

Li Dendrite-Free Li₇N₂I-LiOH Solid Electrolytes for High Energy Lithium Batteries

Chunsheng Wang

University of Maryland, College Park June 24, 2021

2021 DOE Vehicle Technologies Office Annual Merit Review

Project ID: bat481

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Starting date: Oct. 2020
- Ending date: Sept. 2022
- 50% complete

Budget

- Total project funding:
 - DOE \$1,000k
 - Contractor share: \$250,000
- Funding for FY 2020: \$321k
- Funding for FY 2021 \$334k

Barriers and Technical Targets

- Unstable SE/Li interface: Develop a solid-state electrolyte (SSE) or SEI layer that is stable against Li and lithiophobic.
- Dendrite mechanism: Propose dendrite suppression criteria and validate
- Low energy density: Use 3D supporter for SSE and cathodes to enable 350 wh/kg

Partners

- US Army Research Lab
- Brookhaven National Lab
- Saft America Inc

Relevance

Impact

Development of high-energy rechargeable Li metal all-solid-state batteries for future vehicle electrification

Objective

- Develop SSE stable against Li metal anode
- Develop Li dendrite suppression criterion in SSE
- Develop lithium dendrite-free bi-layered SSE for high energy density cells.

Milestones

Month/Year	Description of Milestone or Go/No-Go Decision	Status
December 2020	The critical overpotential and set-up standard area specific resistance are determined	Complete
March 2021	Develop a Li dendrite suppression criterion based on the Li dendrite formation mechanism	Complete
June 2021	Combining the Li dendrite formation mechanism and kinetics, a comprehensive Li dendrite criterion will be established	On Target
September 2021	Doped Li/Li ₇ N ₂ I-LiOH/Li cells are charged/discharged at a current of 3.0 mA/cm ² and capacity of 3.0 mAh/cm ² for 300 cycles. Critical current of Li ₇ N ₂ I-LiOH electrolytes should be >4 mA/cm2 at 3 mA/cm2 of current.	On Target
September 2021	Li/Li ₇ N ₂ I-LiOH/Li cells are charged/discharged at a current of 3.0 mA/cm ² and capacity of 3.0 mAh/cm ² for 300 cycles without Li dendrite. Analysis indicates technical approach capable of achieving performance targets	On Target

Approach

Li dendrite suppression in solid electrolyte batteries

- Use high-rate Li-alloy anode to prevent formation of void and achieve a high critical current density (CCD)
- Insert a highly lithiophobic, ionic conducting and electronic insulating LiF-Li₃N layer between Li and solid-state electrolyte to suppress Li dendrite growth
- Insert a lithiophobic, ionic conducting and electronic insulating Li₇N₂I-LiOH electrolyte layer between Li and solid-state electrolyte to suppress Li dendrite growth
- In-situ form a mixed electronic/ionic conductive and lithiophobic-lithiophilic gradent layer between Li and solid-state electrolyte to suppress Li dendrite growth

Enhancing the Li diffusivity to increase the critical current density

Void formation at Li/LLZO interface during the cycling promote Li dendrite growth

Void formation due to low Li diffusivity Void-free of Li-Mg alloy due to a high Li diffusivity Adding Mg into Li increases the Li diffusivity and enhances the areal capacity and critical current density

- At a current of 1.0 mAcm⁻², Doped Li-Mg alloy can enhance the areal capacity from 0.25 mAh/cm² to 2.7 mAh/cm²
- Doped Li-Mg alloy enables a high CCD of 2.0 mA/cm² for the garnet (LLZTO) SSE.

Lithiophobic porous LiF-Li₃N electrolyte interlayer for Li dendrite suppression

A porous Li₃N-LiF interphase layer functions as Li reservoir during cycling.

Depth profiling of Li at the interface indicates the Li penetration can be blocked within 10 µm

NERSITL NERSITL 18 18 7 RYLAN

Accomplishments

Lithiophobic porous LiF-Li₃N electrolyte interlayer for Li dendrite suppression

NUERSITL NUERSITL 18 7 RYLATO

Accomplishments

Lithiophobic Li₇N₂I-LiOH interlayer and Li₃YCI₆ electrolytes

- \succ First-principles calculation indicates Li₇N₂I-LiOH is stable against Li metal.
- \succ Li₇N₂I-LiOH|Li₃YCI₆ bi-layer SSE has a large electrochemical window from 0 to 5 V.
- Activation energy is fitted to be 0.34 eV by electrochemical impedance spectra at temperature from 30 to 80 °C.
- ➢ Ionic conductivity of Li₇N₂I-LiOH and Li₃YCI₆ are 5×10⁻⁴ S/cm

Introducing a stable lithiophobic Li₇N₂I-LiOH electrolyte layer

- Lithiophobic Li₇N₂I-LiOH can be wetted with Li by reacting with molten LiFSI-KFSI eutectic molten salt at 250 °C and reduce the interface resistance.
- Li₇N₂I-LiOH electrolyte can achieve a critical current density of >2 mA/cm² with the capacity of >1 mAh/cm².

(a) Crater sputtered by a Ga⁺ ion beam for the cycled LGPS in Li/Mg(TFSI)₂-LiTFSI-DME@LGPS/Li cell. (b) ToF-SIMS analysis for F element in the cycled Li of Li/Mg(TFSI)₂-LiTFSI-DME@LGPS/Li cell. (c) F element distribution of cycled Li in Li/Mg(TFSI)₂-LiTFSI-DME@LGPS/Li cell.

Galvanostatic cycling of Li/LGPS (300 μ m) /Li cells using LGPS with and without Mg(TFSI)₂-LiTFSI-DME treatment at step-increased current densities. The time for each charge and discharge process is 1 h.

Galvanostatic charge/discharge profiles of (a) Ni-Li₂S-LiTiS₂/LGPS/Li and (b) Ni-Li₂S-LiTiS₂/LGPS-LiMg/Li all-solid-state batteries. (c) Galvanostatic cycling profiles of Ni-Li₂S-LiTiS₂/LGPS-LiMg/Li all-solid-state battery at a current density of 100 mA g⁻¹. (d) Rate capability of a Ni-Li₂S-LiTiS₂/LGPS-LiMg/Li all-solid-state battery.

ACS Energy Lett. 2021, 6, 3, 862–868

NERSITL NERSITL 18 7 RYLAND

Accomplishments

Lithiophobic-lithiophilic gradient & mixed ionic/electronic conductive LiF-C-Li_xM interlayer

This project was not reviewed last year.

Collaborations

National Institute of Standards and Technology

- Neutron characterization for Li dendrite propagation inside the SSEs. •
- **Brookhaven National Lab**
- Synchrotron techniques/capabilities for characterization the stability of SSEs. ٠
- Saft America
- Synthesis and characterization of high-capacity cathodes •

a company of

TAL

Remaining Challenges and Barriers

Main barriers: Development of high energy all-solid state Li batteries with long cycles.

Challenges

- Understanding the correlation among critical current, critical overpotential, areal capacity and the intrinsic properties of solid state electrolytes (such as lithiophobicity, thermodynamic stability to Li, solid electrolyte interphase, porosity, thickness, ionic and electronic conductivity etc)
- Fabrication of thin electrolytes and thick cathodes with robust cycling stability.
- A dendrite-free cell still requires a decent mechanical properties of the SSEs, which calls an improvement of manufacturing process of the SSEs.

Proposed Future Research

Develop and validate the Li dendrite suppression criterion based on the thermodynamic of Li dendrite formation

Understanding the correlation of critical overpotential and intrinsic property of the solid state electrolytes through thermodynamic analysis.

Develop a comprehensive Li dendrite criterion by combining the Li dendrite formation thermodynamics and kinetics.

Understanding the Li dendrite growth kinetics in solid electrolytes

Improve the mechanical properties by advancing manufacturing process

- Kevlar fiber as supporter the enhance the strength
- Hot-press the pellet to mitigate the pores and cracks.

Apply the established approaches to synthetic assembling high energy batteries

- High-voltage battery with NMC 811 cathode
- High-capacity battery with Li₂S cathode

Any proposed future work is subject to change based on funding levels

Summary

Accomplishments:

- Li₇N₂I-LiOH SSE that is thermodynamically stable and has a high lithiophobisity against Li was synthesized and characterized.
- Ionic conductive LiF-Li₃N layer with a high interfacial energy enable Li₃PS₄ to achieve a high CCD of 6 mA/cm² and a long-term cycling stability at 1mA/cm^{2.}
- Mixed ionic/electronic conductive and lithiophobic-lithiophilic gradient LiF-Li₃N-C-M layer enable to achieve a Li plating/stripping Coulombic efficiency of 99.6% at a current of 0.2 mA cm⁻² and capacity of 0.2 mAh cm⁻² and a critical current of 3.5 mA cm⁻² at 3.5 mAh cm^{-2.}

Impact toward VTO objectives

 This project systematically studied the pathway for all-solid-state Li metal batteries for future vehicle electrification, including theoretical analysis of failure mechanism, design of functional materials, and manufacturing process. A roadmap for high energy all-solidstate battery has been proposed.