Yang *et al.*, Chem. Soc. Rev. 49, 2140 (2020)

Milestones

	Time	Description of Milestone or Go/no-Go decision	Status
FY 2020	Dec. 2019	Demonstrate scalable electrolyte synthesis with precise composition control	
	Mar. 2020	Optimize electrolyte composition for high Li ⁺ conductivity and stability against lithium	Complete
	Jun. 2020	Fabricate battery with optimized electrolyte for baseline performance	
	Sep. 2020	Develop interatomic potential models for a representative sulfide electrolyte system	
	Sep. 2020 Go/No-Go)	Optimize electrolyte composition, and interatomic potential models	Complete
FY 2021	Dec. 2020	Extend the interatomic potential model to include cathode, anode, and interfaces	Complete
	Mar. 2021	Optimize ionic liquid functionalization of cathode/electrolyte interfaces and characterization	
	Jun. 2021	Validate interatomic potential model, and coin cell testing with increased S-loading	On schedule
	Sep. 2021 (Go/No-go)	Fundamental understanding of evolution of cathode/electrolyte interfaces and effect of ionic liquid functionalization	On schedule

Approach

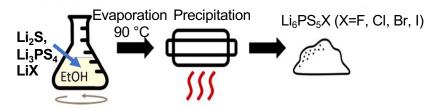

Target systems

- Halogen doped sulfide argyrodite electrolytes (mixed doping with F)
 – LiF is known to stabilize anodeelectrolyte interface
- Mesoporous cathode architectures with carbon nanocages
- Functionalization of cathodeelectrolyte interface with ionic liquid

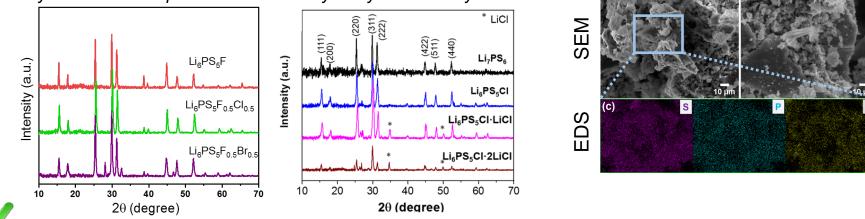
Key Innovations

Overview of our proposed integrated approach to design high-performance ASLSBs

- Machine learning based automated framework for developing interatomic potentials
- Development of economical and scalable liquid-based synthesis of electrolyte with good composition control
- Using our patented in situ metal templating method for preparing mesoporous cathode with prescribed architectures

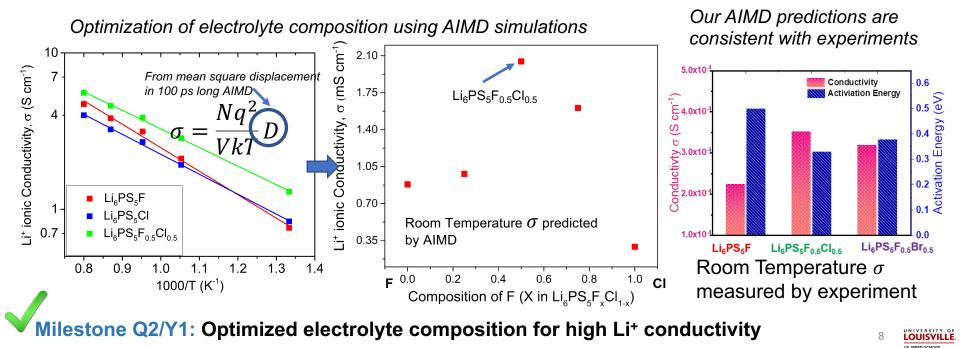

Barriers addressed

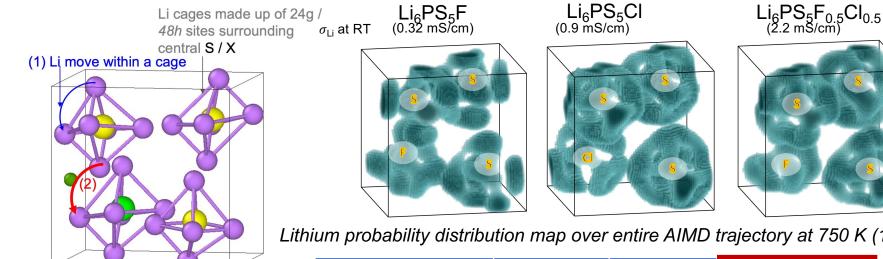
- Scalable synthesis of solid-state electrolyte with precise composition control
 - Developed a **scalable and economic solvent-based method** to produce solid-state electrolytes (SSE) with excellent composition control; this method enables fluorine doping of sulfide electrolytes
- Achieving SSEs that offer fast ion conduction and stable interface with lithium
 - Identified atomic-scale origin of fast ion conduction and high stability in fluorine containing SSE
 - Optimized composition of SSE with multiple halogen dopants that provides a) enhanced Li⁺ conductivity (~10⁻³ S/cm), and (b) improved stability against Li anode
- Atomic-scale modeling of solid-state lithium sulfur battery systems
 - **Developed accurate physics-based interatomic potential models** using machine learning framework to enable classical molecular dynamics simulations of ion transport and material evolution
- Interfacial impedance at the cathode electrolyte interface
 - Identified functionalizing ionic liquids (IL) that enable good contact between Sulfur-carbon cathode and sulfide electrolytes; batteries with IL functionalized cathodes and optimized SSEs show capacity retention of ~550 mAh/g after 100 cycles


Solvent synthesis of sulfide electrolyte with precise composition control

Rapid | Economic | Low temperature | Enables F doping

 Synthesized electrolytes show high phase purity and crystallinity


X-ray diffraction of representative electrolytes synthesized by this method

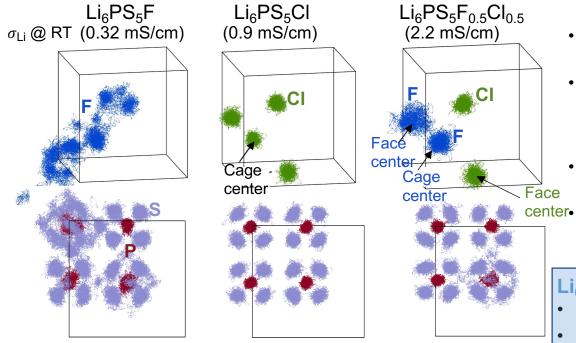

Milestone Q1/Y1: Demonstrated scalable electrolyte synthesis with precise composition⁷ control

Design of sulfide electrolytes with mixed halogen doping

Doping argyrodite electrolytes with two different halogens yields higher Li⁺ conductivity as compared to one halogen. AIMD simulations identify $Li_6PS_5F_{0.5}CI_{0.5}$ as having highest Li⁺ conductivity

Atomistic origin of fast Li-ion conduction

(2) Inter-cage Li hop (contributes to macroscopic Li diffusion) - assisted by halogen at face center (4a)


Lithium probability distribution map over entire AIMD trajectory at 750 K (100 ps)

Jump Frequency at 750 K (10 ¹⁰ s ⁻¹)	Li ₆ PS₅F	Li ₆ PS₅CI	Li ₆ PS ₅ F _{0.5} Cl _{0.5}
Inter-cage	2.29	3.04	3.83
Intra-cage	35.4	48.1	48.6

Milestone Q2/Y1: Optimized electrolyte composition for high Li⁺ conductivity

Disorder in F suppresses both intra- and inter-cage hops

Temporal trajectory of halogens (top) and PS_4 tetrahedra (bottom) over 100 ps long AIMD trajectory at 750 K

Intracage hops

- Li coordination around cage centers F (~4), S (~6), Cl (~5) → fastest hopping around F
- Pronounced motion of F enhances vibration in PS₄ → suppresses hopping

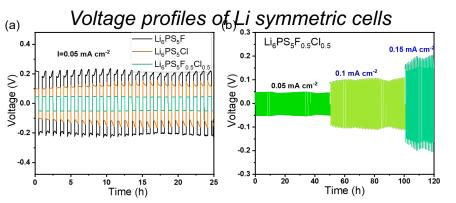
Inter-cage hops

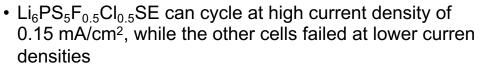
- Hops mediated by face center Cl are ~2 times faster than F (stronger Li-F bond)
- ter• In Li₆PS₅F, disorder in F further slows down hops due to association with multiple F atoms (~3x slower than 1 F mediated hops)

$Li_6PS_5F_{0.5}CI_{0.5}$ provides best combination

- F in cage center
- Low motion (disorder) of face center F
- High fraction of CI mediated inter-cage jumps (~1.5 that by F)

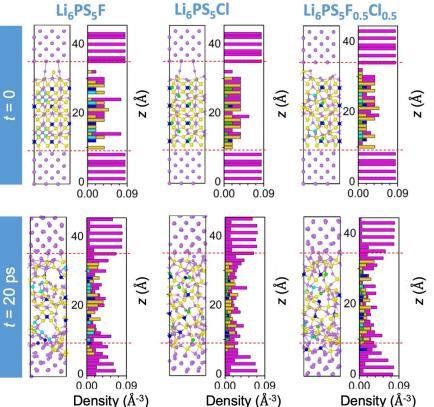
Milestone Q2/Y1: Optimized electrolyte composition for high Li⁺ conductivity

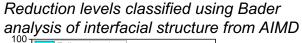

11

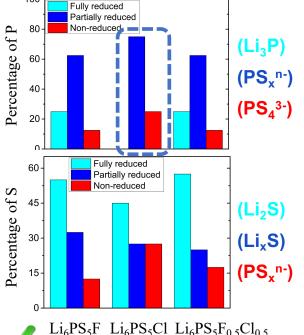

LOUISVILLE

J.B. SPEED SCHOOL

Technical Accomplishments

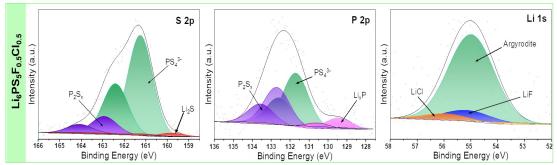

Doping with multiple halogen also enhances stability against Li-anode




AIMD shows that all electrolytes undergo reductive decomposition of PS₄ – 13% of Li from anode moves in electrolyte forming new Li-P, and Li-S bonds. Li-X bonds
 form at interface

Milestone Q2/Y1: Optimized electrolyte composition for high Li⁺ conductivity and stability against Li

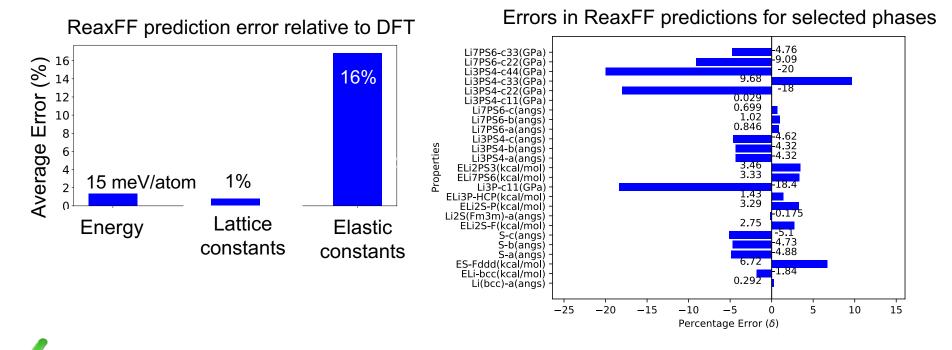
Composition of SEI from AIMD simulations and XPS characterization



• Li | Li_6PS_5CI : $Li_xS + PS_x^{n-}$ (mostly PS_2) + PS_4 + LiCl (No Li_3P) • Li | $Li_6PS_5F_{0.5}CI_{0.5}$: $Li_xS + PS_x^{n-}$ (mostly PS_3) + PS_4 + Li_3P + LiF + LiCl • Li | Li_6PS_5F : $Li_xS + PS_x^{n-}$ (mostly PS_3) + PS_4 + Li_3P + LiCl + LiF

lonic conductivity of Li₃P ~10 mS/cm \rightarrow SEI for F containing electrolytes show lower impedance.

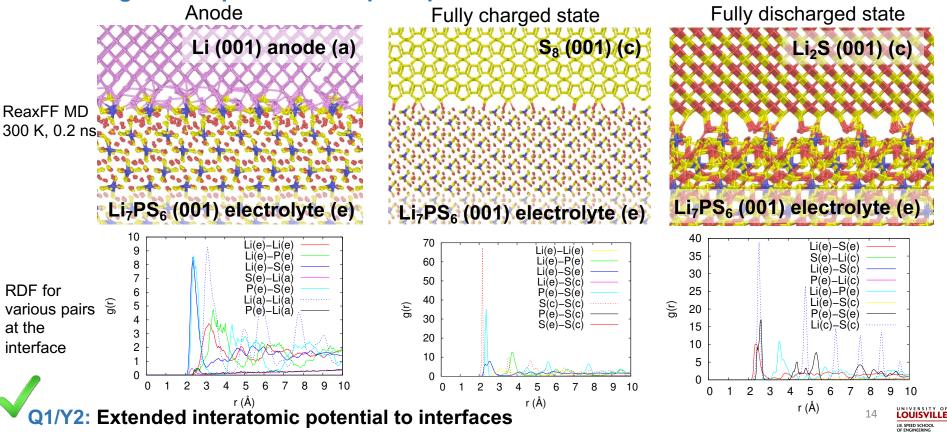
Our AIMD findings are consistent with our XPS characterization



Go/No-Go/Y1: Optimized electrolyte composition for high Li⁺ conductivity and stability against Li – Li₆PS₅F_{0.5}Cl_{0.5} provides good combination of conductivity and stability

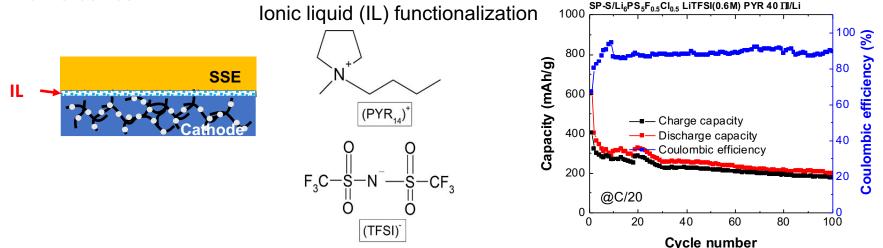
12

Developed a reactive force field for Li-P-S ternary system with good predictive power



Q4/Y1 and Go/No-Go/Y1: Developed interatomic potential for electrolyte

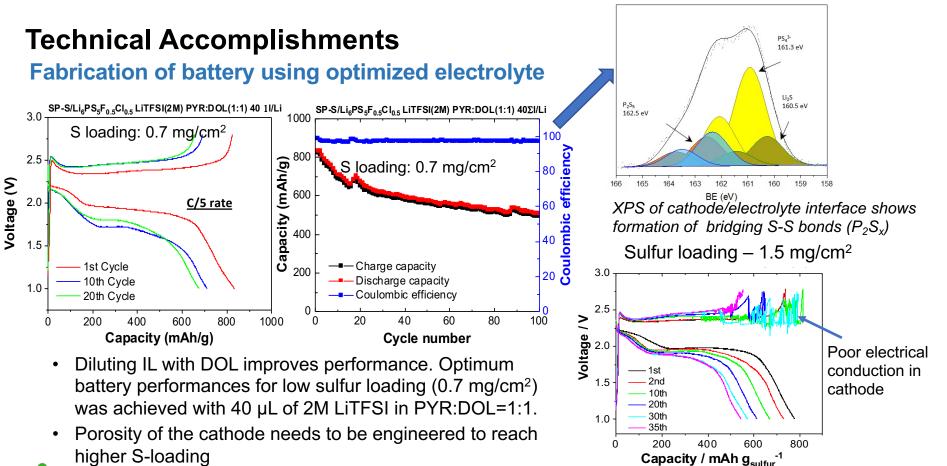
Technical Accomplishments: Material evolution at interfaces predicted by



LOUISVILLE

Technical Accomplishments

Fabrication of battery using optimized electrolyte | C-S cathode: Super P-S (3:2) - 88 wt%, AB binder – 2 wt%, CMC - 5 wt%, SBR – 5 wt%; dr blade coating - 350 μ m (1.3 – 1.5 mg/cm²) / Li₆PS₅F_{0.5}Cl_{0.5} SSE / Li anode



- Batteries with fully solid cathode/electrolyte interface suffers from poor contact. They show poor discharge capacity (~50 mAh/g) and fail to charge after first cycle
- Functionalizing cathode with IL (e.g., 40 µL of 0.6 M LiTFSI in PYR-IL) shows good promise with capacity
 retention of 200 mAh/g after 100 cycles

Milestone Q3/Y1: Fabricate battery with optimized electrolyte for baseline performance 15

LOUISVILLE

J.B. SPEED SCHOOL

Milestone Q2/Y2: Optimize ionic liquid functionalization of cathode/electrolyte interfaces and characterization

Response to Previous Year Reviewers' Comments

This project started in FY 2020. It was not evaluated last year

Collaboration and Coordination with other institutions

Team: The project is a **collaboration** between four faculty-led groups who are all co-located at University of Louisville.

- Narayanan (PI) First-principles atomic-scale modeling, interatomic potential development
- Wang (co-I) -- Synthesis of sulfide electrolytes
- Sumanasekera (co-I) Synthesis of cathode architectures and battery fabrication
- Jasinski (co-I) Electrochemical Characterization

Argonne National Laboratory

Anh T. Ngo, Larry Curtiss, Subramanian Sankaranarayanan

- First-principles data for interatomic potential development
- Machine learning strategies and frameworks

Oak Ridge National Laboratory

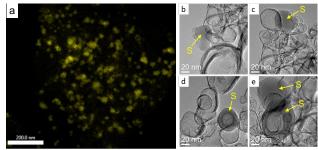
Yan Chen, Jagjit Nanda, Niina Jalarvo

 Initiated discussion for neutron-diffraction studies of electrolytes to gain insights into structure (site disordering) sulfide electrolytes synthesized by liquid phase synthesis

18 LOUISVILLE

Remaining Challenges and Barriers

- Identify effect of crystallinity, and extended defects (e.g., grain boundary) on Li-ion conduction in sulfide electrolyte
- Fundamental understanding of long-time nanoscale dynamics of evolution of electrified interfaces: *reactions, rates, composition of SEI/CEI, ion-transport across interfaces, effect of electric field*
- Identify reasons for failure of cathode architectures at high sulfur loading, and successes of ionic liquid functionalization
- Synthesis of mesoporous composite cathodes co-infiltrated with solid electrolyte and sulfur (high loading > 6 mg/cm²) while maintaining good electronic and ionic conductivity: Currently used cathode formulation fails beyond S-loading of 3 mg/cm²
- Minimize the amount of liquid functionalizing agents (i.e., ionic liquids)



Future Work

Rest of FY 2021

- Rigorous validation of ReaxFF predictions of dynamic properties (ion transport) and interface evolution against first-principles calculations, and experiments
- ReaxFF-MD to understand effect of crystallinity and extended defects on ion conduction in sulfide electrolytes
- Advanced characterization and first principles modeling to understand role of IL at cathode/electrolyte interface
- Develop coin cell batteries with cathodes at S-loading > 5 mg/cm² without compromising on capacity retention at ~100 cycles. Adding CNT and SSE in cathode; and use 3D current collectors to optimize ionic/electronic conduction

Our preliminary work on CNC composite cathode shows good promise for achieving S-loading > 6 mg/cm²

FY 2022

- MD simulations to understand nanosecond atomic-scale dynamics of interfacial evolution: identify reactions, rates, and ion transport across SEI, electric field effects. kMC models informed by MD can access higher length/time scale
- MD simulations to gain insights into the connections between ion-conduction, sulfur reduction, and strain in composite cathodes made of network of carbon nanocages (CNCs)
- Produce CNC based composite cathodes with prescribed architectures guided by computation, to achieve S-loading > 6 mg/cm² that can retain capacity of 600 Wh/kg over at least 500 cycles.

Any proposed future work is subject to change based on funding levels

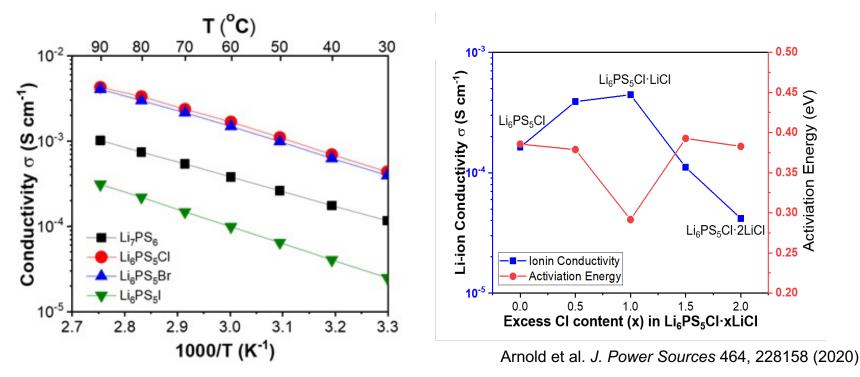
Summary

Relevance: Enable electrolyte chemistries, cathode architecture, and interfacial functionalization to deliver solid-state Li/S cells with high S-loading (>6 mg/cm²) that operate for 1000 cycles at > 600 Wh/kg (@C/3)

Approach: Our integrated approach involves 1) liquid phase synthesis, 2) first-principles and atomic-scale modeling, 3) machine-learning to develop physics-based reactive models, 4) battery fabrication, and 5) advanced electrochemical characterization.

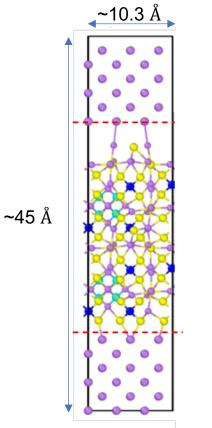
Technical Accomplishments: Developed an economical, scalable, and rapid solution-based synthesis method for sulfide electrolytes with excellent control over composition and phase purity; identified electrolyte composition to simultaneously achieve fast Li ion conduction and form stable SEI at Li anode; identified the reactions between sulfide electrolyte and anode; developed a new reactive interatomic potential model for Li-P-S ternary system; identified IL functionalizing agents that improve contact at the cathode/electrolyte interface

Collaborations: 3 co-PIs at U. Louisville with expertise in synthesis, characterization and battery fabrication; first-principles data and machine learning strategies for model development (ANL); initiated discussion for neutron scattering experiments on sulfide electrolytes (ORNL)


Future Work: Gain insights into ion-conduction, material evolution, and reactions at electrified interfaces; computationally guided design of composite cathodes; development of coin cells that operate at S-loading (> 6 mg/cm²)

21 LOUISVILLE. J.B. SPEED SCHOOL OF ENGINEERING

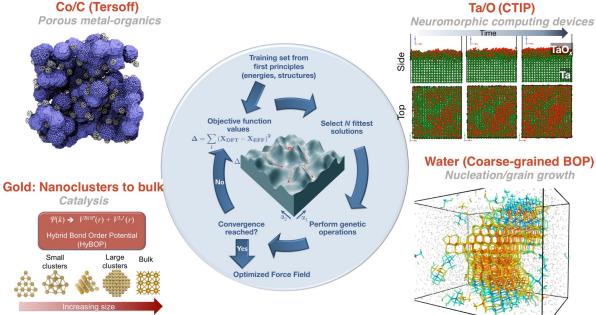
TECHNICAL BACK-UP SLIDES


Li ion conductivity of electrolytes synthesized by our solvent-based method are on par with that obtained from state-of-the-art ball milling methods

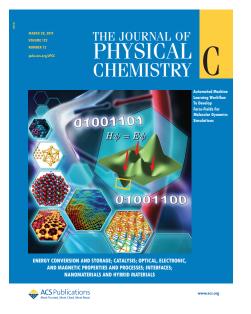
23 LOUISVILLE

AIMD simulations of anode/electrolyte interfaces

3×3 Li (001) || 1×1 Li_6PS_5X (001) for 20 ps at 300 K


- 6 layers of Li on each side of the electrolyte
- Epitaxial strain at the interface < 1 %
- (001) facets are known to be the most stable surface for Li and Li_6PS_5X

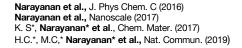
- AIMD calculations are performed using VASP
- 300 K, 20 ps
- Perdew-Burke-Ernzerhof functional (GGA-PBE)
- Plane-Wave Energy cut off: 500 eV
- K point sampled at Γ-point only


Automated machine learning workflow to develop interatomic potentials

Large datasets obtained from first-principles calculations are employed

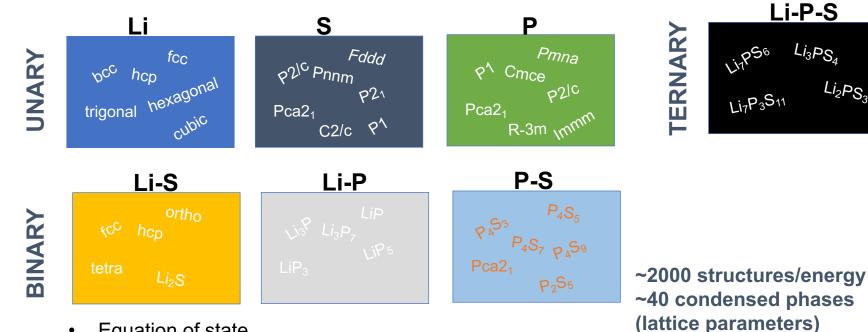
Ta/O (CTIP)

1610



H. Chan*, B. Narayanan*, Sankaranarayanan et al., J. Phys Chem. C (2019) (*Equal contribution)

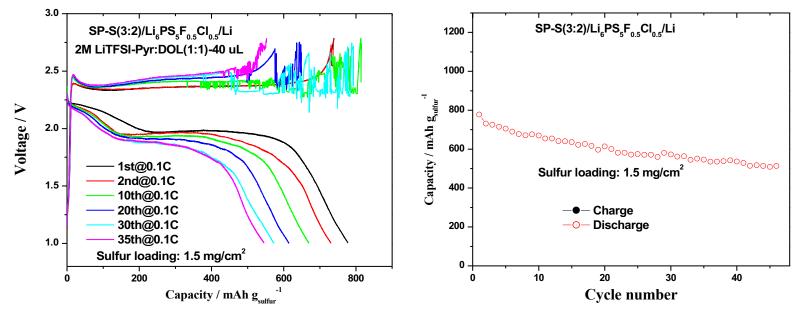
25


LOUISVILLE

J.B. SPEED SCHOOL OF ENGINEERING

Large training set from quantum calculations

- Equation of state
- Elastic constants •
- Structure, energies, and charges from AIMD snapshots ٠



~100 elastic constants

Battery cycling with S loading of 1.5 mg/cm²

C-S cathode: Super P-S (3:2) - 88 wt%, AB binder – 2 wt%, CMC - 5 wt%, SBR – 5 wt%; dr blade coating - 350 μ m (1.3 – 1.5 mg/cm²) / Li₆PS₅F_{0.5}Cl_{0.5} SSE / Li anode

Cathode functionalization: 40 µL of 2M LiTFSI in PYR:DOL=1:1.

27 LOUISVILLE