Hot Pressing of Reinforced Lithium Nickel Manganese Cobalt Oxide (Li-NMC) All-Solid-State Batteries with Sulfide Glass Electrolyte

Project ID: BAT482

PI: Thomas A. Yersak General Motors LLC

2021 DOE Vehicle Technologies Office Annual Merit Review June 24, 2021

GENERAL MOTORS

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project Start: October 1, 2019
 Project End: June 30, 2023
 Percent Complete: 33%

Budget

□ Total project funding

- DOE: \$1,000,000
- Industrial cost share: \$250,000

FY2020 funding: \$388k
 FY2021 funding: \$299k

Partners

□ Project lead: General Motors LLC

Barriers

- ❑ All-solid-state batteries should achieve a useable specific energy @ C/3 of ≥ 350 Wh/kg with similar operational specifications as those of conventional Li-ion batteries.
- All-solid-state batteries (ASSBs) are stuck in a paradigm of low energy density or limited functionality:
 Li-ion configurations typically have energy density < 170 Wh/kg.
 - □ Li metal configurations may require slow charging at elevated temperature and high stack pressure.
- □ The performance of ASSBs with sulfide solid-state electrolyte (SSE) is limited by the fact that they are essentially green tapes with 10 20 % porosity.
 - Porosity provides a conduit for Li deposits in the separator.
 - Porosity limits the energy density of the composite cathode.

Relevance

Objectives

- Eliminate porosity in both the separator and the cathode by assembling ASSB using a hot-pressing process and appropriately formulated sulfide glass solid-state electrolytes.
- Demonstrate a hot-pressed cathode with a reversible capacity of > 120 mAh/g (June 2021 Go/No-Go).
 - Eliminate porosity in the composite cathode to increase cell energy density.
 - Demonstrate the feasibility of cathodesupported hot-pressed glass separator.

Impact

- Elimination of porosity may allow ASSB to escape the paradigm of low energy or limited functionality to help achieve program goals of:
 - □ ≥ 350 Wh/kg useable specific energy
 @ C/3
 - □ 15 year calendar life
 - 1000 cycle life (C/3 deep discharge with <20% energy fade)</p>
 - $\Box \leq 100/kWh \cos t$

Milestones

Month/Year	Milestone Type	Description of Milestone or Go/No-Go Decision
March 2020 (FY20)	Milestone	Baseline cathode performance metric: Develop a suitable baseline system with a reversible capacity of about 120 mAh/g.
June 2020 (FY20)	Milestone	Establish protective coating on cathode: Select the best coating method and coating chemistry.
March 2021 (FY21)	Milestone	<i>Interfacial characterization:</i> Determine the parameters required to prepare cathode samples via FIB/SEM lift-out and to analyze samples via HRTEM. (completed)
June 2021 (FY21)	Milestone	Catholyte candidate selected: Performing catholytes will be identified. (completed)
June 2021 (FY21)	Go/No-Go Decision Point	Design capable of meeting performance requirements: Demonstrate a hot pressed cathode with a reversible capacity of > 120 mAh/g. Analysis indicates technical approach capable of achieving performance targets. (Go decision)

Approach

- 1) Apply GM's hot-pressed, reinforced glass separator technology to ASSB.¹ Cathode support provides pathway towards thinner separator for increased energy density.
- 2) Elucidate the mechanisms that promote NCM-catholyte thermal stability to enable hot pressing of cathode composites.

Phenomena to assess during hot pressing:

Consolidation of softened glass SSE by viscoplastic flow
 Devitrification of glass SSE
 NCM/SSE interfected reaction

□ NCM/SSE interfacial reaction

□ NCM microcracking (especially important for high Ni-content CAM).

[1] T. Yersak et al., *Int'l J. of Applied Glass Science*, 12, 1, (2021): 124 – 134.
[2] Y. J. Nam et al., *Nano Letters*, 15, (2015): 3317 – 3323.

Milestone (March FY20) – *Establish protective coating on cathode:* Select the best coating method and coating chemistry.

- ❑ LiNbO₃ is the dominant cathode active material (CAM) coating material for sulfide SSE-based ASSB, but it may not be the optimal choice to promote thermal stability.
- Three coatings investigated: LiNbO₃,³ Li₃PO₄,⁴ and Li₂O-ZrO₂ (LZO)⁵
 Coatings characterized by differential scanning calorimetry (DSC),
- Coatings characterized by differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), and/or high-resolution transmission electron microscopy (HR-TEM)

6

5 W

ELOPMENT

[3] N. Ohta et al., *Electrochemistry Communications*, 9, (2007): 1486 – 1490.
[4] Y. -G Lee et al., *Nature Energy*, 5, (2020): 299 – 308.
[5] S. Deng et al., *Energy Storage Mater.*, 27, (2020): 117-123.

Milestone (June FY20) – *Baseline cathode performance metric:* Develop a suitable baseline system with a reversible capacity of about 120 mAh/g.

- □ Hot-pressing technology should be evaluated using commercially relevant cathode.
- Three considerations: NCM coating, composite preparation method (HM = hand mixing vs. BM = ball milling), and electrode loading.
- □ Cell description:
 - Cathode: 7:3 (w/w) NCM85105@LiNbO₃:β-Li₃PS₄
 - **Ω** Separator: 3wt.% Kevlar fiber pulp in β -Li₃PS₄
 - Anode: Indium

GM

Milestone (March FY21) – *Interfacial characterization:* Determine the parameters required to prepare cathode/catholyte samples via FIB/SEM lift-out and to analyze samples via HRTEM.

HR-TEM samples successfully prepared by focused ion beam (FIB) lift-out technique; however, samples were beam damaged despite cyrogenic temperature (-170 °C) and utilization of beam dose control.

Alternative methods to study the buried NCM/SSE interface: Electrochemical evaluation XPS DSC – reaction kinetics Cyclic voltammetry (CV)

Milestone (June FY21) – *Catholyte candidate selected:* Best performing catholytes will be identified. **Go/No-Go (June FY21)** – *Design capable of meeting performance requirements:* Demonstrate a hot-pressed cathode with a reversible capacity of > 120 mAh/g.

□ Three catholytes evaluated in trials:

- **D** Baseline: $β-Li_3PS_4$ **D** Candidate A: $Li_3PS_4 + \frac{1}{2}Lil$

Candidate B: $Li_3PS_4 + \frac{1}{2}LiBr$ (may also be expressed as "75Li₂S-25P₂S₅ + 20 mol% LiBr," or "60Li₂S-20P₂S₅·20LiBr")

Material System	Cold Press density (g/cc)	Hot Press density (g/cc)	True density (g/cc)	Cold Press porosity (%)	Hot Press porosity (%)
7:3 (w/w) NCM85105@LiNbO ₃ :β-Li ₃ PS ₄	2.36	2.47	3.36	29.7	26.7
7:3 (w/w) NCM85105@LiNbO ₃ :Candidate A	2.63	2.95	3.69	28.8	20
7:3 (w/w) NCM85105@LiNbO3:Candidate B	2.63	2.95	3.55	26.1	16.9

- Stability of the buried NCM/SSE interface evaluated using DSC, CV, and XPS.
 Energy of activation for β-Li₃PS₄/NCM exothermic reaction calculated to be 259 kJ/mol whereas for Candidate B/NCM exothermic reaction it's closer to 264 kJ/mol. Used Kissinger method.
- □ XPS data show interfacial thermal SSE decomposition is similar to that of interfacial anodic SSE decomposition.⁶

10

GM

NCM microcracking quantified using digital image analysis.
 High Ni content CAM are susceptible to microcracking⁷ under the compressive stress applied during ASSB fabrication (370 MPa). In some cases, hot-pressing exacerbates micro-cracking.

PFIB cross section image of NCM85105/β-LI₃PS₄ composite

Processed image

White = SSE particle Black = pore Blue = intact NCM particle Red = damage NCM particle

		% of damaged particles	% of intact particles
NCM85105/β-	CP	20.50%	79.50%
Li ₃ PS ₄	<mark>HP</mark>	<mark>31.25%</mark>	68.75%
NCM85105/	СР	20.00%	80.00%
Candidate B	HP	<mark>15.40%</mark>	84.60%

ELOPMENT

11

Addition of 2 wt.% carbon black mitigates the effects of NCM 85-10-5 microcracking.
 Carbon black does increase the initial side reaction.

Cold Pressed

Hot Pressed (200 °C)

GM

ELOPMENT

During hot pressing the glassy catholyte may devitrify. In some cases, ceramic precipitates may have higher ionic conductivity than the mother glass.

The newly reported superionically conductive δ-Li₃PS₄ phase,⁸ precipitated from the LiBr-doped Li₃PS₄ glass, may compensate for thermal degradation of NCM/SSE interface.

δ-Li₃PS₄ crystal structure⁸

SSE system	Phase	lonic conductivity (mS/cm)
Li ₃ PS ₄	glass	0.25
	β -Li $_3$ PS $_4$	0.29
Li ₃ PS ₄ + ½Lil	glass	1.2
	Li ₇ P ₂ S ₈ I [ref 9]	0.63
Li ₃ PS ₄ + ½LiBr	glass	0.54
	δ-Li ₃ PS ₄	1.77

υV

13

[8] A. D. Bui et al., ACS Applied Energy Materials, 4, (2021): 1-8.
[9] E. Rangasamy et al., J. of the American Chemical Society, 137, (2015), 1384 – 1387.

Milestone (June FY21) – Catholyte candidate selected: Performing catholytes will be identified. Go/No-Go (June FY21) – Design capable of meeting performance requirements: Demonstrate a hot-pressed cathode with a reversible capacity of > 120 mAh/g.

□Electrochemical performance of NCM622 cells meets performance criteria.

Cathode composite	% damaged particles	% intact particles
HP NCM622/β- Li ₃ PS ₄	8.42%	91.58%
HP NCM622/ Candidate B	14.50%	85.50%

14

GM

ENT

□ Thermal stability is predicted by a glass' short range structure and not by presence of halide dopants.

□ Li₃PS₄, otherwise known as 75Li₂S·25P₂S₅, is a fully de-networked glass composed predominantly of stable PS_4^{3-} tetrahedra. □ 70Li₂S·30P₂S₅ consolidates most effectively by hot pressing, however, it has poor thermal stability versus NCM CAM since it contains labile $P_2S_7^{4-}$ and $P_2S_6^{4-}$ structural units.

Material System	Cold Press density (g/cc)	Hot Press density (g/cc)	True density (g/cc)	Cold Press porosity (%)	Hot Press porosity (%)
NCM622 + g-70Li ₂ S·30P ₂ S ₅	2.863	3.499	3.483	17.8	0
$NCM622 + g\operatorname{-75Li}_2S\operatorname{-25P}_2S_5$	2.863	3.149	3.455	17.1	8.86

Responses to Previous Year Reviewers' Comments

□ This is the first year that the project has been reviewed.

Collaboration and Coordination

Michigan Technological University – Prof. Erik Herbert
 Agreement in place for MTU to measure mechanical properties of sulfide separator glasses with nano-indentation.

The Iowa State University – Prof. Steven W. Martin
 Material transfer agreement to be executed to evaluate processability of Iowa State's glass electrolyte formulations.

Participation in 2020 Oak Ridge National Lab SSE virtual workshop (5/15/20)
 Led session: "[Solid-state battery] Architecture – Design for Strength"
 Workshop findings reported in recent ACS Applied Energy Materials Paper (see Publications and Presentations)

Remaining Challenges and Barriers

□ Scale up challenge: Translation of technology to a high throughput roll-to-roll process

□ Process specifications (T, t, P) require optimization

□ Reduction of pressure (370 MPa)

□ Reduction of time (10 minutes)

□ Binder, reinforcement, and solvent system design requires explication

□ Tolerance of hot-pressing process to dry room conditions currently unknown

□ Integration of cathode support with separator to be addressed in the following budget period.

Any proposed future work is subject to change based on funding levels.

18

Proposed Future Research

- Design of a supported separator with process specifications matching that of the cathode support developed in this first budget period.
- □ Verifying separator performance (*e.g.*, critical current density, capacity, and cycle stability)
- □ Ensuring that separator performance is maintained at target thickness of < 40 µm. Management of defects by interlayer technology is crucial.</p>

Month/Year	Milestone Type	Description of Milestone or Go/No-Go Decision
Sept. 2021 (FY21)	Milestone	Test cell implemented: Implementation of a 3-electrode test cell. (in progress)
Dec. 2021 (FY22)	Milestone	<i>Multifunctional reinforcement:</i> Decision regarding use of multifunctional reinforcement. (not started)
March 2022 (FY22)	Milestone	<i>Moisture stability demonstrated:</i> Demonstrate that H_2S generation of target separator glasses and catholytes can be cut by 50% in a -40 °C dewpoint dry room. (not started)
June 2022 (FY22)	Milestone	Separator glass candidates selected: Selection of separator glass candidates. (not started)
June 2022 (FY22)	Go/No-Go Decision Point	Design capable of meeting performance requirements: Establish a critical current density of 1 mA/cm ² and a capacity of 4 mAh/g for > 100 cycles for a separator. Analysis indicates technical approach capable of achieving performance targets. (not started)

Any proposed future work is subject to change based on funding levels.

19

ELOPN

Summary

□ Our work verifies the possibility of utilizing cathode support for GM's hot-pressed, reinforced sulfide glass separators.

□ The thermal stability of the buried NCM/SSE interface was studied as a function of catholyte SSE composition: $(1-y)[xLi_2S \cdot (1-x)P_2S_5] \cdot yLiM$ (M = Br, I).

□ Thermal degradation of the buried NCM/SSE interface is analogous to anodic degradation of the same interface during extended cycling

LiBr halide dopant promotes the formation of a new metastable δLi_3PS_4 phase with superionic conductivity (1.77 mS/cm at 25 °C). The formation of this new phase compensates for thermal degradation of the buried NCM/SSE interface.

Prevention of CAM microcracking during cell manufacture should be a universal consideration for ASSB.

Additional DSC data

• Why did we choose not to use LZO coating? Because it consistently showed lowest exothermic onset temperature.

 While DSC shows higher onset for Candidate A catholyte, it does have a higher peak response.

Additional XRD data

β-Li₃PS₄ (HT 2 hours, 240°C) Primary ceramic phases present after hot pressing are δ-Li₃PS₄, Li₇P₂S₈I, and β-Li₃PS₄ for LPSB, LPSI, and LPS mother glasses, respectively.

23 GM RESEARCH

DSC reaction kinetics study

DSC response for LPS/NCM, LPSI/NCM, and LPSB/NCM composites when heated at 5K/min. Fractional reaction completion as a function of time for cathode composites. Legend same as for (a). Kissinger plot of cathode composites and the energy of reaction computed at 33% of reaction completion. Legend same as for (a).

ELOPMENT

24

GM

Additional XPS data

S2P SPECTRA, ALL OTHERS

BINDING ENERGY (EV)

S2P SPECTRA, HOT PRESSED

