

2021 DOE Vehicle Technologies Office Annual Merit Review

ALL SOLID STATE BATTERIES ENABLED BY MULTIFUNCTIONAL ELECTROLYTE MATERIALS

PI: Pu Zhang Solid Power Inc. June 24, 2021

PROJECT ID: BAT486

This presentation does not contain any proprietary, confidential, or otherwise restricted information

OVERVIEW

Timeline

- Project start date: October 2019
- Project end date: September 2022
- Percentage complete: 60%

Budget

- Total project funding \$1,250,000
 - DOE share: \$1,000,000
 - Contractor share: \$250,000
- FY 2020 funding: \$430,000
- FY 2021 funding: \$420,000

Barriers

- Need a solid state electrolyte (SSE) enabling solid-state battery for EV
- Need scalable processes for solid state cell fabrication
- Need an EV battery capable of > 1000 cycles and > 350 Wh/kg

Partners

University of California San Diego

Project lead: Solid Power Inc.

RELEVANCE

Impact

- Development of a solid state electrolyte enabling high energy solid state batteries
- Fabrication of solid state battery cells in roll-to-roll processes
- Demonstration of large format solid state Li cells for the EV market

Objective

Develop solid state Li metal cells enabled by multifunctional solid state electrolytes for use in EVs

- —Cell capacity ≥ 2 Ah
- —Useable specific energy ≥ 350 Wh/kg
- —Cycle Life ≥ 1,000 cycles
- -Cost ≤ \$100/kWh

MILESTONES

Month/Year	Description of Milestone or Go/No-Go Decision	Status
December 2019	Precursor and equipment secured	Complete
March 2020	Cathode down-selected	Complete
June 2020	Cathode loading ≥ 3.5 mAh/cm² demonstrated	Complete
September 2020	Go/No-Go: SSE ionic conductivity ≥ 3 mS/cm and full cell cycle life ≥ 200	Complete
December 2020	Solid state cell charge rate ≥ 0.5 C demonstrated	Complete
March 2021	Pouch cell ≥ 200 mAh fabricated	Complete
June 2021	SSE critical current density (CCD) ≥ 18 mA/cm² demonstrated	On Target
September 2021	Go/No-Go: SSE ionic conductivity ≥ 5 mS/cm and full cell cycle life ≥ 500	On Target

APPROACH

Multi-functional SSE

Highly conductive, electrochemical stable, fast charge capable

Li Metal Anode

High energy, low dendrite / fast charge capable (enabled by the new SSE)

Simple Cell Architecture

High energy, long cycle and calendar life, extremely safe, low cost manufacturing

NMC Composite Cathode

High Ni content NMC, low impedance, long life

- high Li conductivity (up to 10 mS/cm)
- high electrochemical stability (0 4.5V)
- fast charge capability (2C)
- large scale manufacturing process compatibility
- Apply Li metal anode and Ni-rich NMC cathode in the solid state cell for high energy density
- Adopt roll-to-roll process for solid state cell fabrication for low cost cell production
- Deliver solid state Li cell of ≥ 2 Ah for performance demonstration

SSE DEVELOPMENT

- Sulfide based SSE has been developed with high conductivity and stability
 - It met the Year 1 targets and is on track of meeting Year 2 targets
 - Li ion conductivity of 4.5×10^{-3} S /cm at 25 °C, 10 times higher than baseline LPS
 - Critical current density (CCD) > 6.0 mA/cm², 5 times higher than baseline LPS

Li ion conductivity vs. temperature

Current status of conductivity and CCD

Parameter	Year 1 Target	Current Status	Year 2 Target	
Conductivity (mS/cm)	≥ 3	4.5	≥ 5	
CCD (mA/cm ²)	≥ 6	12	≥ 18	
in a second second				

SSE FABRICATION

SSE separator film has been fabricated in a R2R mode

- The film was coated with a slurry-cast method
- NMC cathode was also coated R2R
- SSE was laminated to cathode to form a bi-layer film

SSE separator coated by a slot-die coater

NMC cathode coated by a slot-die coater

Bi-layer film formed by a lamination process

POUCH CELL DEVELOPMENT

- NMC/Li solid state pouch cell containing the multifunctional SSE has been demonstrated
 - Baseline pouch cell ≥ 5 mAh was demonstrated in Year 1
 - Large format pouch cell ≥ 200 mAh has been successfully assembled and is under evaluation in Year 2
 - Final prototype pouch cell ≥ 2 Ah demonstration is on schedule in Year 3

POUCH CELL CYCLE LIFE

Pouch cell cycle life ≥ 200 has been demonstrated

Cell test

- Lab pouch cell at 6 mAh
 - NMC622 cathode (at 3 mAh/cm²)
 - 70 μm SSE separator
 - 35 µm Li anode
- 2.8 4.2V, C/5 C/5, and 25°C
- Cell performance
 - 93% capacity retention after 220 cycles
 - Met Q4 milestone of 200 cycles

^{*} Capacity fluctuation is due to the ambient temperature change

POUCH CELL RATE CAPABILITY

Pouch cell rate capability has been demonstrated

- Cell test
 - Lab pouch cell at 6 mAh
 - NMC622 cathode (at 3 mAh/cm²)
 - 70 μm SSE separator
 - 35 µm Li anode
 - 2.8 4.2V, +0.1C/-0.1C to +1C/-1C, 70°C
- Cell performance
 - 95% capacity retention at C/2, when compared to C/10
 - Met Q5 milestone of C/2 charge
 - Testing at lower temperatures in progress

TECHNICAL ACCOMPLISHMENTS

MANUFACTURING CAPABILITY

Solid Power has established the pilot-scale capability at both material and cell levels

SSE Precursor

The SSE precursor developed in-house and via partners for low cost and optimized for mass production of electrolyte and cells

Electrolyte

Best all-around solid electrolyte materials produced using low-cost scalable processes

Production

Pilot scale production using the same equipment as conventional Li-ion to quickly enable low-cost GWh-scale production

Prototype Cell

Multi-Ah pouch cells deliver >50% energy advantage over Li-ion while also being inherently safer

RESPONSES TO PREVIOUS YEAR'S REVIEWERS' COMMENTS

This is the first year that the project has been reviewed

COLLABORATION AND COORDINATION

• Solid Power Inc. (Prime; PI: Dr. Pu Zhang)

- Material synthesis, process development, cell assembly, and cell test
- University of California San Diego (Subcontractor; PI: Dr. Shirley Meng)
 - Material characterization and cell failure analysis

REMAINING CHALLENGES AND BARRIERS

- Achieving high rate capability and low temperature performance
 - Further improvement of the electrolyte conductivity and stability
 - Optimization of electrode and separator formulations for lower resistance
 - Further development of cell stack fabrication processes for optimized interfaces
- Understanding solid state cell performing mechanisms
 - Both chemical and mechanical changes during the cell operation
 - Cell failure modes
 - Engagement of industrial and academic partners

PROPOSED FUTURE RESEARCH

- Demonstrate a solid state cell with 500 cycles in a 300 Wh/kg design by Q8
 - Electrolyte with improved stability → longer cycle life
 - Thinner separator \leq 60 µm \rightarrow higher specific energy and energy density
 - Lower resistance cell -> cell operation at room and lower temperatures
- Deliver a prototype pouch cell ≥ 2 Ah with 1000 cycles, 350 Wh/kg by Q12
 - Optimized electrolyte → cycle life ≥ 1000
 - Separator ≤ 40 μm → specific energy ≥ 350 Wh/kg
 - NMC with >80% Ni content (validation pending) → potentially ≥ 400 Wh/kg

SUMMARY

- The team met all the Year 1 targets and is on track of meeting Year 2 targets
- A multifunctional electrolyte was developed with a Li ion conductivity of 4.5 mS/cm at 25°C
- The SSE separator and electrodes were fabricated in a R2R mode
- A solid state Li metal pouch cell has been demonstrated and the cell retains 93% of initial capacity after 200 cycles
- Pilot scale production capabilities have been established for both the electrolyte synthesis and large format cell assembly within Solid Power

