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Timeline
• Project start date, Oct 1, 2019
• Project end date, Sep 30, 2022
• 50% complete

Budget
• Total project funding: $1,250k
• DOE share $1,000k 
• $250k cost share
• $333k for FY 2021
• $333k for FY 2022

Barriers
• Performance: enabling Li metal anodes to 

achieve > 1,000 Wh/l
• How to protect Li with ceramic electrolyte

• Cost: enabling Li free manufacturing to 
achieve < $100/kWh
• How to demonstrate Li metal anode formation

Partners
• Zakuro Inc. 

Overview
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Relevance
Problem: Significant progress has been 
made in advancing solid-state electrolyte 
(SSE) science for use with Li metal anodes.  
However, commercializing viable solid-state 
battery (SSB) technology requires 
translational research.

Goal: This project aims to bridge 
fundamental and applied research to better 
understand how SSB cell design and 
packaging affect performance and durability. 

Objective: Advance TRL from 4 (Typical 
Lab Cell) to TRL 6 (Commercial Cell).

v Year 2, study behavior of thin Li.  

Metric State-of-the-art 
TRL 4 

Project Goal 
TRL 6 

Critical Current Density 
(CCD) 

1.0 mA/cm2  1.0 mA/cm2  

Membrane Thickness 1000 µm 10 µm 

Membrane Production 
Rate 

1.26 cm2 per hour 10 cm2 per minute 

Excess Li  ~ 500 µm 2 µm 

Chemical Stability Fabricate in air Fabricate in air 

Stack Pressure ~ 2 MPa 1 MPa 

Li Cycling > 80% Energy 
Retention 

100 cycles             
(+/- 15 µm Li) 

1000 cycles                 
(+/- 15 µm Li) 

Li Anode Interface 
Resistance 

< 2 ohm/cm2 < 2 ohm/cm2 

Catholyte Interface 
Resistance 

? <5% increase in RCT 
After 100 cycles  

Li Thickness ~ > 500 µm  17 µm 

CCD 

Excess Li 

Membrane 
Thickness 

Membrane 
Production 
Rate 

Chemical 
Stability 
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Pressure 

Li Cycling 

Li Interface 
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Interface 
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Li Thickness 
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Major Milestone FY 2021
Long term cycling stability analysis
• Screened approaches to integrate thin Li 

• Li must be thin (<18 µm) to achieve 350 Wh/kg 

(see right; 15 µm = 3 mAh/cm2) 

• Down-selected in situ Li anode formation as the 

Li anode integration technique.

v Approach 1: Integrated in situ Li anode formation 

into cell for operando visualization cell 

v Approach 2: Study stripping behavior of thin Li

Li-free manufacturing

Wang, Kazyak, Dasgupta, Sakamoto, Joule, in press.

Wang et al. Nature Comm. 2020
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3D surface map

5

RGB image
• Control, monitoring 

of stack pressure
• Entire electrode in 

view with 3D stitch
• Synchronize with 

electrochemistry

Study and understand 
impact of pressure, 

current density, 
interface properties on 
morphology evolution

Focus variation microscopy

Approach 1:Operando visualization

Li island

?

Shape Analysis
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0 MPa 1 MPa 5 MPa

1 mm 1 mm 1 mm
LLZO

Cu

Plating at 0.05 mA/cm2 for 2.0 mAh/cm2 in all cases
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Plating at 0.05 mA/cm2 for 2.0 mAh/cm2 in all cases
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Increasing Stack Pressure
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Factors affecting growth of 
in situ formed anodes:
§Extrinsic factors
Ø Stack pressure
Ø Plating rate (strain rate) and 

temperature (Li mech. props.)
§ Intrinsic factors
Ø Nucleation density
Ø Current collector adhesion
Ø Lithio-philicity/phobicity of SE, CC
Ø Thickness, modulus of CC
Ø Roughness of SE, CC

Implications for cell design
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Remaining challenges and barriers
Mechanics of

Interface Delamination
Uniformity of 

Stack pressure

~ 0.1°

v Implication: mechanistic insight can enable viable Li-free SSB manufacturing.
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Approach 2: Study stripping of in-situ plated thin Li

LLZO

Thin Li (µm)
Cu
σ

σ
Thick Li (mm)

Li+

Unidirectional stripping of thin in-situ 
plated Li (~10 um) 

Hypothesis: 
• At lower current densities, steady-state stripping is achieved; follows ohmic behavior
• At higher current densities, noticeable deviation from ohmic behavior observed
• Steady-state stripping controlled by the flow of Li metal

Kazyak, Garcia-Mendez, Sakamoto, Dasgupta, et al. Matter 2020
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Low current density (0.1 mA/cm2) stripping – 10 µm Li

After 0.1 mA/cm2 stripping

• Void formation is suppressed by the stack pressure at low current density.
• Dramatic increase in ionic-ohmic resistance and blocking behavior indicate Li depletion
• DC polarization and EIS data agree. 

Mostly depleted

Residual Li

as formed
after in-situ plating
after stripping

@ 25C 0.5 MPa 

Cu

Li

LLZO
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LLZO

Cu
Li

After 0.4 mA/cm2 stripping

When hitting 4.5 V EIS measurement

LLZO

Cu
Li

5 min rest
Void recovery

• Void formation is not suppressed by stack pressure.
• Cell impedance after DC stripping is much smaller than expected based on the voltage profile, but why?
• Li flows to fill voids between end of DC polarization and EIS measurement (~ 5 min), dynamic recovery?

Void

Rinterface

Void

Higher current density (0.4 mA/cm2) stripping – 10 µm Li

@ 25C 0.5 MPa 

as formed
after in-situ plating
after stripping

Cu

Li

LLZO
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In-operando GEIS during stripping – 0.4 mA/cm2, 10 µm Li
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In-operando GEIS during stripping – 0.4 mA/cm2, 10 µm Li

• Void formation alone can’t justify the dramatic increase in cell impedance.
• Non-linear increase in interface resistance could be due to current focusing effect caused by voids. 
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Dynamic recovery of voids from Li creep

0.4 mA/cm2 stripping 0.01 
mA/cm2 
stripping

• Li flow and pressure could cause void collapse within a few minutes after heavy polarization.
• Cell Resistance does not fully recover to the original value, why?
v Lack of re-wetting; voids collapse & Li makes physical contact with LLZO, but is not chemically re-bonded. 
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Remaining Challenges and Barriers of thin Li stripping

Lack of re-wetting could explain 
asymmetry in “CCD” tests

After in-situ plating

Stripping

Subsequent
plating 

v Implication: polarization during stripping likely affects/controls CCD during plating
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Re-thinking Li mechanics at the interface: hydrostatic stress

• When Li is adhered to the solid-electrolyte interface AND is thin, hydrostatic stress is created.
• Under these conditions, there may be significantly less deviatoric stress to drive plastic deformation and creep.
v This is a different physical environment than what has been assumed. 

Catherine Haslam NSF
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Summary
• Operando analysis quantified the dynamic evolution of electrode 

topology during in situ Li anode formation:
• Insight gained can enable viable Li free manufacturing.

• Analysis of thin Li (~ 10 µm) during stripping led to observation of Li de-
wetting
• Insight gained can enable stable Li stripping and plating

• The mechanical behavior of commercially-relevant Li thickness (~ 10 –
20 µm) is dramatically different that lab-scale > 500 µm Li thickness
• Insight gained can enable a better understanding of what controls stripping 

and plating. 
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Future work
• Li free manufacturing: better understand the mechanics of current 

collector delamination and pressure to enable consistent and 
uniform Li anode formation.

• Cycling of thin Li anodes: determine approaches to prevent de-
wetting during Li stripping.  

• Cathode integration: demonstrate improved cycling of solid-state 
Li-S prototypes guided by computation. 

• Continue to link project findings with vehicle electrification 
needs.
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Key publication: Joule Perspective
Transitioning solid-state batteries from lab to market: linking 

fundamental understanding with practical considerations
Michael Wang, Eric Kazyak, Neil P. Dasgupta, Jeff Sakamoto
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Backup slide

Qc vs Current density
(10 um thick Li)

Qc vs Li thickness
(J = 0.4 mA/cm2)
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Cathode 

Li 

Li-LLZO-Cathode 

10 µm 

LLZO 

Energy density:
• Stack-specific energy density (no packaging), including components shown in
• NMC 811 with 200 mAh/g and 3.85V avg discharge voltage
• Areal loading of 4 mAh/cm2 unless otherwise noted
• 10 um thick current collectors
• 95% relative density in both separator and composite layer
• 25% volume fraction SE in composite unless otherwise noted
• For all cases other than the LLZO/PEO hybrid, composite SE material is the same as 

separator

Cycle life:
• Only excess Li consumed during initial cycles (cycled capacity limited by cathode 

capacity)
• Li electrodes dominates inefficiency
• Once excess Li is depleted, capacity fade occurs
• CE assumed to be constant throughout

Performance and Cycling Specifications


