

Developing Materials for High-Energy-Density Solid-State Lithium-Sulfur Batteries

Donghai Wang The Pennsylvania State University 2021 DOE Annual Merit Review Date: June 24, 2021

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID # bat487

Overview

Timeline

- Project start date: October 1st, 2019.
- Project end date: September 30th, 2022.
- Percent completed: 50%

Budget

- Total project funding:
 - DOE share: \$1M
 - Contractor share: \$250K
- Funding for FY 2020: \$416,022
- Funding for FY 2021: \$412,367

Barriers

- Barriers addressed
 - Novel solid-state electrolytes with high ionic conductivity and good stability against lithium metal
 - Sulfur cathode with high energy density, high sulfur content and long cycle life (> 1000 cycles)

Partners

- Project Lead: Pennsylvania State University
- University of Illinois at Chicago

Relevance

Overall Objective

• Develop new materials to enable lithium-sulfur all-solid-state batteries (Li-S ASSBs) with high energy density and excellent cycling stability and thus to build knowledge for fabrication of prototype Li-S ASSBs batteries.

Objective of FY 2020

- Acquire knowledge of Li-S ASSBs on both material level and electrode level.
- Identify materials suitable as conductive framework, solid state electrolyte and additives for Li-S ASSBs.
- Demonstrate sulfur cathode with >1000 mAh g⁻¹ at 0.3 C for 50 cycles at 60° C
- Demonstrate new solid-state electrolyte with good ionic conductivity (> 2 mS cm⁻¹, at 25 °C).

Impact

• The DOE funding will make this innovative project possible and enable the team to demonstrate safe, low-cost, highperformance Li-S ASSBs. Meeting the technical targets will potentially promote the development of high-energy-density Li-S ASSBs and their practical application in EVs and PHEVs and reduce petroleum consumption in the transportation sector by helping battery-powered vehicles become more accepted by consumers as a reliable source of transportation.

Milestones

Milestones for FY 2021

Date	Description	Status
Dec. 2020	Demonstrate sulfur cathode with > 1000 mAh g ⁻¹ capacity at 0.2 C at 60 °C.	Complete
Mar. 2021	Demonstrate new anion-doped electrolyte with ionic conductivity > 2 mS cm ⁻¹ at 25°C. Demonstrate sulfur cathode with > 1000 mAh g ⁻¹ at 0.3 C use solid additives for 50 cycles.	Complete
Jun. 2021	Demonstrate sulfur cathode with > 1000 mAh g ⁻¹ at 0.3 C for 50 cycles at 60 °C using hybrid conductive materials.	In progress
Sep. 2021	Demonstrate sulfur cathode with > 1000 mAh g ⁻¹ at 0.1 C for 100 cycles at room temperature. (Go/No Go for FY 2021) Demonstrate anion-doped solid electrolytes with ionic conductivity > 3 mS cm ⁻¹ at 25 °C.	In progress

Milestones for FY 2022

Date	Description	Status
Dec. 2021	Demonstrate sulfur cathode (\geq 5 mg cm ⁻²) with > 1000 mAh g ⁻¹ at 0.1 C for 10 cycles at room temperature.	In progress
Mar. 2022	Demonstrate new cation and anion co-doped solid electrolytes with ionic conductivity of above 3 mS cm ⁻¹ .	In progress
Jun. 2022	Demonstrate sulfur cathode (\geq 5 mg cm ⁻²) with > 1000 mAh g ⁻¹ at 0.3 C for 50 cycles at room temperature.	In progress
Sep. 2022	Demonstrate sulfur cathode (\geq 5 mg cm ⁻²) with > 1200 mAh g ⁻¹ at 0.3 C for 500 cycles at room temperature. Demonstrate new cation and anion co-doped solid electrolytes with ionic conductivity of above 5 mS cm ⁻¹ and improved moisture stability.	In progress

Approach

Solid-State Li-S Batteries

Carbon-sulfur composite
Solid electrolytes
Li-In anode

Novel solid-state electrolytes (SSEs)

- Synthesis approaches
 - ✓ Solid-phase method
 - ✓ Liquid-phase method
- Targets
 - ✓ Superior ionic conductivity (> 3 mS cm⁻¹ at room temperature)
 - ✓ Stable against lithium (low interfacial resistance)

High-energy-density sulfur cathode

- Rational design and development of cathode components (sulfur, carbon & SSE)
 - ✓ High sulfur content (\geq 50 wt%)
 - ✓ Low carbon content ($\leq 20 \text{ wt\%}$)

Technical Accomplishments – Glass-Ceramic SSEs

Glass-ceramic solid electrolytes aLi₂S-bP₂S₅-cLi₃N-xAl₂S₃

• Highest ionic conductivity was achieved at x = 12 (SSE-1).

✓ 5.19 mS cm⁻¹, at 25 °C

• Low activation energy of 0.159 eV.

Technical Accomplishments – Glass-Ceramic SSE-1

Chemical environment of aLi₂S-bP₂S₅-cLi₃N-12Al₂S₃ (SSE-1)

• Formation of P-N, P=N, and Li-Al-S bonds.

Technical Accomplishments – Glass-Ceramic SSE-1

Stability against lithium metal anode - Li/SSE/Li symmetric cell

- Compared with other composition, SSE-1 demonstrated best stability against lithium and lowest interfacial resistance.
- Over 1000 hours stable cycling was enabled.
- At 0.6 mA cm⁻², polarization resistance (R_p) is merely 25 Ω cm²

Technical Accomplishments – Liquid-Phase Synthesis of SSE-2

Liquid-phase synthesis of argyrodite thiophosphate solid electrolyte (SSE-2)

- Facile and scalable approach
- Low sintering temperature of 160 °C
- Argyrodite structure
- High ionic conductivity of **4.01 mS cm⁻¹** at 25 °C

Technical Accomplishments – Liquid-Phase Synthesis of SSE-2

Hot pellet press

- High ionic conductivity **6.09 mS cm⁻¹** at 25 °C
- Low activation energy: 0.222 eV

Technical Accomplishments – Liquid-Phase Synthesis of SSE-2

Stability against lithium metal anode - Li/SSE-2/Li cell

- Stable against lithium metal anode
- Low a real interfacial resistance at around $6\sim7~\Omega~cm^2$

Technical Accomplishments – Sulfur Cathode

Achieving high-energy-density sulfur cathode

- 1. Increase sulfur content ($\geq 50 \text{ wt\%}$) & decrease carbon content ($\leq 20 \text{ wt\%}$)
- 2. Increase sulfur utilization (specific capacity of sulfur)

Sulfur cathode performance – baseline cell optimization $75Li_2S \cdot 25P_2S_5$ glass (LPS)

- Optimization of cathode compositions, preparation procedures, etc.
- Sulfur cathode (50 wt% sulfur & 10 wt% carbon) with ~ 1000 mAh g⁻¹ specific capacity.

Solid-State Li-S Batteries

Technical Accomplishments – High-Energy Sulfur Cathode

Sulfur cathode:

- 1. Carbon/Sulfur/Solid electrolyte = 10/50/40 (weight ratio), $1.5 \sim 2.0 \text{ mg}_{\text{sulfur}} \text{ cm}^{-2}$ loading
- 2. Two different solid electrolytes were compared: 75Li₂S·25P₂S₅ (LPS) and SSE-3

Electrochemical window: 0.8 ~ 2.5 V vs. Li-In/Li⁺

Technical Accomplishments – High-Energy Sulfur Cathode

Electrochemical testing at 2 C (CCCV mode, cutoff current is 0.1 C at 2.5 V)

Capacity retention after 1000 cycles:

- 88.07 % (based on highest discharge capacity 947.5 mAh g⁻¹)
- 97.57% (based on 2nd cycle discharge capacity 855.3 mAh g⁻¹)

Technical Accomplishments – Mechano-Electrochemical Property

After discharge

Cathode Thickness

~ 180 µm

After charge

Cathode Thickness

 $\sim 140 \ \mu m$

In-situ pressure monitoring

Volume change on both anode and cathode should be characterized to illustrate the pressure variation and crack formation.

X-Ray CT Characterization

Response to Previous Year Reviewer's Comment

This project was not reviewed last year.

Remaining Challenges

- The moisture stability of lithium thiophosphate solid-state electrolyte is still not satisfactory.
- The cycling stability issue of sulfur cathode at high areal sulfur loading (≥ 5 mg_{sulfur} cm⁻²) need to be resolved.
- Achieving the superior performance of sulfur cathode at room temperature.

Proposed Future Research

- Development of new SSEs as electrolyte membrane
 - High ionic conductivity (> 5 mS cm⁻¹ at 25 °C) and good stability against lithium metal anode
 - Improved moisture stability
- Development of new carbon materials, solid additives and SSEs for sulfur cathode
 - Electrochemical performance at room temperature (> 1000 mAh g^{-1} at 0.1 C for 100 cycles)
 - High-areal-loading sulfur cathode ($\geq 5 \text{ mg}_{\text{sulfur}} \text{ cm}^{-2}$, $> 1000 \text{ mAh g}^{-1}$ at 0.1 C)
- In-depth characterization of Li-S ASSBs
 - X-ray CT characterization

Any proposed future work is subject to change based on funding levels

Summary

- Development of new solid-state electrolytes
 - Two new thiophosphate solid electrolytes were successfully synthesized
 - Solid-phase synthesis & liquid-phase synthesis
 - High ionic conductivity > 4 mS cm⁻¹ at 25 °C
 - Superior stability against lithium metal anode
- Development of new carbon materials and solid-state electrolytes for high-energy sulfur cathode
 - Cathode composition & preparation process optimization
 - Solid electrolytes design & development for sulfur cathode
 - 50 wt% sulfur content, 10 wt% carbon content
 - High sulfur utilization (~ 1400 mAh g⁻¹ at 0.1 C)
 - Stable cycling for 1000 cycles at 2 C ($800 \sim 950 \text{ mAh g}^{-1}$)

Support from David Howell and Tien Duong at the US Department of Energy's Office of Vehicle Technologies is greatly appreciated.

Glass-type solid electrolytes aLi₂S-bP₂S₅-cLi₃N-xAl₂S₃

- Solid-phase synthesis
- When $x \ge 14$, residual Al₂S₃ was observed in solid electrolyte glass and will lead to low ionic conductivity
- Highest ionic conductivity was achieved at x = 10 at room temperature (0.71 mS cm⁻¹)

Glass-ceramic solid electrolytes aLi₂S-bP₂S₅-cLi₃N-xAl₂S₃

• The thio-LISICON III analog phase formation were observed.

Calculation of polarization resistance & interfacial resistance (SSE-2)

Li vs. Li symmetric cell (cycled at 6 ~ 8 MPa)

$$R_{p} = \frac{U}{I} = R_{bulk} + 2R_{int}$$
$$R_{bulk} = \frac{l}{\sigma S}$$

 R_p , polarization resistance R_{bulk} , bulk resistance from electrolyte pellet R_{int} , interfacial resistance (lithium/SE) l, pellet thickness