The Influence of Solar Photovoltaics Patents Funded by the U.S. Department of Energy's Solar Energy Technologies Office and Other DOE Offices ## Report prepared for: U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Solar Energy Technologies Office (SETO) 1000 Independence Avenue Washington, DC 20585 Report prepared by: 1790 Analytics LLC 130 North Haddon Avenue Haddonfield, NJ 08033 **June 2021** ## Acknowledgements This report, which traces the technological influence of DOE photovoltaics R&D broadly through the knowledge and innovation ecosystem, was prepared for the U.S. Department of Energy (DOE) under Purchase Order No. 7454233 with Lawrence Berkeley National Laboratory (LBNL), Berkeley, California, USA. LBNL is operated by The Regents of the University of California under Prime Contract No. DE-AC02-05CH11231. Yaw O. Agyeman, Program Manager, Lawrence Berkeley National Laboratory, provided technical oversight of the project. Jeff Dowd of DOE's Office of Energy Efficiency and Renewable Energy (EERE), Office of Strategic Analysis was the DOE Project Manager. Patrick Thomas of 1790 Analytics, LLC was the principal researcher, analyst and author of the report. The author extends appreciation to the following EERE and LBNL staff who provided review comments of the draft study report: - Jeff Dowd, Office of Strategic Analysis - Yaw Agyeman, LBNL - Garrett Nilsen, Solar Energy Technologies Office - Lenny Tinker, Solar Energy Technologies Office - Ammar Qusaibaty, subcontractor to the Solar Energy Technologies Office #### **Notice** This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, usefulness, or any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. ## **Table of Contents** | Executive Summary | i | |--|----| | 1.0 Introduction | 1 | | 2.0 Project Design | 2 | | Patent Citation Analysis | 2 | | Forward and Backward Tracing | 4 | | Tracing Multiple Generations of Citation Links | 4 | | Constructing Patent Families | 5 | | Metrics Used in the Analysis | 6 | | 3.0 Methodology | 7 | | Identifying SETO-funded and Other DOE-funded PV Patents | 7 | | Defining the Universe of DOE-Funded Patents | 7 | | Identifying DOE-Funded PV Patents | 9 | | Defining SETO-funded vs. Other DOE-funded PV Patents | 10 | | Final List of SETO-funded and Other DOE-funded PV Patents | 10 | | Identifying PV Patents Assigned to Leading Organizations | 11 | | Constructing Citation Links | 12 | | 4.0 Results | 12 | | Overall Trends in PV Patenting | 13 | | Trends in PV Patenting over Time | 13 | | Leading PV Assignees | 18 | | Assignees of SETO/Other DOE PV Patents | 19 | | Distribution of PV Patents across Patent Classifications | 20 | | Tracing Backwards from PV Patents Owned by Leading Organizations | 23 | | Organizational Level Results | 24 | | Patent Level Results | 27 | | Tracing Forwards from DOE-funded PV Patents | 32 | | Organizational Level Results | 32 | | Patent Level Results | 36 | | 5.0 Conclusions | 42 | ## **List of Figures** | Figure 1 - Number of PV Patent Families funded by SETO/Other DOE by Priority Year (5-Ye | ear | |--|--------| | Totals) | 13 | | Figure 2 - SETO PV Funding (in \$Million, 2018 inflation adjusted) | 14 | | Figure 3 - Number of DOE-Funded PV Granted U.S. Patents by Issue Year (5-Year Totals) | 15 | | Figure 4 - Number DOE-funded PV Patent Families (by Priority Year) and Granted U.S. Pate | nts | | (by Issue Year) | 16 | | Figure 5 - Total Number of PV Patent Families by Priority Year (5-Year Periods) | 16 | | Figure 6 - Total Number of PV Patent Families by Priority Year | 17 | | Figure 7 - Percentage of PV Patent Families Funded by DOE by Priority Year | 18 | | Figure 8 - Leading PV Organizations (Based on Number of Patent Families) | 18 | | Figure 9 - Assignees with Largest Number of SETO-Funded PV Patent Families | 19 | | Figure 10 - Assignees with Largest Number of Other DOE-funded PV Patent Families | 20 | | Figure 11 - Percentage of PV US Patents in Most Common Cooperative Patent Classifications | S | | (Among SETO-Funded PV Patents) | 21 | | Figure 12 - Percentage of PV US Patents in Most Common Cooperative Patent Classifications | S | | (Among All PV Patents) | 22 | | Figure 13 - Percentage of SETO-funded PV US Patents in Most Common Cooperative Patent | | | Classifications Across Two Time Periods | 23 | | Figure 14 - Number of Leading Organization PV Patent Families Linked via Citations to Earl | ier | | PV Patents Assigned to Each Leading Organization | 24 | | Figure 15 - Number of Patent Families Assigned to Leading PV Companies that are Linked v. | ia | | Citations to Earlier SETO/Other DOE-Funded PV Patents | 25 | | Figure 16 - Total Number of Citation Links from Leading PV Company Patent Families to Ea | arlier | | SETO/Other DOE-Funded PV Patents | 26 | | Figure 17 - Percentage of Leading PV Company Patent Families Linked via Citations to Earli | er | | SETO/ Other DOE-Funded PV Patents | | | Figure 18 - Citation Index for Leading Companies' PV Patent Portfolios, plus SETO-funded a | ınd | | Other DOE-funded PV Patents | 32 | | Figure 19 - Number of Patent Families Linked via Citations to Earlier SETO-Funded PV Pate | ents | | by CPC (Dark Green = PV technology; Light Green = Other technology) | 33 | | Figure 20 - Number of Patent Families Linked via Citations to Earlier Other DOE-Funded PV | 7 | | Patents by CPC (Dark Green = PV technology; Light Green = Other technology) | 34 | | Figure 21 - Organizations with Largest Number of Patent Families Linked via Citations to SE | ТО- | | funded PV Patents (excluding top 10 PV companies) | | | Figure 22 - Organizations with Largest Number of Patent Families Linked via Citations to Otl | | | DOE-funded PV Patents (excluding top 10 PV companies) | 35 | | Figure 23 – Examples of Highly-Cited SETO-funded PV Patents | 37 | ## **List of Tables** | Table 1 – List of Metrics Used in the Analysis | . 6 | |--|-----| | Table 2 – Filters used to Identify DOE-funded PV Patents | . 9 | | Table 3 – Number of SETO-funded and Other DOE-funded PV Patents and Patent Families | 10 | | Table 4 – Top 10 Patenting PV Organizations | 12 | | Table 5 – SETO-Funded PV Patent Families Linked via Citations to Most Subsequent Leading | | | Organization PV Patent Families | 28 | | Table 6 - Leading Organization PV Patent Families Linked via Citations to Largest Number of | | | SETO-Funded PV Patent Families | 29 | | Table 7 - Highly Cited Leading Company PV Patents Linked via Citations to Earlier SETO- | | | funded PV Patents | 30 | | Table 8 - Other DOE-Funded PV Patent Families Linked via Citations to Most Subsequent | | | Leading Organization PV Families | 31 | | Table 9 – List of Highly Cited SETO-Funded PV Patents | 36 | | Table 10 - Pre-2000 SETO-funded PV Patent Families Linked via Citations to Largest Number | of | | Subsequent PV/Other Patent Families | 38 | | Table 11 - Post-1999 SETO-funded PV Patent Families Linked via Citations to Largest Number | r | | of Subsequent PV/Other Patent Families | 39 | | Table 12 - Highly Cited Patents (not from leading PV companies) Linked via Citations to Earlie | r | | SETO-funded PV Patents | 40 | | Table 13 - Other DOE-funded PV Patent Families Linked via Citations to Largest Number of | | | Subsequent PV/Other Patent Families | 41 | ## **Executive Summary** This report describes the results of an analysis tracing the technological influence of photovoltaics (PV) research funded by the U.S. Department of Energy (DOE)'s Solar Energy Technologies Office (SETO) and its precursor programs, as well as PV research funded by other offices in DOE. The tracing is carried out both backwards and forwards in time, and focuses on patents filed in three systems: the U.S. Patent & Trademark Office (U.S. patents); the European Patent Office (EPO patents); and the World Intellectual Property Organization (WIPO patents). The primary period covered in this analysis is 1976 to 2018. The main purpose of the backward tracing is to determine the extent to which SETO-funded PV research has formed a foundation for innovations patented by leading PV organizations. Meanwhile, the primary purpose of the forward tracing is to examine the broader influence of SETO-funded PV research upon subsequent technological developments, both within and outside PV technology. In addition to these SETO-based analyses, we also extend many elements of the analysis to other DOE-funded PV patents, in order to gain insights into their influence. #### The main finding of this report is: Photovoltaics research funded by SETO, and by DOE in general, has had a significant influence on subsequent developments, both within and beyond PV technology. This influence can be seen on innovations associated with the leading PV organizations. It can also be seen on innovations associated with large companies across a range of other technologies, including semiconductors, nanomaterials, optics and displays. #### More detailed findings from this report include: - In PV
technology, in the period 1976-2018, we identified a total of 63,172 patents (22,162 U.S. patents, 16,837 EPO patents and 24,173 WIPO patents). We grouped these patents into 42,295 patent families, with each family containing all patents resulting from the same initial application (named the 'priority application'). - 860 PV patents are confirmed to be associated with SETO funding (483 U.S. patents, 158 EPO patents, and 219 WIPO patents). We grouped these SETO-funded PV patents into 361 patent families. - In addition, we identified a further 773 PV patents (513 U.S. patents, 107 EPO patents and 153 WIPO patents) that are associated with DOE funding. These "Other DOE-funded" patents are grouped into 424 patent families. - Out of these 424 Other DOE-funded patent families, 216 are definitely not SETO-funded. These patent families were either funded by a different DOE office, or were marked as being not SETO-funded by inventors or SETO technology managers, but without specifying funding from another DOE source. - The remaining 208 Other DOE-funded PV patent families could not be linked definitively to a specific DOE funding source. Many of these patent families are older, and may in fact have been SETO-funded, since they correspond with a particularly active period of PV funding by SETO. Hence, up to 49% (208 out of 424) of the Other DOE-funded PV patent families in this analysis may be SETO-funded. As such, the results presented in this report may understate the influence of SETO-funded PV research, relative to the influence of PV research funded by DOE in general. - The total number of DOE-funded PV patents (SETO-funded plus Other DOE-funded) is 1,633, corresponding to 785 patent families. This represents 1.9% of the total number of PV patent families in the period 1976-2018. - The earliest time period in the analysis, from 1976-85, saw a gradual increase in DOE-funded PV patenting (see Figure E-1). Almost all the patents in this period are defined as Other DOE-funded, since a definitive link to SETO funding could not be made. However, given that this was the peak in SETO funding of PV research, it may be that many of these Other DOE-funded patents were in fact funded by SETO. There was then a relatively consistent period in DOE-funded PV patenting, before a sharp increase in 2010-2014, with a higher proportion of SETO-funded PV patents in this time period. In recent years, the number of DOE-funded PV patents has declined. This is part of a broader decrease in PV patenting overall. Figure E-1 - Number of PV Granted U.S. Patents Funded by SETO and Other DOE Sources by Issue Year (5-Year Totals) Note: The data collection period for this analysis ended with 2018. Any 2019 patents in the 2015-2019 column are additional patents that have been included because they are members of the same patent families as pre-2019 patents. No new patent search for 2019 was carried out. - Based on U.S, EPO and WIPO patent data, the 785 DOE-funded PV patent families represent the third largest PV patent portfolio, behind only Panasonic (1,201 families) and Hon Hai Precision (commonly known as Foxconn 915 families). The remaining organizations in the top ten in terms of number of patent families are: Samsung SDI (630); Total SA (largely due its acquisition of SunPower 603); DuPont (595); Canon (587); Merck KGaA (562); Fuji Film (517); Applied Materials (473); and IBM (460). - There is a great deal of overlap between the technology focus of patents associated with SETO funding and those funded by Other DOE, those assigned to the ten leading PV organizations, plus PV patents overall. However, there are some differences. SETO-funded patents have a greater focus on back-junction PV cells and applications of PV in buildings. Hence, these are areas where SETO may have provided important funding where other organizations were less focused. Meanwhile, the other portfolios have a greater focus on organic PV cells. - More PV patent families owned by leading organizations are linked via citations to DOE-funded (i.e. SETO-funded plus Other DOE-funded) PV patents than are linked to the PV patents assigned to any other leading organization (see Figure E-2). This is an impressive result, since DOE-funded patents represent only the third largest portfolio among the leading organizations. It suggests that DOE-funded research has formed an important part of the foundation for PV research carried out by leading organizations. Figure E-2 - Number of Leading Organization PV Patent Families Linked via Citations to Earlier PV Patents Assigned to Each Leading Organization e.g. 1621 leading organization PV families are linked to earlier SETO/Other DOE-funded families - Among the leading organizations, PV patent families owned by Total SA (SunPower), IBM, Applied Materials and DuPont are linked particularly extensively via citations to earlier SETO-funded PV patents. This suggests that SETO-funded PV research has had an especially strong influence on innovations developed by these companies. Meanwhile, PV patent families assigned to Canon are linked particularly extensively via citations to Other DOE-funded patents. - Both SETO-funded and Other DOE-funded PV patents have average Citation Index values above two (the Citation Index is a normalized citation metric with an expected value of 1.0; a value over two shows that, based on their age and technology, SETO-funded and Other DOE-funded PV patents have been cited as prior art more than twice as frequently as expected by subsequent patents). The influence of SETO-funded and Other DOE-funded PV patents can be seen on innovations associated with the leading PV organizations, plus large companies across a range of other technologies. - There are a number of individual high-impact SETO-funded PV patents, examples of which are shown in Figure E-3. These patents all have Citation Index values above six (i.e. based on their age and technology, they have been cited at least six times as frequently as expected by subsequent patents). They include Schott Solar, SunPower and PowerLight patents for PV mountings and shingles, a Stanford patent describing a bilevel contact PV cell, a DOE patent for multi-junction PV cells, and Abacus Controls and MRIGlobal (National Renewable Energy Laboratory) patents for PV power management and storage. Figure E-3 – Examples of Highly-Cited SETO-funded PV Patents #### 1.0 Introduction This report focuses on photovoltaics (PV) technology. Its objective is to trace the influence of PV research funded by the Solar Energy Technologies Office (SETO) in the Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) – as well as PV research funded by DOE as a whole – upon subsequent developments both within and outside PV technology. The purpose of the report is to: - (i) Locate patents awarded for key SETO-funded (and Other DOE-funded) innovations in PV technology; and - (ii) Determine the extent to which SETO-funded (and Other DOE-funded) PV research has influenced subsequent technological developments both within and beyond PV. The primary focus of the report is on the influence of SETO-funded PV patents. That said, we also extend many elements of the analysis to DOE-funded PV patents that could not be definitively linked to SETO funding. There are both evaluative and practical reasons for extending the analysis in this way. From an evaluation perspective, it is interesting to examine the influence of SETO itself upon the development of PV technology, while also tracing the influence of DOE more generally. Meanwhile, in practical terms, determining which patents were funded by SETO, versus other offices within DOE, is often very difficult. In the U.S. patent system, applicants are required to acknowledge any government funding they have received related to the invention described in their patent application. Typically, this government support is listed at the level of the agency (e.g. Department of Energy, Department of Defense, etc.). Hence, the only way to determine which office within DOE funded a given patent is via other data resources (e.g. iEdison), or through direct input from offices, program managers and individual inventors. Such information is often unavailable, especially for older patents where records may be less comprehensive, and there is less access to the inventors and program managers involved. Rather than discard patents confirmed as DOE-funded, but that could not be definitively categorized as SETO-funded, we instead included these patents in the analysis under a separate "Other DOE-funded" category. Some of these Other DOE-funded patents are confirmed as being linked to funding from other DOE offices, while for others the source of funding within DOE is unknown. Many of these "unknown" patents are from the earliest period of the analysis (1976-1984) and may in fact have been funded by SETO, although a definitive link could not be established. Hence, the results reported here may underestimate the influence of SETO-funded PV research, relative to the influence of PV research funded by the rest of DOE. This report contains three main sections. The first of these sections describes the project design. This section includes a brief overview of patent citation analysis, and outlines its use in the multi-generation tracing employed in this project. The second section outlines the methodology, and includes a description of the various data sets used in the analysis, and the processes through which these data sets were constructed and linked. The third section presents the results of our analysis. Results are presented at the organizational level for both SETO-funded and Other DOE-funded patents. These results show the distribution of SETO-funded (and Other DOE-funded) patents across PV technologies (as defined by Cooperative Patent Classifications). They also evaluate the extent of SETO's influence (and DOE's influence in general) on subsequent
developments in PV and other technologies. Patent level results are then presented to highlight individual SETO-funded PV patents that have been particularly influential, as well as to reveal key patents from other organizations that build extensively on SETO-funded PV research.¹ ## 2.0 Project Design This section of the report outlines the project design. It begins with a brief overview of patent citation analysis, which forms the basis for much of the evaluation presented in this report. This overview is followed by a description of the techniques used to link the various patent sets in the analysis, plus a listing and description of the metrics employed in the study. The analysis described in this report is based largely upon tracing citation links between successive generations of patents. This tracing is carried out both backwards and forwards in time. The primary purpose of the backward tracing is to determine the extent to which technologies developed by leading organizations in the PV industry used SETO-funded research as a foundation. Meanwhile, the primary purpose of the forward tracing is to examine how SETO-funded PV patents influenced subsequent technological developments more broadly, both within and outside PV technology. Many elements of both the backward and forward tracing are also extended to the Other DOE-funded patents, in order to trace their influence, both overall and upon the leading PV organizations.² Our analysis covers patents filed in three systems: the U.S. Patent & Trademark Office (U.S. patents); the European Patent Office (EPO patents); and the World Intellectual Property Organization (WIPO patents). By covering multiple generations of citations across patent systems, our analysis allows for a wide variety of possible linkages between DOE-funded PV research and subsequent technological developments. Examining all of these linkage types at the level of an entire technology involves a significant data processing effort, and requires access to specialist citation databases, such as those maintained at 1790 Analytics. As a result, this project is more ambitious than many previous attempts to trace through multiple generations of research, which have often been based on studying very specific technologies or individual products. #### **Patent Citation Analysis** In many patent systems, patent documents contain a list of references to prior art. The purpose of these prior art references is to detail the state of the art at the time of the patent application, and to demonstrate how the new invention is original over and above this prior art. Prior art ¹ This is one of a series of similar reports examining research portfolios across a range of DOE offices. Note that the results are not designed to be compared across portfolios, for example in terms of numbers of patents granted, number of citations received etc. The portfolios have very different profiles with respect to research risks, funding levels and time periods covered, plus there are wide variations in the propensity to patent across technologies. Hence, the results reported in the various reports should not be used for comparative analyses across portfolios. ² The analyses described in this report were carried out separately for SETO-funded PV patents and Other DOE-funded PV patents. However, referring repeatedly to "SETO-funded/Other DOE-funded patents" or "SETO-funded/Other DOE-funded research" in describing the analyses is lengthy, so we instead use the collective terms "DOE-funded patents" and "DOE-funded research" in the Project Design and Methodology sections of the report. references may include many different types of public documents. A large number of the references are to earlier patents, and these references form the basis for this study. Other references (not covered in this study) may be to scientific papers and other types of documents, such as technical reports, magazines and newspapers. The responsibility for adding prior art references differs across patent systems. In the U.S. patent system, it is the duty of patent applicants to reference (or "cite") all prior art of which they are aware that may affect the patentability of their invention. Patent examiners may then reference additional prior art that limits the claims of the patent for which an application is being filed. In contrast to this, in patents filed at the European Patent Office (EPO) and World Intellectual Property Organization (WIPO), prior art references are added solely by the examiner, rather than by both the applicant and examiner. The number of prior art references on EPO and WIPO patents thus tends to be much lower than the number on U.S. patents.³ Patent citation analysis focuses on the links between generations of patents that are made by these prior art references. In simple terms, this type of analysis is based upon the idea that the prior art referenced by patents has had some influence, however slight, upon the development of these patents. The prior art is thus regarded as part of the foundation for the later inventions. In assessing the influence of individual patents, citation analysis centers on the idea that highly cited patents (i.e. those cited by many later patents) tend to contain technological information of particular interest or importance. As such, they form the basis for many new innovations and research efforts, and so are cited frequently by later patents. While it is not true to say that every highly cited patent is important, or that every infrequently cited patent is necessarily trivial, many research studies have shown a correlation between patent citations and measures of technological and economic importance. For background on the use of patent citation analysis, including a summary of validation studies supporting its use, see: Breitzman A. & Mogee M. "The many applications of patent analysis", *Journal of Information Science*, 28(3), 2002, 187-205; and Jaffe A. & de Rassenfosse G. "Patent Citation Data in Social Science Research: Overview and Best Practices", NBER Working Paper No. 21868, January 2016. Patent citation analysis has also been used extensively to trace technological developments over time. For example, in the analysis presented in this report, we use citations from patents to earlier patents to trace the influence of DOE-funded PV research. Specifically, we identify cases where patents cite DOE-funded PV patents as prior art. These represent first-generation links between DOE-funded patents and subsequent technological developments. We also identify cases where patents cite patents that in turn cite DOE-funded PV patents. These represent second-generation links between technological developments and DOE-funded research. The idea behind this analysis is that the later patents have built in some way on the earlier DOE-funded PV research. By determining how frequently DOE-funded PV patents have been cited by - ³ Note that this analysis does not cover patents from other systems, notably patents from the Chinese, Japanese and Korean patent offices. This is because patents from these systems do not typically list any prior art. Hence, it is not possible to use citation links to trace the influence of DOE research on patents from these systems. Having said this, Chinese, Japanese and Korean organizations are among the most prolific applicants in the WIPO system. Our analysis thus picks up the role of organizations from these countries via their WIPO filings. subsequent patents, it is thus possible to evaluate the extent to which DOE-funded research forms a foundation for various technologies both within and beyond PV. ### **Forward and Backward Tracing** As noted above, the purpose of this analysis is to trace the influence of DOE-funded PV research upon subsequent developments both within and beyond PV technology. There are two approaches to such a tracing study – backward tracing and forward tracing – each of which has a slightly different objective. Backward tracing, as the name suggests, looks backwards over time. The idea of backward tracing is to take a particular technology, product, or industry, and to trace back to identify the earlier technologies upon which it has built. In the context of this project, we first identify the leading PV organizations in terms of patent portfolio size. We then trace backwards from the patents owned by these organizations. This makes it possible to determine the extent to which innovations associated with these leading PV organizations build on earlier SETO-funded and Other DOE-funded research. The idea of forward tracing is to take a given body of research, and to trace the influence of this research upon subsequent technological developments. In the context of the current analysis, forward tracing involves identifying all PV patents resulting from research funded by DOE (i.e. SETO plus Other DOE). The influence of these patents on later generations of technology is then evaluated. This tracing is not restricted to subsequent PV patents, since the influence of a body of research may extend beyond its immediate technology. Hence, the purpose of the forward tracing element of this project is to determine the influence of DOE-funded PV patents upon developments both inside and outside this technology. #### **Tracing Multiple Generations of Citation Links** The simplest form of tracing study is one based on a single generation of citation links between patents. Such a study identifies patents that cite, or are cited by, a given set of patents as prior art. The analysis described in this report extends the tracing by adding a second generation of citation links.⁴ The backward tracing starts with patents assigned to the leading patenting organizations in PV technology. The first generation contains the patents that are cited as prior art by these starting patents. The second generation contains patents that are in turn cited as prior art by these first generation
patents. In other words, the backward tracing starts with PV patents owned by leading organizations in this technology, and traces back through two generations of earlier patents to identify the technologies upon which they were built, including those funded by DOE. The forward tracing starts with DOE-funded patents in PV technology. The first generation contains the patents that cite these DOE-funded patents as prior art. The second generation ⁴ As noted above, the forward and backward tracing were carried out separately for SETO-funded and Other DOE-funded PV patents. The references in this section to "DOE patents" are shorthand, and do not mean that the tracing was carried out for all DOE-funded PV patents as a single portfolio. contains the patents that in turn cite these first-generation patents. In other words, the analysis starts with DOE-funded PV patents and traces forward for two generations of subsequent patents. This means that we trace forward through two generations of citations starting from DOE-funded PV patents; and backward through two generations starting from the patents owned by leading PV organizations. Hence there are two types of links between DOE-funded patents and subsequent generations of patents: - 1. **Direct Links**: where a patent cites a DOE-funded PV patent as prior art. - 2. **Indirect Links**: where a patent cites an earlier patent, which in turn cites a DOE-funded PV patent. The DOE patent is thus linked indirectly to the subsequent patent. The idea behind adding the second generation of citations is that agencies such as DOE often support basic scientific research. It may take time, and numerous generations of research, for this basic research to be used in an applied technology, for example that described in a patent owned by a leading company. Introducing a second generation of citations provides greater access to these indirect links between basic research and applied technology. One potential problem with adding generations of citations must be acknowledged. Specifically, if one uses enough generations of links, eventually almost every node in the network will be linked. This is a problem common to many networks, whether these networks consist of people, institutions, or scientific documents, as in this case. The most famous example of this is the idea that every person is within six links of any other person in the world. By the same logic, if one takes a starting set of patents, and extends the network of citations far enough, almost all patents will be linked to this starting set. Hence, while including a second generation of citations provides insights into indirect links between basic research and applied technologies, adding further generations may bring in too many patents with little connection to the starting patent set. ## **Constructing Patent Families** The coverage of a patent is limited to the jurisdiction of its issuing authority. For example, a patent granted by the U.S. Patent & Trademark Office (a 'U.S. patent') provides protection only within the United States. If an organization wishes to protect an invention in multiple countries, it must file patents in each of those countries' systems. For example, a company may file to protect a given invention in the U.S., China, Germany, Japan and many other countries. This would result in multiple patents for the same invention. In addition, in some systems – notably the U.S. – inventors may apply for a series of patents based on the same underlying invention. In the case of this study, one or more U.S., EPO and WIPO patents may result from a single invention. To avoid counting the same inventions multiple times, it is necessary to construct "patent families". A patent family contains all of the patents and patent applications that result from the same original patent application (named the "priority application"). A family may include patents from multiple countries, and also multiple patents from the same country. In this project, we constructed patent families for DOE-funded PV patents, and also for the patents owned by leading PV organizations. We also assembled families for all patents linked via citations to DOE-funded PV patents. ⁵ It also means that patents from a given country's system are not synonymous with inventions made in that country. Indeed, roughly half of all U.S. patent applications are from overseas inventors. To construct these patent families, we matched the priority documents of the U.S., EPO and WIPO patents, in order to group them into the appropriate families. It should be noted that the priority document need not necessarily be a U.S., EPO or WIPO application. For example, a Japanese patent application may result in U.S., EPO and WIPO patents, which are grouped in the same patent family because they share the same Japanese priority document. #### **Metrics Used in the Analysis** Table 1 contains a list of the metrics used in the analysis. #### Table 1 – List of Metrics Used in the Analysis #### Metric #### Trends - Number of SETO/Other DOE-funded PV patent families by year of priority application - Number of SETO/Other DOE-funded granted U.S. PV patents by issue year - Overall number of PV patent families by priority year - Percentage of PV patents families funded by SETO/Other DOE by priority year #### Assignee Metrics - Number of PV patent families for leading patenting organizations - Assignees with largest number of PV patent families funded by SETO/Other DOE #### **Technology Metrics** • Patent classification (CPC) distribution for SETO-funded PV patent families (vs Other DOE-funded, leading PV companies, all PV) #### Backward Tracing Metrics - Total number of leading company PV patent families linked via citations to earlier patent families from SETO/Other DOE and other leading companies - Number of PV patent families for each leading company linked via citations to earlier SETO/Other DOE-funded patent families - Total citation links from each leading company to SETO/Other DOE-funded patent families - Percentage of leading company PV patent families linked via citations to earlier SETO/Other DOE-funded patent families - SETO/Other DOE-funded PV patent families linked via citations to largest number of leading company PV patent families - Leading company PV patent families linked via citations to most SETO-funded PV patent families - Highly cited leading company PV patent families linked via citations to earlier SETO-funded PV patent families #### Forward Tracing Metrics - Citation Index for PV patent portfolios owned by leading companies, plus portfolios of SETO/Other DOE funded PV patents - Number of patent families linked via citations to SETO/Other DOE-funded PV patents by patent classification - Organizations (beyond leading PV companies) linked via citations to largest number of SETO/Other DOE funded PV patent families - Highly cited SETO-funded PV U.S. patents - SETO/Other DOE funded PV patent families linked via citations to largest number of subsequent PV/non-PV patent families - Highly cited patents (not owned by leading companies) linked via citations to earlier SETO-funded PV patents families The metrics in Table 1 are divided into three main groups – technology landscape metrics (trends, assignees, and technology distributions), backward tracing metrics, and forward tracing metrics. Findings for each of these three groups of metrics can be found in the Results section of the report. ## 3.0 Methodology The previous section of the report outlines the objective of our analysis – that is, to determine the influence of SETO-funded (and Other DOE-funded) PV research on subsequent developments both within and outside PV technology. This section of the report describes the methodology used to implement the analysis. Particular emphasis is placed on the processes employed to construct the various data sets required for the analysis. Specifically, the forward tracing starts from the sets of PV patents funded by SETO and Other DOE. Meanwhile, the backward tracing starts from the set of all PV patents owned by leading patenting organizations in PV technology. We therefore had to define these various data sets – SETO-funded PV patents; Other DOE-funded PV patents; and PV patents assigned to the leading organizations in this technology. ## **Identifying SETO-funded and Other DOE-funded PV Patents** The objective of this analysis is to trace the influence of PV research funded by SETO (plus PV research funded by the remainder of DOE) upon subsequent developments both within and outside PV technology. Outlined below are the three steps used to identify SETO-funded and Other DOE-funded PV patents. These three steps are: - (i) Defining the universe of DOE-funded patents; - (ii) Determining which of these DOE-funded patents are relevant to PV; and - (iii) Categorizing these DOE-funded PV patents according to whether or not they can be linked definitively to SETO funding. #### Defining the Universe of DOE-Funded Patents Identifying patents funded by government agencies is often more difficult than locating patents funded by companies. When a company funds internal research, any patented inventions emerging from this research are likely to be assigned to the company itself. In order to construct a patent set for a company, one simply has to identify all patents assigned to the company, along with all of its subsidiaries, acquisitions, etc. Constructing a patent list for a government agency is more complicated, because the agency may fund research carried out at many different organizations. For example, DOE operates seventeen national laboratories. Patents emerging from these laboratories may be assigned to DOE. However, they may also be assigned to the organization that manages a given laboratory. For example, many patents from Sandia National Laboratory are assigned to Lockheed Martin (Sandia's former lab manager), while many Lawrence Livermore National Laboratory patents are
assigned to the University of California. Lockheed Martin and the University of California are large organizations with many interests beyond managing DOE labs, so one cannot simply take all of their patents and define them as DOE-funded. A further complication is that DOE does not only fund research in its own labs and research centers, it also funds extramural research carried out by other organizations. If this research results in patented inventions, these patents are likely to be assigned to the organizations carrying out the research, rather than to DOE. We therefore constructed a database containing all DOE-funded patents. These include patents assigned to DOE itself, and also patents assigned to individual labs, lab managers, and other organizations and companies funded by DOE. This "All DOE" patent database was constructed using a number of sources: - 1. DOEPatents Database The first source is a database of DOE-funded patents put together by DOE's Office of Scientific & Technical Information (OSTI), and available on the web at www.osti.gov/doepatents/. This database contains information on research grants provided by DOE. It also links these grants to the organizations or DOE labs that carried out the research, the sponsor organization within DOE, and the patents that resulted from these DOE grants. - 2. *iEdison Database* EERE staff provided us with an output from the iEdison database, which is used by government grantees and contractors to report government-funded subject inventions, patents, and utilization data to the government agency that issued the funding award. - 3. Visual Patent Finder Database EERE also provided us with an output from its Visual Patent Finder tool. This tool takes DOE-funded patents and clusters them based on word occurrence patterns. In our case, the output was a file containing DOE-funded patents. - **4.** Patents assigned to DOE in the USPTO database, we identified a small number of U.S. patents assigned to DOE itself that were not in the any of the sources above. These patents were added to the list of DOE patents. - 5. Patents with DOE Government Interest A U.S. patent has on its front page a section entitled 'Government Interest', which details the rights that the government has in a particular invention. For example, if a government agency funds research at a private company, the government may have certain rights to patents granted based on this research. We identified all patents that refer to 'Department of Energy' or 'DOE' in their Government Interest field, including different variants of these strings. We also identified patents that refer to government contracts beginning with 'DE-' or containing the string '-ENG-'. The former string typically denotes DOE contracts and financial assistance projects, while the latter is a legacy DOE lab code listed on numerous older DOE-funded patents. We manually checked all of the patents containing these strings that were not already in any of the sources above, to make sure that they are indeed DOE-funded (e.g. '-ENG-' is a string that typically denotes a DOE contract, but it is also used in a small number of NSF contracts). We then added the DOE-funded patents to the database. The "All DOE" patent database constructed from these five sources contains more than 31,000 U.S. patents issued between January 1976 and December 2018 (the end-point of the primary data collection for this analysis). #### Identifying DOE-Funded PV Patents Having defined the universe of DOE-funded patents, the next step was to determine which of these patents are relevant to PV technology. We designed a custom patent filter to identify PV patents, consisting of different combinations of Cooperative Patent Classifications (CPCs) and keywords. Details of the patent filter are shown in Table 2. #### **Table 2 – Filters used to Identify DOE-funded PV Patents** #### Filter A #### **Cooperative Patent Classification** F03G 6/001 (Producing mechanical power from PV) H01L 31/022425-022458 (PV electrodes) H01L 31/042-0516 (PV modules or arrays) Y02B 10/10-14 (Integrating PV into buildings) Y02E 10/50-58 (Photovoltaic energy) Y02E 10/60 (Thermal-PV hybrids) Y02P 70/521 (Photovoltaic generators) Y02P 80/25 (Photovoltaic energy) #### OR #### Filter B #### **Cooperative Patent Classification** H01L 31 (Semiconductors sensitive to light) #### **AND** #### Title/Abstract PV OR photo(-)voltaic* #### OR #### Filter C #### Title/Abstract amorphous(-)si* OR crystalline(-)si* OR CIGS OR cu(-)in(-)ga(-)se OR Copper(-)indium(-)gallium(-)selenide OR CD(-)TE OR cadmium(-)telluride OR GaAs* OR gallium(-)arsenide #### **AND** #### Title/Abstract Solar* OR PV OR photo(-)voltaic* The form of the filter is (Filter A OR Filter B OR Filter C), so patents that qualify under any of the three filters in Table 2 were included in the initial patent set. In addition to this patent filter, we also searched a number of specific technical terms provided to us by SETO (e.g. single(-)crystal* or multi(-)crystal* or poly(-)crystal* or czochralski* or wafer(-)si* or multiple(-)exciton* or MEG). We then manually checked the resulting list of patents to determine which of them appear relevant to PV. For example, there are a number of patents that were defined as PV and also solar thermal technology. We read these patents individually in order to define them as PV, solar thermal, or both. Having constructed the PV draft patent list, we then sent it to SETO for review. Following this review, and based on feedback from SETO, the initial list of PV patents funded by DOE contained a total of 940 granted U.S. patents. #### Defining SETO-funded vs. Other DOE-funded PV Patents As noted above, linking DOE-funded patents to individual offices is often a difficult task. For this analysis, EERE staff undertook an exhaustive process to determine which of the 940 DOE-funded PV patents in the initial list could be linked definitively to SETO funding. This process involved a number of steps, which are listed below: - (i) Linking contract numbers listed in patents to EERE project contract numbers, for financial assistance projects, - (ii) Linking contract numbers listed in patents to EERE SBIR project agreement numbers, - (iii) Asking SETO technology managers to verify individual patents, - (iv) Asking SETO technology managers to send lab patents to lab POCs to get direct verification of these patents, - (v) Contacting individual inventors listed on patents to ask them to confirm whether individual patents were funded by SETO, and - (vi) Locating references to patents in available office annual project progress reports or patent disclosure documents with accomplishments reported by PIs. #### Final List of SETO-funded and Other DOE-funded PV Patents Based on the process described above, we divided the initial list of 940 DOE-funded PV U.S. patents into two categories – SETO-funded and Other DOE-funded. We then searched for equivalents of each of these patents in the EPO and WIPO systems. An equivalent is a patent filed in a different patent system covering essentially the same invention. We also searched for U.S. patents that are continuations, continuations-in-part, or divisional applications of each of the patents in the final set. We then grouped the patents into families by matching priority documents (see earlier discussion of patent families). Table 3 contains a summary of the final number of SETO-funded and Other DOE-funded PV patents and patent families. Table 3 – Number of SETO-funded and Other DOE-funded PV Patents and Patent Families | | # Patent | # U.S. | # EPO | # WIPO | |-------------------------|-----------------|----------------|----------------|----------------| | | Families | Patents | Patents | Patents | | SETO-funded | 361 | 483 | 158 | 219 | | Other DOE-funded | 424 | 513 | 107 | 153 | | Total DOE-funded | 785 | 996 | 265 | 372 | Table 3 shows that we identified a total of 361 SETO-funded PV patent families, containing 483 U.S. patents, 158 EPO patents, and 219 WIPO patents (see Appendix A for patent list). We also identified 424 Other DOE-funded PV patent families, containing 513 U.S. patents, 107 EPO patents, and 153 WIPO patents (see Appendix B for patent list). As noted throughout this report, the approach used to define patents as SETO-funded was very stringent. Hence, a number of the 424 Other DOE-funded patent families may in fact have been funded by SETO, but are not categorized as such because a definite link could not be established. To get a better sense of how many of these Other DOE-funded patents (and patent families) may in fact be SETO-funded, we divided them into two groups. The first group contains DOE-funded patent families that are definitely not funded by SETO. These include families linked specifically to funding from an office other than SETO, or that the inventor or SETO technology manager said were not funded by SETO (but without specifying funding from a different office). There are 216 such patent families. The second group contains DOE-funded patent families where the funding source within DOE could not be established, and inventors and SETO technology managers could not state categorically whether or not they were funded by SETO. There are 208 such patent families. Many of them are from the earliest time periods in the analysis, between 1976 and 1984, so institutional knowledge associated with them is relatively scarce. Hence, up to 49% (208 out of 424) of the Other DOE-funded patent families included in this analysis may in fact be SETO-funded. As a result, the findings in this analysis may understate the influence of SETO funded PV patents, relative to the influence of the remainder of DOE patents. ### **Identifying PV Patents Assigned to Leading Organizations** The purpose of the backward tracing element of our analysis is to evaluate the influence of SETO-funded (and Other DOE-funded) research upon PV innovations produced
by leading organizations in this technology. To identify such organizations, we first defined the universe of PV patents in the period 1976-2018 using the patent filter detailed earlier in Table 2. Based on this filter, we identified a total of 63,172 PV patents (22,162 U.S. patents; 24,173 WIPO patents; and 16,837 EPO patents). We grouped these patents into 42,295 patent families by matching priority documents. We then located the most prolific patenting organizations in this overall PV patent universe, based on number of patent families. The ten organizations with the largest number of PV patent families are shown in Table 4. This includes patent families associated with all variant names under which the organizations have patents, including all subsidiaries and acquisitions. The PV patent families of the ten organizations in this table form the starting point for the backward tracing element of the analysis. ⁶ These companies are sometimes referred to hereafter as the leading PV organizations. This is based on patent portfolio size, and is not a reflection of number of units sold or revenues, profits etc. A fuller description would be the leading patenting PV organizations, but this is a cumbersome description to use throughout the results section of the report. **Table 4 – Top 10 Patenting PV Organizations** | Organization | # PV Patent Families | |---------------------|----------------------| | Panasonic | 1201 | | Hon Hai Precision | 915 | | Samsung SDI | 630 | | Total SA (SunPower) | 603 | | DuPont | 595 | | Canon | 587 | | Merck KGaA | 562 | | Fuji Film | 517 | | Applied Materials | 473 | | IBM | 460 | The organizations in Table 4 are generally large companies for which PV technology forms only one element of their operations, for example Panasonic, Canon and DuPont. There are also companies with a greater focus on energy solutions, such as Samsung SDI and Total SA (which is included in the list largely due to its majority stake in SunPower). #### **Constructing Citation Links** Through the processes described above, we constructed starting patent sets for both the backward forward tracing elements of the analysis. The patent set for the backward tracing consisted of patent families assigned to the leading patenting organizations in PV technology. The patent sets for the forward tracing consisted of SETO-funded (and, separately, Other DOE-funded) PV patent families. Having defined these patent sets, we then traced backward through two generations of citations from the leading organizations' PV patents, and forward through two generations of citations from the SETO/Other DOE-funded PV patents. These included citations listed on U.S., EPO and WIPO patents, and required extensive data cleaning to account for differences in referencing formats across these systems. The citation linkages identified, along with characteristics of the starting patent sets, form the basis for the results described in the next section of this report. #### 4.0 Results This section of the report outlines the results of our analysis tracing the influence of SETO-funded and Other DOE-funded PV research on subsequent developments both within and beyond PV technology. The results are divided into three main sections. In the first section, we examine trends in patenting over time in PV technology, and assess the distribution of SETO-funded and Other DOE-funded patents across PV technologies. The second section then reports the results of an analysis tracing backwards from PV patents owned by the leading organizations in this technology. The purpose of this analysis is to determine the extent to which PV innovations developed by leading organizations build upon earlier PV research funded by SETO (plus PV research funded by the remainder of DOE). In the third section, we report the results of an analysis tracing forwards from SETO-funded (and Other DOE-funded) PV patents. The purpose of this analysis is to assess the broader influence of DOE-funded research upon subsequent developments within and beyond PV technology. #### **Overall Trends in PV Patenting** #### Trends in PV Patenting over Time Figure 1 shows the number of DOE-funded PV patent families by priority year – that is, the year of the first application in each patent family. This figure separates SETO-funded and Other DOE-funded patent families, and reveals an interesting pattern in terms of DOE-funded patent activity in PV technology. Figure 1 - Number of PV Patent Families funded by SETO/Other DOE by Priority Year (5-Year Totals) Note: The final time period in this figure is 2015-2018, and is shown for completeness, although data for this time period are incomplete. Due to time lags associated with the patenting process, only a fraction of the patent families from this time period will be included. The earliest years in the study saw a steady increase in PV patenting by recipients of DOE funding, with 39 patent families filed in 1975-1979 followed by 67 in 1980-84. Out of all these early PV patent families, only two were confirmed as being funded by SETO. However, this may be largely due to the age of these patent families, which reduces the amount of institutional knowledge associated with them (for example program managers and inventors connected to these research efforts). Many of the patent families from these time periods were marked as "unknown" in terms of whether they were funded by SETO (rather than being marked specifically as being funded by a DOE office other than SETO). Following the initial period of increasing DOE-funded PV patenting, there was then a lull in 1985-1989. Since that time, the number of DOE-funded PV patent families has increased steadily, peaking at 194 in 2010-2014. The role of SETO funding also became much more pronounced over time. Over half of the DOE-funded PV patent families in both 2005-2009 and 2010-2014 are confirmed as being connected to SETO funding. Data for the most recent time period are incomplete, but the very low number of patent families from this period suggests there has been a decline in DOE-funded PV patenting in recent years. Figure 2 shows the pattern of SETO funding of PV research from 1974 through 2018. This figure reveals that SETO PV funding was at its peak in the late 1970s and early 1980s. Hence, a number of the early DOE-funded PV patents marked as "unknown" for funding source may in fact have been funded by SETO, although we could not conclude this definitively. This should be kept in mind in assessing the results presented below, especially in terms of evaluating the balance of SETO's influence in PV versus the influence of the remainder of DOE. Figure 2 - SETO PV Funding (in \$Million, 2018 inflation adjusted) Source: Funding data is EERE historical appropriations provided by DOE that was obtained from Congressional Budgets. A secondary source for historical data is "History of Solar Energy at DOE", a 2011 presentation by Frank (Tex) Wilkins. Funding data in nominal dollars is inflation-adjusted using the GDP deflator from U.S. Department of Commerce, Bureau of Economic Analysis. The patenting trend in Figure 1 is also reflected in Figure 3, which shows the number of PV granted U.S. patents funded by DOE by issue year. Again, the early period is characterized by a steady increase in the number of patents, none of which are defined as being associated with SETO funding. However, as noted above, many of them may in fact be SETO-funded, but we were not able to confirm this. The number of PV patents then entered a period of decline from 1985-94, before increasing again to an average of approximately 20 per year between 1995 and 2009. There then followed a rapid increase in DOE-funded U.S. patents, with 272 issued in 2010-2014, 154 of which are connected to SETO funding. The number of patents in 2015-2019 ⁷ Note that this funding chart is not included in order to facilitate a longitudinal analysis of funding vs. patenting, which is a highly complex relationship beyond the scope of this study. The chart is merely an additional data point showing how SETO was active in PV in the early years of the analysis, thus adding credence to the suggestion that SETO may have funded many of the "unknown" DOE-funded PV patents . is lower at 153, although this focuses primarily on patents issued through 2018. Even though data for this final period are incomplete, there does appear to be a downward trend in DOE-funded PV patenting in recent years. Figure 3 - Number of DOE-Funded PV Granted U.S. Patents by Issue Year (5-Year Totals) Note: The data collection period for this analysis ended with 2018. Any 2019 patents in the 2015-2019 column are additional patents that have been included because they are members of the same patent families as pre-2019 patents. No new patent search for 2019 was carried out. Comparing Figures 1 and 3 shows the effect of time lags in the patenting process, with many of the patent families with priority dates in 2005-09 and 2010-14 (Figure 1) resulting in granted U.S. patents in 2010-14 and 2015-19 (Figure 3). These time lags can also be seen in Figure 4, which shows PV patent family priority years alongside issue years for granted U.S. PV patents (in this figure, SETO and Other DOE are combined, in order to simplify the presentation). This figures reveals how the peak in DOE-funded PV patent family priority dates came in 2009-11, with the peak in U.S. patent issue dates occurring later in 2014-15. Also, referring back to Figure 3, it shows that many of the DOE-funded PV U.S. patents issued in 2015-19 were from the early part of that time period. Figure 5 shows the overall number of PV patent families by priority year (based on USPTO, EPO, and WIPO filings). This figure reveals that the number of PV patent families remained relatively consistent throughout the period from 1975 through 1999. The number of patent families then started to increase at the start of the new century, followed by a sharp
increase in both 2005-09 and 2010-14. PV patenting peaked in the latter time period, with a total of 18,765 patent families. Data for the most recent time period are again incomplete, but once again there is evidence of an overall decline in PV patenting. Figure 4 - Number DOE-funded PV Patent Families (by Priority Year) and Granted U.S. Patents (by Issue Year) Figure 5 - Total Number of PV Patent Families by Priority Year (5-Year Periods) Note: The final time period in this figure is 2015-2018, and is shown for completeness, although data for this time period are incomplete. Due to time lags associated with the patenting process, only a fraction of the patent families from this time period will be included. To examine this recent decline in overall PV patenting in more detail, Figure 6 shows the number of patent families by year, rather than in five-year periods. This figure reveals that PV patenting increased rapidly in the first decade of this century, and peaked in 2011 at 4,457 families. There was then an almost equally rapid decline, with fewer than 3,000 patent families every year since 2014. This suggests that the rapid increase followed by recent decline in DOE-funded PV patenting is part of a broader trend in PV patenting in general. Figure 6 - Total Number of PV Patent Families by Priority Year Note: The most recent years in this figure (i.e. 2017 and 2018) are shown for completeness, although data for these years are incomplete. Due to time lags associated with the patenting process, only a fraction of the patent families from these years will be included. Figure 7 shows the percentage of PV patent families filed in each time period that were funded by DOE (SETO plus Other DOE). Throughout the first 25 years of the analysis, DOE funding was connected to a sizeable percentage of PV patent families, peaking at over 7% in 1980-84. SETO funding became increasingly prominent over these time periods, with almost 4% of PV patent families linked to SETO funding in 1995-99. Since 2000, the percentage of PV patent families connected to DOE funding has dropped sharply, with less than 1% of PV patent families in both 2005-09 and 2010-14 being connected to DOE. That said, the decline in this percentage should be assessed in the context of the rapid increase in overall PV patenting. There was a tenfold increase in PV patenting between 2000 and 2011, making it much more difficult for DOE to maintain the percentage of PV patents to which it was linked. Overall, in the period 1976-2018, 1.9% of PV patent families were funded by DOE. Figure 7 - Percentage of PV Patent Families Funded by DOE by Priority Year The ten leading patenting organizations in PV technology are listed above in Table 4. The PV patent families assigned to these ten organizations form the starting point for the backward tracing element of the analysis, as outlined below. Figure 8 shows the same information in graphical form, while also including DOE-funded patent families. Figure 8 - Leading PV Organizations (Based on Number of Patent Families) Figure 8 reveals that DOE-funded PV patents represent one of the most significant portfolios in PV technology. DOE (SETO plus Other DOE) funded families rank third in this figure, behind only Panasonic and Hon Hai Precision (often known by its trading name, Foxconn). The remaining top ten companies are very large entities with interests well beyond PV technology. They include chemical companies, electronics companies and semiconductor companies, reflecting the different aspects of PV technology. There are also companies that qualify for the top ten based in part on their acquisition of other companies, notably Total SA (largely through its majority stake in SunPower) and, to a lesser extent, Applied Materials (through its acquisition of Advent Solar and Varian Semiconductor). It should be noted that there is some double-counting of patent families in Figure 8. For example, there are 58 patent families assigned to Total SA (SunPower) that were partially or fully funded by SETO. In Figure 8, these patent families are thus counted in both the SETO segment of the DOE column and in the Total SA column. This double-counting is appropriate, since these patent families are both funded by SETO and assigned to Total SA. #### Assignees of SETO/Other DOE PV Patents The DOE-funded PV patent portfolios are constructed somewhat differently from the portfolios of the top ten organizations listed in Figure 8. Specifically, DOE's 785 PV patent families are those funded by DOE, but are not necessarily assigned to the agency. They may instead be assigned to the company or DOE lab manager where the research was carried out. Figure 9 - Assignees with Largest Number of SETO-Funded PV Patent Families Figure 9 shows the leading assignees on SETO-funded PV patent families. This chart is headed by MRIGlobal (formerly Midwest Research Institute) with 77 PV patent families. These patent families result from MRIGlobal's management of the National Renewable Energy Laboratory (NREL). Note also that the third leading assignee in Figure 9 is the Alliance for Sustainable Energy, which currently manages NREL, and is co-owned by MRIGlobal and Battelle. The other major assignee on SETO-funded patents is SunPower (58 families, as noted above). There is then a gap in Figure 9 to a number of assignees with fewer SETO-funded PV families, although these assignees include major companies such as IBM, Dow, Boeing and BP. This figure thus suggests that SETO has funded PV research both internally within DOE labs, especially NREL, and also externally at major companies. Figure 10 shows the leading assignees on Other DOE-funded PV patent families. The assignee with the largest number of patent families in this figure is DOE itself, with 38 families, many from the earliest years in this analysis. Another notable feature of Figure 10 is the presence of numerous universities, including the University of California system, Princeton, Delaware, MIT, North Carolina State and Northwestern. Figure 10 - Assignees with Largest Number of Other DOE-funded PV Patent Families #### Distribution of PV Patents across Patent Classifications We analyzed the distribution of SETO-funded PV U.S. patents across Cooperative Patent Classifications (CPCs). We then compared this distribution to those associated with Other DOE-funded PV patents; PV patents assigned to the ten leading organizations; and the universe of all PV patents. This analysis provides insights into the technological focus of SETO funding in PV, ⁸ Patents may be assigned to DOE itself for various reasons, including where the inventors are federal employees; where the funding recipient elects not to pursue patent protection for, or take title to, the invention; or where the funding recipient does not have the right to take title to the invention. ⁹ The CPC is a patent classification system. Patent offices attach at least one (and often numerous) CPC classifications to patents covering the different aspects of the subject matter in the claimed invention. All CPCs attached to patents are included in this analysis. versus the focus of the remainder of DOE, leading PV organizations, and PV technology in general. The results from this CPC analysis are shown in two separate charts, each from a different perspective. The first chart (Figure 11) is based on the eight CPCs that are most prevalent among SETO-funded PV patents. The purpose of this chart is thus to show the main focus areas of SETO-funded PV research, and the extent to which these areas translate to other portfolios (Other DOE-funded; leading PV organizations; all PV). This figure shows that SETO-funded research includes relatively balanced coverage across the eight CPC groups (which is not particularly surprising, since the SETO-funded patent portfolio forms the basis for the CPCs included in the chart). The CPC Y02P 70/521, which is concerned with PV-based electricity generation, is the most common CPC among SETO-funded PV U.S. patents. Almost 30% of SETO-funded PV U.S. patents include this CPC. Monocrystalline PV cells (CPC Y02E 10/547) are also prominent, with 18% of SETO-funded PV U.S. patents including this CPC. Figure 11 - Percentage of PV US Patents in Most Common Cooperative Patent Classifications (Among SETO-Funded PV Patents) The other three patent portfolios in Table 11 (Other DOE-funded; Top 10 organizations; All PV patents) have generally similar CPC distributions to SETO-funded PV patents. This suggests that SETO PV funding has been in line with the major developments in PV technology. Having said ¹⁰ CPCs such as Y02P 70/521 (PV-based electricity generation) and Y02E 10/50 (PV energy) are relatively general, and may cover a range of technologies, hence their prominence among the PV portfolios. One could potentially drill down further, and cluster the patents in these CPCs via textual content or citation links, but such an undertaking is beyond the scope of the high-level discussion of technology distributions presented here. this, there are CPCs where SETO-funded patents have a greater concentration than the other portfolios. These include the application of PV in buildings (CPC Y02B 10/12), and backjunction PV cells (CPC H01L 31/0682). These are areas where SETO funding may have filled a research gap where other organizations were less active. Figure 12 is similar to Figure 11, except that it is from the perspective of the most common CPCs among all PV patents. Hence, the purpose of this chart is to show the main focus areas within PV as a whole, and how these areas are represented in selected PV portfolios (SETO-funded; Other DOE-funded; leading PV organizations). Figure 12 - Percentage of PV US Patents in Most Common Cooperative Patent Classifications (Among All PV Patents) The biggest difference between the CPCs in the two figures is the presence of CPC Y02E 10/549 in Figure 12. This CPC is concerned with organic PV cells. Over 17% of
all PV patents include this CPC, plus 23% of PV patents owned by the ten leading organizations, and 16% of Other DOE-funded patents. Meanwhile, only 7.2% of SETO-funded patents include this CPC. As such, this appears to be a research area where recipients of SETO funding have been less active. Figure 13 compares the CPC distribution of SETO-funded PV U.S. patents across two time periods – i.e. patents issued through the end of 2010, and patents issued from 2011 onwards. This figure reveals that, in both time periods, almost 30% of SETO-funded patents have CPC Y02P 70/521 attached, which is related to PV-based electricity generation. Beyond that CPC, the contrast between the two time periods is interesting. In the latter time period, the leading CPCs appear on a much higher percentage of patents, whereas there was a much less concentrated distribution of CPCs in the earlier time period. There has been a particular growth in SETO-funded PV patents related to back-junction solar cells (CPC H01L 31/0682) and PV systems incorporating concentrators (CPC Y02E 10/52). The former CPC was on 14.8% of post-2010 SETO-funded PV patents (compared to less than 2% in the earlier time period), while the latter appeared on 13.5% of post-2010 SETO-funded PV patents (compared to less than 5% in the earlier time period). This suggests that these are areas of increasing focus for recipients of SETO PV funding. Figure 13 - Percentage of SETO-funded PV US Patents in Most Common Cooperative Patent Classifications Across Two Time Periods #### Tracing Backwards from PV Patents Owned by Leading Organizations This section reports the results of an analysis tracing backwards from PV patents owned by leading organizations in this technology to earlier research, including that funded by SETO (and by DOE in general). The results in this section are examined at two levels. First, we report results at the organizational level. These results reveal the extent to which SETO-funded and Other DOE-funded research forms a foundation for subsequent innovations associated with leading PV organizations. Second, we drill down to the level of individual patents, with a particular focus on SETO-funded PV patents. These patent-level results highlight specific SETO-funded patents that have had a particularly strong influence on subsequent patents owned by leading organizations in this technology. They also highlight which PV patents owned by these leading organizations are linked particularly extensively to earlier SETO-funded research. - ¹¹ The average number of CPCs patents is somewhat higher for post-2010 SETO-funded PV patents, making it more likely for a given CPC to appear on these patents. However, the difference is not large enough to account for the greater concentration of CPCs among post-2010 patents. #### Organizational Level Results In the organizational level results, we first compare the influence of SETO-funded and Other DOE-funded PV research against the influence of leading organizations in this technology. We then examine which of these leading organizations build particularly extensively on SETO-funded (and Other DOE-funded) PV research. Figure 14 compares the influence of DOE-funded PV research to the influence of research carried out by the top ten PV organizations listed above. Specifically, this figure shows the number of PV patent families owned by the leading organizations that are linked via citations to earlier PV patent families assigned to each of these leading organizations (plus patent families funded by DOE). That is, the figure shows the organizations whose patents have had the strongest influence upon subsequent innovations from leading organizations in PV technology. 12 In total, 1,621 leading organization PV patent families (i.e. 24.8% of their 6,537 families) are linked via citations to earlier DOE-funded PV patents, out of which 820 are linked to SETO- - ¹² This figure compares the influence of patents *funded* by SETO/DOE against patents *owned* by (i.e. assigned to) organizations. Such a comparison is reasonable, since patents funded by organizations through their R&D budgets will be assigned to those organizations. Also, organizations cannot choose to reference the patents of a noncompetitor (such as DOE) rather than the patents of a competitor in order to reduce the "credit" given to that competitor. Such an omission could lead to the invalidation of their patents. Note that, as in Figure 8, there is an element of double-counting in Figure 14, where patent families assigned to a leading PV organization were also funded by DOE. Also, in Figures 14-17, leading company patent families linked to both VTO-funded and Other DOE-funded patents are allocated to the VTO-funded segment of the DOE column, in order to avoid double-counting these families. funded PV patents. This finding puts DOE-funded patents at the head of Figure 14. It means that more PV patent families owned by leading organizations are linked via citations to DOE-funded PV patents than are linked to the PV patents assigned to any other leading organization. This is an impressive result, since DOE-funded patents represent only the third largest portfolio among the leading organizations. Figure 14 suggests that DOE-funded research has helped form an important part of the foundation for research carried out by leading PV organizations. Indeed, this figure may underestimate the influence of SETO-funded PV research (relative to Other DOE-funded research), since some of the early Other DOE-funded PV patent families may in fact have been funded by SETO, as discussed earlier. Figures 15 through 17 examine which of the leading PV organizations build particularly extensively on earlier DOE-funded patents. Figure 15 shows how many PV patent families owned by each of the leading organizations are linked via citations to at least one earlier DOE-funded PV patent. Figure 15 - Number of Patent Families Assigned to Leading PV Companies that are Linked via Citations to Earlier SETO/Other DOE-Funded PV Patents Total SA (SunPower) heads this list, with 335 patent families linked to DOE-funded patents, 279 of which are linked to SETO. These include links from SunPower patents to its own earlier patents funded by SETO. Canon is second in Figure 15, with 264 patent families linked to DOE-funded patents, only 41 of which are linked to SETO. IBM, which appears third in Figure 15, has much more extensive links to SETO. Out of its 260 patent families linked to DOE, 163 are linked to SETO. Among other leading PV companies, both Applied Materials and DuPont also have relatively strong links to SETO-funded PV patents. Figure 16 counts the total number of citation links from leading organizations to earlier DOE-funded patents. This differs slightly from the count of linked families in Figure 15, since a single patent family can be linked to multiple earlier DOE-funded patents. Total SA is again at the head of this chart, with a total of 2,354 citation links to DOE-funded PV patents, 932 of which are links to SETO-funded patents. Applied Materials is in second place, with 1,287 links to DOE, 223 of which are linked to SETO, followed by IBM (1,211 links to DOE, of which 414 are links to SETO). In comparing Figures 15 and 16, it is interesting to note that Other DOE-funded patents are more prominent when counting number of citation links (Figure 16) versus number of linked families (Figure 15). This may be due to the relative age profile of the Other DOE-funded and SETO-funded patent families, with the former skewing older, so having more time to develop multiple links within the citation network. Figure 16 - Total Number of Citation Links from Leading PV Company Patent Families to Earlier SETO/Other DOE-Funded PV Patents There is an element of portfolio size bias in the patent family counts in Figures 15 and 16. Organizations with larger PV patent portfolios are likely to have more patent families linked to DOE, simply because they have more families overall. Figure 17 accounts for this portfolio size bias by calculating the percentage of each leading company's PV patent families that are linked via citations to earlier DOE-funded PV patents, rather than their absolute number. This is a measure of how extensively each company builds on DOE-funded research, relative to their overall patent output. Figure 17 reveals that three of the ten leading PV organizations have more than 40% of their PV patent families linked via citations to earlier DOE-funded PV patents – IBM, Total SA (SunPower) and Canon. The first two of these are linked particularly extensively to SETO. Over 56% of IBM's PV patent families are linked to DOE (35% to SETO), while 55% of Total's PV patents families are linked to DOE (46% to SETO). Out of the other leading companies, Applied Materials and DuPont both have more than 15% of their PV patent families linked to earlier SETO-funded PV patents. Figure 17 - Percentage of Leading PV Company Patent Families Linked via Citations to Earlier SETO/ Other DOE-Funded PV Patents ### Patent Level Results The previous section of the report examined results at the level of entire patent portfolios. The purpose of this section is to drill down to identify individual DOE-funded PV patent families (in particular SETO-funded families) that have had a particularly strong influence on subsequent PV patents owned by leading organizations in this technology. Looking in the opposite direction, it also identifies individual PV patents owned by leading organizations that have extensive citation links to earlier SETO-funded research. Table 5 shows the SETO-funded PV patent families linked via citations to the largest number of subsequent patent families owned by leading organizations in this technology. Many of the patents in this table are relatively old. This is not surprising, since older patents have had a longer time period to become connected to subsequent generations of technology. As
such, most of the patent families in Table 5 represent older foundational technologies that are linked to subsequent innovations associated with leading organizations in the PV industry. Among these SETO-funded patent families, one in particular stands out in terms of the number of leading organizations' patent families linked to it via citations. This SETO-funded family (whose representative patent¹³ is US #5,053,083) is assigned to Stanford University. It describes bi-level contact solar cells, and is linked to 238 PV patent families assigned to leading organizations. These include patent families owned by eight of the ten leading organizations (i.e. all except Merck and Fuji Film). Examples include patents for solar cell encapsulation assigned to DuPont, solar cell interconnects assigned to Applied Materials, and thin-film PV cells assigned to Total SA (SunPower). Many of these leading organization patents are relatively new, thus showing how an early innovation funded by SETO has fed through into more recent developments in PV technology. Table 5 – SETO-Funded PV Patent Families Linked via Citations to Most Subsequent Leading Organization PV Patent Families | Patent " | Representative | Priority | # Linked | | TD:41 | |----------|----------------|----------|----------|-------------------------|--| | Family # | Patent # | Year | Families | Assignee | Title | | 23367734 | 5053083 | 1989 | 238 | Stanford
Univ | Bilevel contact solar cells | | 24521389 | 5746839 | 1996 | 85 | Powerlight
Corp | Lightweight, self-ballasting photovoltaic roofing assembly | | 25411110 | 6114046 | 1997 | 67 | Evergreen
Solar Corp | Encapsulant material for solar cell module and laminated glass applications | | 27486847 | 6061978 | 1997 | 67 | Powerlight
Corp | Vented cavity radiant barrier assembly and method | | 46202364 | 5441897 | 1993 | 58 | MRIGlobal
(NREL) | Method of fabricating high efficiency Cu(In,Ga)(SeS).sub.2 thin films for solar cells | | 23130761 | 5436204 | 1993 | 56 | MRIGlobal
(NREL) | Recrystallization method to
selenization of thin film
Cu(In,Ga)Se.sub.2 for semiconductor
device applications | | 25411113 | 6353042 | 1997 | 55 | Evergreen
Solar Corp | UV-light stabilization additive package
for solar cell module and laminated
glass applications | | 25540364 | 5972732 | 1997 | 55 | Sandia Corp | Method of monolithic module assembly | | 46255262 | 6091021 | 1996 | 55 | Sandia Corp | Silicon cells made by self-aligned selective-emitter plasma-etchback process | | 25540256 | 5951786 | 1997 | 54 | Sandia Corp | Laminated photovoltaic modules using back-contact solar cells | The SETO-funded patent family in second place in Table 5 has representative patent US #5,746,839. This patent family was originally assigned to PowerLight, which was subsequently acquired by SunPower (and in turn by Total SA). This patent family is linked to 85 subsequent patent families assigned to the leading PV organizations. These include Canon patents describing solar modules, IBM patents for solar concentrators, and Total SA patents related to solar panel installation. Table 5 also contains patents assigned to MRIGlobal (NREL) describing CIGS PV cells, Evergreen Solar patents for solar cell encapsulation materials, and Sandia patents outlining solar modules and solar cell manufacturing. This table thus reflects the breadth of PV research ¹³ The representative patent is a single patent from a family, but it is not necessarily the priority filing. supported by SETO that has had a notable influence on technologies developed by the leading PV companies. Table 6 looks in the opposite direction to Table 5, and lists PV patent families owned by leading organizations that are linked particularly extensively to earlier patents funded by SETO. Applied Materials has the patent family with the most links to SETO-funded PV patents. This family (representative patent US #7,863,084) describes back contact solar cells. It is linked to 18 earlier SETO-funded patent families, including MRIGlobal patents for CIGS cells, Stanford patents describing bi-level PV cells, and Sandia patents outlining solar cell encapsulation. Table 6 also contains a number of Total SA patent families for solar panel installation that are linked to earlier SETO-funded patent families assigned to Evergreen Solar describing materials for encapsulating solar modules. Beyond these patents, Table 6 also contains patents assigned to DuPont, Hon Hai, IBM and Panasonic, showing that SETO-funded PV patents have influenced a variety of technological developments associated with many of the leading PV companies. Table 6 - Leading Organization PV Patent Families Linked via Citations to Largest Number of SETO-Funded PV Patent Families | Patent
Family # | Representative
Patent # | Priority
Year | # SETO
Fams | Assignee | Title | |--------------------|----------------------------|------------------|----------------|----------------------|--| | 34831070 | 7863084 | 2009 | 18 | Applied
Materials | Contact fabrication of emitter wrap-
through back contact silicon solar cells | | 58260068 | 10090430 | 2016 | 14 | Total SA | System for manufacturing a shingled solar cell module | | 54007221 | 9777948 | 2016 | 13 | Total SA | End clamps for solar systems | | 44858134 | 9263183 | 2013 | 12 | Total SA | Modular photovoltaic power supply assembly | | 58051435 | 10084104 | 2016 | 12 | Total SA | Solar panel | | 39562962 | EP2100336 | 2006 | 11 | Applied
Materials | Interconnect technologies for back contact solar cells | | 53269718 | WO2015171575 | 2014 | 10 | DuPont | Encapsulant composition | | 50363902 | 8955266 | 2012 | 10 | Hon Hai
Precision | Locking apparatus | | 43924096 | 8614115 | 2009 | 10 | IBM | Photovoltaic solar cell device manufacture | | 45723344 | 8735206 | 2010 | 10 | Panasonic | Method of manufacturing solar cell module | | 34831070 | 7863084 | 2009 | 18 | Applied
Materials | Contact fabrication of emitter wrap-
through back contact silicon solar cells | We also identified high-impact PV patents owned by leading organizations that have citations links to earlier SETO-funded patents. ¹⁴ The idea is to highlight important technologies owned by ¹⁴ High-impact patents are identified using 1790's Citation Index metric. This metric is derived by first counting the number of times a patent is cited as prior art by subsequent patents. This number is then divided by the mean number of citations received by peer patents from the same issue year and technology (as defined by their first listed Cooperative Patent Classification). For example, the number of citations received by a 2010 patent in CPC H01L 31/042 (PV modules) is divided by the mean number of citations received by all patents in that CPC issued in 2010. The expected Citation Index for an individual patent is one. The extent to which a patent's Citation Index is greater or less than one reveals whether it has been cited more or less frequently than expected, and by how much. For example, a Citation Index of 1.5 shows that a patent has been cited 50% more frequently than expected. Meanwhile a Citation Index of 0.7 reveals that a patent has been cited 30% less frequently than expected. By extension, the expected Citation Index for a portfolio of patents is also one, with values above one showing that a portfolio has been cited as frequently as leading PV organizations that are linked to earlier PV research funded by SETO. Table 7 lists PV patents owned by leading organizations that have Citation Index values over four (i.e. they have been cited at least four times as frequently as expected), and that are linked via citations to earlier SETO-funded PV patents. The patents in this table are listed in descending order according to their Citation Index values. The list is headed by three SunPower patents, including patents describing back contact solar cells (US #7,468,485) and solar cell installations (US #8,158,877). Each of these patents has been cited by more than ten times as many subsequent patents as expected. Following these SunPower patents is an IBM patent (US #8,247,261) describing substrate fabrication for PV cells, which has been cited more than eight times as frequently as expected. Table 7 also includes highly-cited patents assigned to Canon for PV-based power generation (e.g. US #7,733,069) and to Applied Materials for solar cell manufacturing (e.g. US #7,727,866). One notable feature of the patents in Table 7 is that they are relatively recent, having been granted within the last decade. As such, they represent comparatively recent high-impact innovations that build upon earlier SETO-funded PV research. Table 7 - Highly Cited Leading Company PV Patents Linked via Citations to Earlier SETO-funded PV Patents | Patent
| Issue
Year | # Cites
Received | Citation
Index | Assignee | Title | |-------------|---------------|---------------------|-------------------|----------------------|---| | 8158877 | 2012 | 86 | 11.48 | Total SA (SunPower) | Localized power point optimizer for solar cell installations | | 7339110 | 2008 | 130 | 11.16 | Total SA (SunPower) | Solar cell and method of manufacture | | 7468485 | 2008 | 125 | 10.73 | Total SA (SunPower) | Back side contact solar cell with doped polysilicon regions | | 8247261 | 2012 | 42 | 8.53 | IBM | Thin substrate fabrication using stress-induced substrate spalling | | 7733069 | 2010 | 60 | 7.11 | Canon | Power converting apparatus and power generating apparatus | | 8093675 | 2012 | 39 | 6.05 | Hon Hai
Precision | Photoelectric conversion element, photoelectric conversion element assembly and
photoelectric conversion module | | 7727866 | 2010 | 37 | 5.53 | Applied
Materials | Use of chained implants in solar cells | | 7144751 | 2006 | 66 | 5.14 | Applied
Materials | Back-contact solar cells and methods for fabrication | | 6897370 | 2005 | 72 | 4.33 | Canon | Power generation apparatus and its control method | While the patent-level results above focus on SETO-funded PV patent families, we also identified Other DOE-funded PV families linked to the largest number of subsequent patent families owned by the leading PV organizations. As noted throughout this report, some of these Other DOE-funded families may in fact be SETO-funded. expected. Note that the Citation Index is calculated for U.S. patents only, since citation rates differ across patent systems. RCA is the assignee on three of the four Other DOE-funded families linked to the largest number of leading company PV patent families. These RCA patent families (e.g. representative patent #4,167,015) date from the late 1970s through 1980, and describe amorphous silicon solar cells. They are each linked to over 100 patent families assigned to the leading PV organizations. The remaining patent families in Table 8 are assigned to a wide range of organizations, including companies (e.g. Boeing, BP, Solarex), DOE lab managers (Sandia, University of California), universities (Delaware) and DOE itself. The patent families also range in terms of filing dates from the late 1970s to the late 1990s. Table 8 - Other DOE-Funded PV Patent Families Linked via Citations to Most Subsequent **Leading Organization PV Families** | | Parragentation PV | | # T ! l al | A | Title | |----------|----------------------------|----------|----------------------|-------------|---| | Patent | Representative
Patent # | Priority | # Linked
Families | Assignee | ιπιε | | Family # | | Year | | DCA CODD | CEDMET AVED FOR | | 25410655 | 4167015 | 1978 | 168 | RCA CORP | CERMET LAYER FOR | | | | | | | AMORPHOUS SILICON SOLAR | | 2255022 | 1202002 | 1000 | 122 | DCA CODD | CELLS | | 22558022 | 4292092 | 1980 | 133 | RCA CORP | LASER PROCESSING | | | | | | | TECHNIQUE FOR
FABRICATING SOLAR CELLS | | | | | | | INTO A SOLAR BATTERY | | 22222574 | 5169659 | 1002 | 120 | CANDIA CODD | | | 22232574 | 5468652 | 1993 | 128 | SANDIA CORP | Method of making a back contacted | | 26707276 | 4272641 | 1979 | 126 | RCA CORP | solar cell TANDEM JUNCTION | | 20/0/2/0 | 42/2041 | 1979 | 120 | KCA COKF | AMORPHOUS SILICON SOLAR | | | | | | | CELLS | | 22516852 | 4377723 | 1980 | 114 | UNIV | HIGH EFFICIENCY THIN-FILM | | 22310032 | 4311123 | 1700 | 114 | DELAWARE | MULTIPLE-GAP | | | | | | DEELTWINE | PHOTOVOLTAIC DEVICE | | 22800288 | 5538564 | 1994 | 90 | UNIV | Three dimensional amorphous | | | | | , , | CALIFORNIA | silicon/microcrystalline silicon solar | | | | | | | cells | | 22360587 | 6077722 | 1998 | 89 | BP CORP | Producing thin film photovoltaic | | | | | | | modules with high integrity | | | | | | | interconnects and dual layer | | | | | | | contacts | | 27005714 | 5078804 | 1989 | 88 | BOEING | I-III-VI.SUB.2 BASED SOLAR | | | | | | | CELL | | 24233837 | 4491681 | 1983 | 85 | US DEPT | LIQUID COOLED, LINEAR | | | | | | ENERGY | FOCUS SOLAR CELL RECEIVER | | 22204120 | 4816082 | 1987 | 83 | ENERGY | THIN FILM SOLAR CELL | | | | | | CONVERSION | INCLUDING A SPATIALLY | | | | | | DEVICES | MODULATED INTRINSIC | | 22012500 | 5646050 | 1004 | 02 | AMOCO | LAYER | | 22812580 | 5646050 | 1994 | 82 | AMOCO | Increasing stabilized performance of | | 24024269 | 5246506 | 1001 | 90 | ENRON SOLAR | amorphous silicon based devices | | 24934268 | 5246506 | 1991 | 80 | SOLAREX | Multi-junction photovoltaic device and fabrication method | | | | | | CORP | and faorication method | Overall, the backward tracing element of the analysis suggests that SETO-funded and Other DOE-funded PV patents have had a strong influence on subsequent innovations associated with the leading PV organizations. This influence can be seen both over time, and across these leading organizations. ## **Tracing Forwards from DOE-funded PV Patents** The previous section of the report examines the influence of DOE-funded PV research upon technological developments associated with leading PV organizations. That analysis was based on tracing backwards from the patents of leading organizations to previous generations of research. This section reports the results of an analysis tracing in the opposite direction – starting with SETO-funded (and Other DOE-funded) PV patents, and tracing forwards in time through two generations of citations. Hence, while the previous section of the report focuses on DOE's influence upon a specific patent set (i.e. patents owned by leading PV organizations), this section of the report focuses on the broader influence of DOE-funded PV research, both within and beyond the PV industry. Also, in order to avoid repeating earlier results, the forward tracing concentrates primarily on patents that are linked to DOE-funded PV research, but are not owned by leading PV organizations. # Organizational Level Results We first generated Citation Indexes for the portfolios of SETO-funded and Other DOE-funded PV patents. For context, we then compared these Citation Index values against those of the ten leading PV organizations. The results are shown in Figure 18. 5 Citation Index (Expected Value = 1.0) $^{\circ}$ Figure 18 - Citation Index for Leading Companies' PV Patent Portfolios, plus SETOfunded and Other DOE-funded PV Patents This figure reveals that SETO-funded PV patents have a Citation Index of 2.06, showing they have been cited more than twice as frequently as expected. The Citation Index for Other DOE- Merck KGaA IBM Fuji Film Total SA Other DOE DuPont Applied funded PV patents is only slightly lower at 2.03, again meaning that these patents have been cited more than twice as frequently as expected. Overall, SETO ranks second in Figure 18, behind Total SA (SunPower), while Other DOE is third. The remaining leading PV companies all have Citation Index values below 1.3. This suggests that the portfolios of SETO-funded and Other DOE-funded PV patents are relatively high-impact compared to those of the leading companies in this technology. The Citation Index measures the overall influence of the DOE-funded PV patent portfolios, but does not necessarily address the breadth of this influence across technologies. To analyze this question, we therefore identified the Cooperative Patent Classifications (CPCs) of the patent families linked via citations to earlier DOE-funded PV patent families. These CPCs reflect the influence of DOE-funded research across technologies. Figure 19 shows the CPCs with the largest number of patent families linked to SETO-funded PV patents. The CPCs in this figure are divided into two groups – those related to PV technology (shown in dark green) and those beyond PV technology (shown in light green). The former represent the influence of SETO-funded patents on PV technology itself, while the latter represent spillovers of the influence of SETO-funded PV research into other technology areas. Figure 19 - Number of Patent Families Linked via Citations to Earlier SETO-Funded PV Patents by CPC (Dark Green = PV technology; Light Green = Other technology) Almost half of the CPCs in Figure 19 are related to PV, showing the influence of SETO-funded research in this technology. These include CPCs directed to generic PV technology (Y02P) ¹⁵ Patents typically have numerous CPCs attached to them, reflecting different aspects of the invention they describe. In this analysis, we include all CPCs attached to the patents linked to earlier DOE-funded PV patent families. 70/521 and Y02E 10/50), plus CPCs related to monocrystalline PV cells (Y02E 10/547) and the application of PV in buildings (Y02B 10/12). There are also a number of CPCs in Figure 19 related to technologies beyond PV. These include CPCs connected to solar thermal technology (Y02E 10/47 and Y02B 10/20), semiconductors (H01L 2924/00 and H01L 31/18) and nanomaterials (B82Y 30/00). This reflects how SETO-funded PV research has influenced developments in other related technologies. Figure 20 is similar to Figure 19, but is based on patent families linked to Other DOE-funded PV patents, rather than SETO-funded PV patents. This figure is headed by the same CPCs related to generic PV technology (Y02P 70/521 and Y02E 10/50) that are also at the top of Figure 19. Beyond these two CPCs, the remainder of Figure 20 has less of a PV focus. In particular there are numerous CPCs related to semiconductors (e.g. H01L 2924/00 and H01L 2924/0002) and nanomaterials (e.g. B82Y 10/00 and B82Y 20/30). This suggests that much of the influence of Other DOE-funded PV research has been beyond PV technology (keeping in mind that some of this Other DOE-funded research may in fact have been SETO-funded). Figure 20 - Number of Patent Families Linked via Citations to Earlier Other DOE-Funded PV Patents by CPC (Dark Green = PV technology; Light Green = Other technology) The organizations with the largest number of patent families linked to earlier SETO-funded PV patents are shown in Figure 21. To avoid repeating the results from earlier, this figure excludes the ten leading PV organizations used in the backward tracing element of the analysis. Also, note that Figure 21 includes all patent families assigned to the organizations listed within it, not just their patent families describing PV technology. A wide range of organizations appear in this figure. These include specialist PV companies such as First Solar, semiconductor companies including Semiconductor Energy Lab and Micron, plus multinationals such as Samsung, General Electric and Corning. This reflects the influence of SETO-funded PV research on innovations developed by many different types of organization. Figure 21 - Organizations with Largest Number of
Patent Families Linked via Citations to SETO-funded PV Patents (excluding top 10 PV companies) Figure 22 shows the organizations with the largest number of patent families linked to earlier Other DOE-funded PV patents (excluding the top 10 PV organizations). Figure 22 - Organizations with Largest Number of Patent Families Linked via Citations to Other DOE-funded PV Patents (excluding top 10 PV companies) This figure is dominated by semiconductor companies, in particular Semiconductor Energy Lab, which has almost four times as many patent families linked to Other DOE-funded PV patents as any other company. Other semiconductor companies in Figure 22 include Micron, Lam Research and Taiwan Semiconductor. The figure also includes the PV company First Solar, lighting company Cree and electronics and technology companies Samsung, Toshiba and Apple. #### Patent Level Results This section of the report drills down to identify individual DOE-funded (and particularly SETO-funded) PV patents whose influence on subsequent technological developments has been particularly strong. Looking in the opposite direction, it also highlights patents that have extensive citation links to earlier SETO-funded PV research. The simplest way of identifying high-impact SETO-funded PV patents is through overall Citation Indexes. The SETO-funded patents with the highest Citation Index values are shown in Table 9, with details of selected patents also presented in Figure 23. **Table 9 – List of Highly Cited SETO-Funded PV Patents** | Patent | Issue | # Cites | Citation | | | |---------|-------|----------|----------|---------------------|--| | # | Year | Received | Index | Assignee | Title | | 7435897 | 2008 | 149 | 12.80 | Schott Solar | Apparatus and method for mounting photovoltaic power generating systems on buildings | | 5053083 | 1991 | 196 | 9.28 | Stanford Univ | Bilevel contact solar cells | | 7328534 | 2008 | 118 | 7.38 | SunPower Corp | Shingle system | | 5223043 | 1993 | 158 | 6.75 | US Dept
Energy | Current-matched high-efficiency, multijunction monolithic solar cells | | 5929538 | 1999 | 163 | 6.64 | Abacus
Controls | Multimode power processor | | 5746839 | 1998 | 170 | 6.03 | Powerlight
Corp | Lightweight, self-ballasting photovoltaic roofing assembly | | 5747967 | 1998 | 218 | 5.90 | MRIGlobal
(NREL) | Apparatus and method for maximizing power delivered by a photovoltaic array | | 6750391 | 2004 | 183 | 5.39 | Sandia Corp | Alternating current photovoltaic building block | | 6114046 | 2000 | 100 | 5.26 | Evergreen Solar | Encapsulant material for solar cell module and laminated glass applications | | 6126740 | 2000 | 115 | 5.22 | MRIGlobal
(NREL) | Solution synthesis of mixed-metal chalcogenide
nanoparticles and spray deposition of precursor
films | | 6055089 | 2000 | 132 | 4.66 | 3M | Photovoltaic powering and control system for electrochromic windows | | 6061978 | 2000 | 127 | 4.64 | Powerlight
Corp | Vented cavity radiant barrier assembly and method | | 5436204 | 1995 | 150 | 4.52 | MRIGlobal
(NREL) | Recrystallization method to selenization of thin-
film CuInGaSe2 for semiconductor device
applications | | 5342453 | 1994 | 107 | 4.23 | MRIGlobal
(NREL) | Heterojunction solar cell | | 6809251 | 2004 | 126 | 4.17 | Powerlight
Corp | Inclined photovoltaic assembly | | 5441897 | 1995 | 137 | 4.12 | MRIGlobal
(NREL) | Method of fabricating high-efficiency CuInGaSe2 thin films for solar cells | | 5376185 | 1994 | 104 | 4.12 | MRIGlobal
(NREL) | Single junction solar cells with the optimum band gap for terrestrial concentrator applications | The patents in this table are a mix of older patents that have received large numbers of citations from subsequent generations of patents, and more recent patents that have attracted more citations than expected. One advantage of using Citation Indexes is that these two groups of patents can be compared directly, since each is benchmarked against peer patents of the same age and technology. Figure 23 – Examples of Highly-Cited SETO-funded PV Patents The patent at the head of Table 9 (US #7,435,897) is a Schott Solar patent describing apparatus for mounting PV systems on buildings. It has been cited by 149 subsequent patents, which is more than twelve times as many citations as expected for a patent from its issue year and patent classification. The second patent in Table 9 (US #5,053,083) is the Stanford bi-level solar cell patent discussed earlier in the backward tracing element of the analysis. This patent has been cited by 196 subsequent patents, which is more than nine times as many citations as expected. Table 9 also contains highly-cited patents SETO-funded PV patents assigned to a range of other organizations. They include companies such as SunPower, Abacus Controls, PowerLight and 3M, and also DOE lab managers, notably MRIGlobal (NREL) and Sandia. These highly-cited patents cover a range of PV technologies, all the way from PV materials, to solar cell fabrication, to solar panel installation. This reflects the breadth of PV research funded by SETO. The Citation Indexes in Table 9 are based on a single generation of citations to SETO-funded PV patents. Tables 10 and 11 extend this by examining a second generation of citations – i.e. they show the SETO-funded PV patents linked directly or indirectly to the largest number of subsequent patent families. ¹⁶ These subsequent families are divided into two groups, according ¹⁶ The SETO-funded patent families are divided into two tables based on their age, since older patents tend to be connected to larger numbers of subsequent patents, simply because there has been more time for them to become linked to future generations of technology. to whether they are within or beyond PV technology. This provides insights into which SETO-funded patent families have been particularly influential within PV technology, and which have had a broader impact beyond PV. Table 10 contains older SETO-funded PV patent families (i.e. with priority dates prior to 2000) linked via citations to the largest number of subsequent patent families. The patent family at the head of this table (representative patent US #5,929,538) is assigned to Abacus Controls (which was subsequently acquired by Myers Power Products). This patent family differs in focus from many of the families in this analysis, as it describes an electric power processor that can be used in conjunction with a PV array. It is linked to 1,252 subsequent patent families, only 166 of which are within PV technology. Table 10 - Pre-2000 SETO-funded PV Patent Families Linked via Citations to Largest **Number of Subsequent PV/Other Patent Families** | 1 (62223 62 62 | Priority | | # Linked | # Linked | | | |----------------|----------|------------------|----------------------|-------------------------|---------------------|--| | Family # | Year | Rep.
Patent # | # Linked
Families | # Linked
PV Families | Assignee | Title | | | | | | | | | | 25384355 | 1997 | 5929538 | 1252 | 166 | Abacus
Controls | Multimode power processor | | 23367734 | 1989 | 5053083 | 1191 | 839 | Stanford Univ | Bilevel contact solar cells | | 24423306 | 1996 | 5747967 | 1096 | 523 | MRIGlobal
(NREL) | Apparatus and method for maximizing power delivered by a photovoltaic array | | 24929053 | 1985 | 4642140 | 1058 | 367 | US Dept
Energy | Process for producing chalcogenide semiconductors | | 24521389 | 1996 | 5746839 | 1028 | 735 | Powerlight
Corp | Lightweight, self-ballasting photovoltaic roofing assembly | | 24138149 | 1995 | 5711803 | 925 | 218 | MRIGlobal
(NREL) | Preparation of a semiconductor thin film | | 22952165 | 1988 | 4963949 | 917 | 187 | US Dept
Energy | Substrate structures for inp-
based devices | | 21764810 | 1995 | 6126740 | 873 | 225 | MRIGlobal
(NREL) | Solution synthesis of mixed-
metal chalcogenide
nanoparticles and spray
deposition of precursor films | | 25464833 | 1992 | 5304509 | 871 | 155 | MRIGlobal
(NREL) | Back-side hydrogenation
technique for defect
passivation in silicon solar
cells | | 27486847 | 1997 | 6061978 | 860 | 568 | Powerlight
Corp | Vented cavity radiant barrier assembly and method | | 23130761 | 1993 | 5436204 | 776 | 539 | MRIGlobal
(NREL) | Recrystallization method to selenization of thin-film CuInGaSe2 for semiconductor device applications | | 25519401 | 1992 | 5384653 | 712 | 64 | MRIGlobal
(NREL) | Stand-alone photovoltaic (PV) powered electrochromic window | | 22088767 | 1993 | 5456205 | 648 | 29 | MRIGlobal
(NREL) | System for monitoring the growth of crystalline films on stationary substrates | The fact that much of the influence of the Abacus Controls patent family can be seen outside PV technology is not particularly surprising. Its primary focus is on handling the output from PV cells, rather than detailing the contents of the cells themselves. There are also other patent families in Table 10 with extensive links outside PV technology. They include an MRIGlobal (NREL) patent family (representative patent #5,384,653) describing energy-saving PV-powered windows, plus a patent family assigned to DOE itself related to InP-based semiconductor substrates (representative patent #4,963,949). These are examples of SETO-funded PV research influencing developments beyond PV. In contrast, a number of the other SETO-funded patent families in Table 10 have much more extensive links within PV technology. These include the Stanford bi-level solar cell patent family referred to earlier (representative patent US #5,053,083) and a PowerLight patent family (representative patent US #5,746,839) describing a lightweight PV roofing assembly. Both of these patent families are linked to over
1,000 subsequent families, over 70% of which are related to PV. This suggests that these SETO-funded patent families have had a strong influence on developments in PV technology. Table 11 contains newer SETO-funded patent families, with priority dates from 2000 on. That said, these families are still relatively old, dating from the very start of this century. Table 11 - Post-1999 SETO-funded PV Patent Families Linked via Citations to Largest Number of Subsequent PV/Other Patent Families | | Priority | Rep. | # Linked | # Linked PV | | | |----------|----------|----------|----------|-------------|-----------------|---| | Family # | Year | Patent # | Families | Families | Assignee | Title | | 23312763 | 2001 | 6750391 | 1029 | 455 | Sandia Corp | Alternating current photovoltaic building block | | 25415919 | 2001 | 6534703 | 650 | 490 | Powerlight Corp | Multi-position photovoltaic assembly | | 25415936 | 2001 | 6570084 | 630 | 461 | Powerlight Corp | Pressure equalizing photovoltaic assembly and method | | 25415901 | 2001 | 6495750 | 530 | 392 | Powerlight Corp | Stabilized PV system | | 29250703 | 2002 | 7435897 | 504 | 350 | Schott Solar | Apparatus and method for
mounting photovoltaic
power generating systems
on buildings | | 29711044 | 2002 | 6660930 | 368 | 180 | Schott Solar | Solar cell modules with improved backskin | | 26927561 | 2000 | 6784361 | 288 | 156 | BP Corp | Amorphous silicon photovoltaic devices | | 27732936 | 2002 | 6883290 | 285 | 193 | Powerlight Corp | Shingle system and method | | 27732937 | 2002 | 7328534 | 268 | 219 | Sunpower Corp | Shingle system | | 27732939 | 2002 | 7178295 | 265 | 174 | Powerlight Corp | Shingle assembly | | 25475715 | 2001 | 6583350 | 177 | 28 | Sandia Corp | Thermophotovoltaic
energy conversion using
photonic bandgap selective
emitters | | 24240779 | 2000 | 6421966 | 174 | 86 | Kawneer Co | Sunshade for building exteriors | | 33540074 | 2003 | 7170001 | 173 | 157 | Advent Solar | Fabrication of back contacted silicon solar cells using thermomigration | The patent family at the head of this table (representative patent #US 6,750,391) is assigned to Sandia and describes a modular PV system. It is linked via citations to over 1,000 subsequent patent families, almost half of them related to PV technology. The next three patent families in Table 11 are all assigned to PowerLight (e.g. representative patent US #6534703), and describe solar module assembly and installation. Most of the subsequent patent families linked to these PowerLight families are related to PV, suggesting that much of their influence has been within PV technology. The same is true for most of the patent families listed in Table 11, suggesting that the influence of more recent SETO-funded patents has been particularly strong within PV technology. The tables above identify SETO-funded patent families linked particularly strongly to subsequent technological developments. Table 12 looks in the opposite direction, and identifies highly-cited patents linked via citations to earlier SETO-funded PV patents. As such, these are examples where SETO-funded PV research has formed part of the foundation for subsequent high-impact technologies, many of them outside PV. This table focuses on patent families not owned by the leading PV organizations, since those families were examined in the backward tracing element of the analysis. Table 12 - Highly Cited Patents (not from leading PV companies) Linked via Citations to Earlier SETO-funded PV Patents | Patent | Issue | # Cites | Citation | | | |---------|-------|----------|----------|-----------------------------------|--| | # | Year | Received | Index | Assignee | Title | | 5707745 | 1998 | 1021 | 34.40 | Princeton
University | Multicolor organic light emitting devices | | 7054513 | 2006 | 428 | 26.00 | Virginia Tech
/ Lambda Inst. | Optical fiber with quantum dots | | 8019567 | 2011 | 217 | 23.79 | EcoFactor Inc | System and method for evaluating changes in the efficiency of an HVAC system | | 6818530 | 2004 | 459 | 22.08 | Seiko Epson
Corporation | Exfoliating method, transferring method of thin film device, and thin film device | | 6957608 | 2005 | 128 | 21.32 | Thin Film
Elect | Contact print methods | | 6501111 | 2002 | 419 | 20.01 | Intel
Corporation | Three-dimensional (3D) programmable device | | 7910993 | 2011 | 134 | 19.31 | Murata
Manufacturing | Method and apparatus for use in improving linearity of MOSFET's using an accumulated charge sink | | 7674687 | 2010 | 127 | 18.19 | Silicon
Genesis
Corporation | Method and structure for fabricating multiple tiled regions onto a plate using a controlled cleaving process | | 6710366 | 2004 | 359 | 17.99 | Ultradots Inc | Nanocomposite materials with engineered properties | | 7605498 | 2009 | 203 | 17.56 | Ampt LLC | Systems for highly efficient solar power conversion | The highly-cited patents in Table 12 cover a wide range of technologies. The most highly-cited patent (US #5,707,745) is assigned to Princeton University and describes an organic LED (OLED) device. This patent has been cited by more than 1,000 subsequent patents, over 30 times as many citations as expected. There are also patents in Table 12 for optical fibers, nanomaterials, semiconductors, along with an Ampt patent for solar power conversion. A number of these patents are relatively recent, showing how SETO-funded PV research has influenced recent developments across a range of technologies. As with the backward tracing element of the analysis, the patent-level results from the forward tracing focus on SETO-funded PV patents. However, within the forward tracing we did also identify Other DOE-funded PV patent families linked to the largest number of subsequent patent families within and beyond PV technology. These Other DOE-funded PV families are shown in Table 13. Table 13 - Other DOE-funded PV Patent Families Linked via Citations to Largest Number of Subsequent PV/Other Patent Families | | Priority | Rep. | # Linked | # Linked | | | |----------|----------|----------|----------|-------------|---------------------------|--| | Family # | Year | Patent # | Families | PV Families | Assignee | Title | | 25478736 | 1997 | 6268014 | 2768 | 422 | NANOSOLAR | Method for forming solar cell materials from particulars | | 26960448 | 2001 | 6882051 | 2600 | 404 | UNIV
CALIFORNIA | Nanowires, nanostructures
and devices fabricated
therefrom | | 22558022 | 1980 | 4292092 | 1649 | 920 | RCA CORP | Laser processing technique for fabricating solar cells | | 26759603 | 1987 | 4891330 | 1400 | 100 | ENERGY
CONV
DEVICES | Method of fabricating microcrystalline semiconductor material | | 25378967 | 1992 | 5248349 | 1339 | 673 | SOLAR
CELLS INC | Process for making photovoltaic devices and resultant product | | 26856229 | 1980 | 4379020 | 1279 | 123 | MIT | Polycrystalline semiconductor processing | | 22139684 | 1987 | 4775425 | 1119 | 227 | ENERGY
CONV
DEVICES | P and n-type microcrystalline semiconductor alloy material | | 26916111 | 1980 | 4392451 | 1037 | 416 | BOEING | Apparatus for forming thin-
film heterojunction solar cells | | 27005714 | 1989 | 5078804 | 969 | 765 | BOEING | I-III-VI2 based solar cell | | 26707276 | 1979 | 4272641 | 906 | 689 | RCA CORP | Tandem junction amorphous silicon solar cells | | 22360587 | 1998 | 6077722 | 900 | 595 | BP CORP | Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts | | 22812580 | 1994 | 5646050 | 879 | 368 | AMOCO
ENRON
SOLAR | Increasing stabilized performance of amorphous silicon based devices produced by highly hydrogen diluted lower temperature plasma deposition | | 24694430 | 1996 | 5741370 | 789 | 613 | EVERGREEN
SOLAR | Solar cell modules with improved backskin and methods for forming same | The patent family at the head of Table 13 (representative patent US #6,268,014) is assigned to Nanosolar and describes a process for forming films designed for use in PV cells. It is linked to over 2,700 subsequent patent families, many of which are outside PV technology. The second patent family in this table (representative patent US #6,882,051) is assigned to the University of California, and was funded by both DOE and NSF. It describes nanowires, one of the applications for which is in PV cells, and is linked to 2,600 subsequent patent families, many from outside PV technology. These are examples of patents describing technologies – thin films, nanomaterials – with applications in PV, but also in many other technologies, so it is not surprising that their influence is not restricted to PV technology. This is also true for a number of other patent families in Table 13, although the table does also include patents whose influence is much more focused within PV. These include RCA and Evergreen Solar patents for fabricating solar cells, a Boeing patent for CIGS cells, and a BP patent for a thin-film PV module. Overall, the forward tracing element of the analysis shows that SETO-funded and Other DOE-funded PV research has had a strong influence on subsequent technologies. This influence can be seen both within PV technology, and in other technologies such as semiconductors, nanomaterials, optics and displays. #### **5.0 Conclusions** This report describes the results of an analysis tracing links between PV research funded by DOE (SETO plus Other DOE) and subsequent developments both within and beyond PV technology. This tracing is carried out both backwards and forwards in time. The purpose of the backward tracing is to determine the extent to which DOE-funded research
forms a foundation for innovations developed by leading PV organizations. The purpose of the forward tracing is to examine the influence of DOE-funded PV patents upon subsequent developments, both within and outside PV technology. The backward tracing element of the analysis shows that SETO-funded and Other DOE-funded PV patents have had a strong influence on subsequent innovations associated with the leading PV organizations. This influence can be seen both over time, and across these leading organizations. Meanwhile, the forward tracing shows that DOE-funded PV patents have had a strong influence on subsequent generations of patents. This influence can be seen both within PV technology, and in other technologies, notably semiconductors and nanomaterials. Overall, the analysis presented in this report reveals that PV research funded by SETO, and by DOE in general, has had a significant influence on subsequent developments, both within and beyond PV technology. This influence can be seen on innovations associated with the leading PV organizations, plus innovations associated with large companies across a range of other technologies. **Appendix A. SETO-Funded PV Patents Used in the Analysis** | Appendix A. SETO-Funded PV Patents Used in the Analysis | | | | | | | | | |---|-------------|------------------------|----------------------|---|--|--|--|--| | | Application | Issue /
Publication | Original | | | | | | | Patent # | Year | Year | Assignees | Title | | | | | | 4642140 | 1985 | 1987 | US DEPT OF | PROCESS FOR PRODUCING | | | | | | | | | ENERGY | CHALCOGENIDE SEMICONDUCTORS | | | | | | 4650541 | 1984 | 1987 | US DEPT OF | APPARATUS AND METHOD FOR THE | | | | | | | | | ENERGY | HORIZONTAL, CRUCIBLE-FREE | | | | | | | | | | GROWTH OF SILICON SHEET | | | | | | | 1001 | | | CRYSTALS | | | | | | 4652332 | 1984 | 1987 | US DEPT OF | METHOD OF SYNTHESIZING AND | | | | | | | | | ENERGY | GROWING COPPER-INDIUM- | | | | | | 4667050 | 1005 | 1007 | HC DEPT OF | DISELENIDE (CUINSE2) CRYSTALS | | | | | | 4667059 | 1985 | 1987 | US DEPT OF | CURRENT AND LATTICE MATCHED | | | | | | 4601075 | 1005 | 1007 | ENERGY | TANDEM SOLAR CELL | | | | | | 4691075 | 1985 | 1987 | US DEPT OF | ENERGY CONVERSION SYSTEM | | | | | | 4963949 | 1988 | 1990 | ENERGY
US DEPT OF | SUBSTRATE STRUCTURES FOR INP- | | | | | | 4903949 | 1900 | 1990 | ENERGY | BASED DEVICES BASED DEVICES | | | | | | 5019177 | 1989 | 1991 | US DEPT OF | MONOLITHIC TANDEM SOLAR CELL | | | | | | 3017177 | 1707 | 1771 | ENERGY | WONOETHIC THINDEW SOLITIC CELL | | | | | | 5047112 | 1990 | 1991 | US DEPT OF | METHOD FOR PREPARING | | | | | | 00.7112 | 2,7,0 | 1,,,1 | ENERGY | HOMOGENEOUS SINGLE CRYSTAL | | | | | | | | | Er (Erto r | TERNARY III-V ALLOYS | | | | | | 5053083 | 1989 | 1991 | STANFORD | BILEVEL CONTACT SOLAR CELLS | | | | | | | | | UNIV | | | | | | | 5223043 | 1992 | 1993 | US DEPT OF | CURRENT-MATCHED HIGH- | | | | | | | | | ENERGY | EFFICIENCY, MULTIJUNCTION | | | | | | | | | | MONOLITHIC SOLAR CELLS | | | | | | 5223453 | 1991 | 1993 | US DEPT OF | CONTROLLED METAL- | | | | | | | | | ENERGY | SEMICONDUCTOR | | | | | | | | | | SINTERING/ALLOYING BY ONE- | | | | | | | | | | DIRECTIONAL REVERSE | | | | | | **** | 1000 | | | ILLUMINATION | | | | | | WO1993023591 | 1993 | 1993 | MIDWEST | CRYSTALLIZATION FROM HIGH- | | | | | | | | | RESEARCH | TEMPERATURE SOLUTIONS OF SI IN | | | | | | 5204500 | 1002 | 1004 | INSTITUTE | COPPER | | | | | | 5304509 | 1992 | 1994 | MIDWEST | BACK-SIDE HYDROGENATION
TECHNIOUE FOR DEFECT | | | | | | | | | RESEARCH | PASSIVATION IN SILICON SOLAR | | | | | | | | | INSTITUTE | CELLS | | | | | | 5314571 | 1992 | 1994 | MIDWEST | CRYSTALLIZATION FROM HIGH | | | | | | 3314371 | 1772 | 1774 | RESEARCH | TEMPERATURE SOLUTIONS OF SI IN | | | | | | | | | INSTITUTE | COPPER | | | | | | 5316593 | 1992 | 1994 | MIDWEST | HETEROJUNCTION SOLAR CELL | | | | | | 0010070 | | 1,,, . | RESEARCH | WITH PASSIVATED EMITTER | | | | | | | | | INSTITUTE | SURFACE | | | | | | 5322572 | 1991 | 1994 | US DEPT OF | MONOLITHIC TANDEM SOLAR CELL | | | | | | | | | ENERGY | | | | | | | 5342453 | 1992 | 1994 | MIDWEST | HETEROJUNCTION SOLAR CELL | | | | | | | | | RESEARCH | | | | | | | | | | INSTITUTE | | | | | | | 5356839 | 1993 | 1994 | MIDWEST | ENHANCED QUALITY THIN FILM | | | | | | | | | RESEARCH | CU(IN,GA)SE.SUB.2 FOR | | | | | | | | | INSTITUTE | SEMICONDUCTOR DEVICE | | | | | | | | | | APPLICATIONS BY VAPOR-PHASE RECRYSTALLIZATION | |--------------|------|------|----------------------------------|--| | 5358574 | 1993 | 1994 | MIDWEST
RESEARCH
INSTITUTE | DRY TEXTURING OF SOLAR CELLS | | 5376185 | 1993 | 1994 | MIDWEST
RESEARCH
INSTITUTE | SINGLE-JUNCTION SOLAR CELLS
WITH THE OPTIMUM BAND GAP
FOR TERRESTRIAL CONCENTRATOR
APPLICATIONS | | 5377037 | 1992 | 1994 | MIDWEST
RESEARCH
INSTITUTE | ELECTROCHROMIC-PHOTOVOLTAIC
FILM FOR LIGHT-SENSITIVE
CONTROL OF OPTICAL
TRANSMITTANCE | | WO1994005036 | 1993 | 1994 | MIDWEST
RESEARCH
INSTITUTE | IMPROVED BACK-SIDE HYDROGENATION TECHNIQUE FOR DEFECT PASSIVATION IN SILICON SOLAR CELLS | | WO1994011777 | 1993 | 1994 | MIDWEST
RESEARCH
INSTITUTE | ELECTROCHROMIC-PHOTOVOLTAIC
FILM FOR LIGHT-SENSITIVE
CONTROL OF OPTICAL
TRANSMITTANCE | | WO1994011778 | 1993 | 1994 | MIDWEST
RESEARCH
INSTITUTE | STAND-ALONE PHOTOVOLTAIC (PV) POWERED ELECTROCHROMIC WINDOW | | WO1994011905 | 1993 | 1994 | MIDWEST
RESEARCH
INSTITUTE | HETEROJUNCTION SOLAR CELL | | WO1994011906 | 1993 | 1994 | MIDWEST
RESEARCH
INSTITUTE | HETEROJUNCTION SOLAR CELL
WITH PASSIVATED EMITTER
SURFACE | | WO1994024696 | 1994 | 1994 | MIDWEST
RESEARCH
INSTITUTE | ENHANCED QUALITY THIN FILM
CU(IN,GA)SE2 FOR
SEMICONDUCTOR DEVICE
APPLICATIONS BY VAPOR-PHASE
RECRYSTALLIZATION | | WO1994027136 | 1994 | 1994 | MIDWEST
RESEARCH
INSTITUTE | IMPROVED DEFECT MAPPING
SYSTEM | | 5384653 | 1992 | 1995 | MIDWEST
RESEARCH
INSTITUTE | STAND-ALONE PHOTOVOLTAIC (PV) POWERED ELECTROCHROMIC WINDOW | | 5396332 | 1993 | 1995 | MIDWEST
RESEARCH
INSTITUTE | APPARATUS AND METHOD FOR
MEASURING THE THICKNESS OF A
SEMICONDUCTOR WAFER | | 5397737 | 1994 | 1995 | US DEPT OF
ENERGY | DEPOSITION OF DEVICE QUALITY
LOW H CONTENT, AMORPHOUS
SILICON FILMS | | 5401331 | 1993 | 1995 | MIDWEST
RESEARCH
INSTITUTE | SUBSTRATE FOR THIN SILICON
SOLAR CELLS | | 5406367 | 1993 | 1995 | MIDWEST
RESEARCH
INSTITUTE | DEFECT MAPPING SYSTEM | | 5426061 | 1994 | 1995 | MIDWEST
RESEARCH
INSTITUTE | IMPURITY GETTERING IN SEMICONDUCTORS | | 5429985 | 1994 | 1995 | MIDWEST
RESEARCH | FABRICATION OF OPTICALLY
REFLECTING OHMIC CONTACTS | |----------------------|------|------|-----------------------|---| | | | | INSTITUTE | FOR SEMICONDUCTOR DEVICES | | 5436204 | 1994 | 1995 | MIDWEST | RECRYSTALLIZATION METHOD TO | | | | | RESEARCH | SELENIZATION OF THIN-FILM | | | | | INSTITUTE | CU(IN,GA)SE.SUB.2 FOR | | | | | | SEMICONDUCTOR DEVICE | | | | | | APPLICATIONS | | 5441897 | 1994 | 1995 | MIDWEST | METHOD OF FABRICATING HIGH- | | | | | RESEARCH | EFFICIENCY CU(IN,GA)(SES).SUB.2 | | 5.45.CO.5 | 1002 | 1005 | INSTITUTE | THIN FILMS FOR SOLAR CELLS | | 5456205 | 1993 | 1995 | MIDWEST | SYSTEM FOR MONITORING THE | | | | | RESEARCH
INSTITUTE | GROWTH OF CRYSTALLINE FILMS
ON STATIONARY SUBSTRATES | | EP0656149 | 1993 | 1995 | MIDWEST | IMPROVED BACK-SIDE | | E1 0030149 | 1993 | 1993 | RESEARCH | HYDROGENATION TECHNIQUE FOR | | | | | INSTITUTE | DEFECT PASSIVATION IN SILICON | | | | | HVOITICIE | SOLAR CELLS. | | EP0669012 | 1993 | 1995 | MIDWEST | STAND-ALONE PHOTOVOLTAIC (PV) | | | | | RESEARCH | POWERED ELECTROCHROMIC | | | | | INSTITUTE | WINDOW. | | WO1995007549 | 1994 | 1995 | MIDWEST | SUBSTRATE FOR THIN SILICON | | | | | RESEARCH | SOLAR CELLS | | | | | INSTITUTE | | | WO1995015010 | 1994 | 1995 | MIDWEST | DRY TEXTURING OF SOLAR CELLS | | | | | RESEARCH | | | WO1005010741 | 1005 | 1005 | INSTITUTE | EADDICATION OF ODTICALLY | | WO1995019641 | 1995 | 1995 | MIDWEST
RESEARCH | FABRICATION OF OPTICALLY REFLECTING OHMIC CONTACTS | | | | | INSTITUTE | FOR SEMICONDUCTOR DEVICES | | 5484736 | 1994 | 1996 | MIDWEST | PROCESS FOR PRODUCING LARGE | | 3404730 | 1//- | 1770 | RESEARCH | GRAIN CADMIUM TELLURIDE | | | | | INSTITUTE | | | 5487792 | 1994 | 1996 | MIDWEST | MOLECULAR ASSEMBLIES AS | | | | | RESEARCH | PROTECTIVE BARRIERS AND | | | | | INSTITUTE | ADHESION PROMOTION | | | | | | INTERLAYER | | 5541118 | 1995 | 1996 | MIDWEST | PROCESS FOR PRODUCING | | | | | RESEARCH | CADMIUM SULFIDE ON A CADMIUM | | 5544616 | 1004 | 1006 | INSTITUTE | TELLURIDE SURFACE | | 5544616 | 1994 | 1996 | MIDWEST | CRYSTALLIZATION FROM HIGH
TEMPERATURE SOLUTIONS OF SI IN | | | | | RESEARCH | CU/AL SOLVENT | | 5581346 | 1994 | 1996 | INSTITUTE
MIDWEST | SYSTEM FOR CHARACTERIZING | | JJ01J T 0 | エノノマ | 1770 | RESEARCH | SEMICONDUCTOR MATERIALS AND | | | | | INSTITUTE | PHOTOVOLTAIC DEVICE | | 5588995 | 1995 | 1996 | MIDWEST | SYSTEM FOR MONITORING THE | | | | | RESEARCH | GROWTH OF CRYSTALLINE FILMS | | | | | INSTITUTE | ON STATIONARY SUBSTRATES | | EP0694209 | 1994 | 1996 | MIDWEST | ENHANCED QUALITY THIN FILM | | | | | RESEARCH | CU(IN,GA)SE 2 FOR | | | | | INSTITUTE | SEMICONDUCTOR DEVICE | | | | | | APPLICATIONS BY VAPOR-PHASE | | ED0700710 | 1004 | 1006 | MDWECE | RECRYSTALLIZATION | | EP0700512 | 1994 | 1996 | MIDWEST | IMPROVED DEFECT MAPPING | | | | | RESEARCH | SYSTEM | | | | | TO LOCATED VIDEO | | |--------------|------|------|------------------|----------------------------------| | ED070 4775 | 1005 | 1006 | INSTITUTE | DECDYCE ALLIZATION ACTUOD TO | |
EP0724775 | 1995 | 1996 | MIDWEST | RECRYSTALLIZATION METHOD TO | | | | | RESEARCH | SELENIZATION OF THIN-FILM | | | | | INSTITUTE | CU(IN,GA)SE2 FOR | | | | | | SEMICONDUCTOR DEVICE | | | | | | APPLICATIONS | | WO1996006454 | 1995 | 1996 | MIDWEST | RECRYSTALLIZATION METHOD TO | | | | | RESEARCH | SELENIZATION OF THIN-FILM | | | | | INSTITUTE | CU(IN,GA)SE2 FOR | | | | | | SEMICONDUCTOR DEVICE | | | | | | APPLICATIONS | | WO1996009900 | 1995 | 1996 | MIDWEST | APPLICATION OF OPTICAL | | | | | RESEARCH | PROCESSING FOR GROWTH OF | | | | | INSTITUTE | SILICON DIOXIDE | | WO1996010171 | 1995 | 1996 | MIDWEST | SYSTEM FOR CHARACTERIZING | | | | | RESEARCH | SEMICONDUCTOR MATERIALS AND | | | | | INSTITUTE | PHOTOVOLTAIC DEVICES | | WO1996025768 | 1995 | 1996 | MIDWEST | METHOD OF FABRICATING HIGH- | | | | | RESEARCH | EFFICIENCY CU(IN,GA)(SE,S)2 THIN | | | | | INSTITUTE | FILMS FOR SOLAR CELLS | | 5620904 | 1996 | 1997 | EVERGREEN | METHODS FOR FORMING | | | | | SOLAR INC | WRAPAROUND ELECTRICAL | | | | | | CONTACTS ON SOLAR CELLS | | 5627081 | 1994 | 1997 | MIDWEST | METHOD FOR PROCESSING SILICON | | | | | RESEARCH | SOLAR CELLS | | | | | INSTITUTE | | | 5639520 | 1996 | 1997 | MIDWEST | APPLICATION OF OPTICAL | | | | | RESEARCH | PROCESSING FOR GROWTH OF | | | | | INSTITUTE | SILICON DIOXIDE | | WO1997012082 | 1996 | 1997 | MIDWEST | PREPARATION OF A | | | | | RESEARCH | SEMICONDUCTOR THIN FILM | | | | | INSTITUTE | | | WO1997023004 | 1996 | 1997 | MIDWEST | PRODUCTION OF FILMS AND | | | | | RESEARCH | POWDERS FOR SEMICONDUCTOR | | | | | INSTITUTE | DEVICE APPLICATIONS | | WO1997034325 | 1997 | 1997 | EVERGREEN | METHODS FOR FORMING | | | | | SOLAR INC | WRAPAROUND ELECTRICAL | | | | | | CONTACTS ON SOLAR CELLS | | WO1997038185 | 1997 | 1997 | POWERLIGHT | LIGHTWEIGHT, SELF-BALLASTING | | | | | CORP | PHOTOVOLTAIC ROOFING | | | | | | ASSEMBLY | | 5711803 | 1995 | 1998 | MIDWEST | PREPARATION OF A | | | | | RESEARCH | SEMICONDUCTOR THIN FILM | | | | | INSTITUTE | | | 5712187 | 1995 | 1998 | MIDWEST | VARIABLE TEMPERATURE | | 0.1210, | | 2770 | RESEARCH | SEMICONDUCTOR FILM | | | | | INSTITUTE | DEPOSITION | | 5731031 | 1995 | 1998 | MIDWEST | PRODUCTION OF FILMS AND | | 2.31031 | -222 | 1//0 | RESEARCH | POWDERS FOR SEMICONDUCTOR | | | | | INSTITUTE | DEVICE APPLICATIONS | | 5746839 | 1996 | 1998 | POWERLIGHT | LIGHTWEIGHT, SELF-BALLASTING | | 3170037 | 1770 | 1770 | CORP | PHOTOVOLTAIC ROOFING | | | | | COM | ASSEMBLY | | 5747967 | 1996 | 1998 | MIDWEST | APPARATUS AND METHOD FOR | | 3171701 | 1770 | 1770 | RESEARCH | MAXIMIZING POWER DELIVERED | | | | | INSTITUTE | BY A PHOTOVOLTAIC ARRAY | | | | | HISTITUIE | DI ATTIOTO (OLTAIC ARRAT | | 5757474 | 1995 | 1998 | MIDWEST
RESEARCH
INSTITUTE | SYSTEM FOR CHARACTERIZING
SEMICONDUCTOR MATERIALS AND
PHOTOVOLTAIC DEVICES | |--------------|------|------|----------------------------------|---| | 5776819 | 1994 | 1998 | MIDWEST
RESEARCH
INSTITUTE | THROUGH CALIBRATION DEPOSITION OF DEVICE QUALITY, LOW HYDROGEN CONTENT, AMORPHOUS SILICON FILMS BY HOT FILAMENT TECHNIQUE USING "SAFE" SILICON SOURCE GAS | | 5779877 | 1997 | 1998 | DRINKARD
METALOX INC | RECYCLING OF CIS PHOTOVOLTAIC WASTE | | 5785769 | 1995 | 1998 | MIDWEST
RESEARCH
INSTITUTE | SUBSTRATE FOR THIN SILICON
SOLAR CELLS | | 5792280 | 1996 | 1998 | SANDIA CORP | METHOD FOR FABRICATING
SILICON CELLS | | WO1998000856 | 1996 | 1998 | MIDWEST
RESEARCH
INSTITUTE | VARIBLE TEMPERATURE
SEMICONDUCTOR FILM
DEPOSITION | | WO1998047702 | 1997 | 1998 | MIDWEST
RESEARCH
INSTITUTE | PHOTOVOLTAIC DEVICE AND ITS
METHOD OF PREPARATION | | WO1998053500 | 1998 | 1998 | MIDWEST
RESEARCH
INSTITUTE | INTERDIGITATED PHOTOVOLTAIC POWER CONVERSION DEVICE | | WO1998059122 | 1998 | 1998 | POWERLIGHT
CORP | VENTED CAVITY RADIANT
BARRIER ASSEMBLY AND METHOD | | 5871591 | 1996 | 1999 | SANDIA CORP | SILICON SOLAR CELLS MADE BY A
SELF-ALIGNED, SELECTIVE-
EMITTER, PLASMA-ETCHBACK
PROCESS | | 5897331 | 1996 | 1999 | MIDWEST
RESEARCH
INSTITUTE | HIGH EFFICIENCY LOW COST THIN
FILM SILICON SOLAR CELL DESIGN
AND METHOD FOR MAKING | | 5897685 | 1997 | 1999 | DRINKARD
METALOX INC | RECYCLING OF CDTE
PHOTOVOLTAIC WASTE | | 5897715 | 1997 | 1999 | MIDWEST
RESEARCH
INSTITUTE | INTERDIGITATED PHOTOVOLTAIC POWER CONVERSION DEVICE | | 5909632 | 1997 | 1999 | MIDWEST
RESEARCH
INSTITUTE | USE OF SEPARATE ZNTE INTERFACE
LAYERS TO FORM OHMIC
CONTACTS TO P-CDTE FILMS | | 5922142 | 1996 | 1999 | MIDWEST
RESEARCH
INSTITUTE | PHOTOVOLTAIC DEVICES COMPRISING CADMIUM STANNATE TRANSPARENT CONDUCTING FILMS AND METHOD FOR MAKING | | 5929538 | 1997 | 1999 | ABACUS
CONTROLS INC | MULTIMODE POWER PROCESSOR | | 5929652 | 1997 | 1999 | MIDWEST
RESEARCH
INSTITUTE | APPARATUS FOR MEASURING
MINORITY CARRIER LIFETIMES IN
SEMICONDUCTOR MATERIALS | | 5948176 | 1997 | 1999 | MIDWEST
RESEARCH
INSTITUTE | CADMIUM-FREE JUNCTION
FABRICATION PROCESS FOR
CUINSE.SUB.2 THIN FILM SOLAR
CELLS | | 5951786 | 1997 | 1999 | SANDIA CORP | LAMINATED PHOTOVOLTAIC | | | | | | MODULES USING BACK-CONTACT SOLAR CELLS | |--------------|------|------|--------------------------------------|--| | 5972732 | 1997 | 1999 | SANDIA CORP | METHOD OF MONOLITHIC MODULE
ASSEMBLY | | 5976614 | 1998 | 1999 | MIDWEST
RESEARCH | PREPARATION OF CUXINYGAZSEN PRECURSOR FILMS AND POWDERS | | 5997718 | 1998 | 1999 | INSTITUTE
DRINKARD
METALOX INC | BY ELECTROLESS DEPOSITION RECYCLING OF CDTE PHOTOVOLTAIC WASTE | | EP0892877 | 1997 | 1999 | POWERLIGHT
CORP | LIGHTWEIGHT, SELF-BALLASTING
PHOTOVOLTAIC ROOFING
ASSEMBLY | | EP0956599 | 1997 | 1999 | EVERGREEN
SOLAR INC | METHODS FOR FORMING
WRAPAROUND ELECTRICAL
CONTACTS ON SOLAR CELLS | | WO1999004971 | 1998 | 1999 | EVERGREEN
SOLAR INC | ENCAPSULANT MATERIAL FOR
SOLAR CELL MODULE AND
LAMINATED GLASS APPLICATIONS | | WO1999005206 | 1998 | 1999 | EVERGREEN
SOLAR INC | UV LIGHT STABILIZATION ADDITIVE PACKAGE FOR SOLAR CELL MODULE AND LAMINATED GLASS APPLICATIONS | | WO1999012045 | 1998 | 1999 | MIDWEST
RESEARCH
INSTITUTE | APPARATUS FOR MEASURING
MINORITY CARRIER LIFETIMES IN
SEMICONDUCTOR MATERIALS | | WO1999017377 | 1998 | 1999 | MIDWEST
RESEARCH
INSTITUTE | CADMIUM-FREE JUNCTION
FABRICATION PROCESS FOR
CUINSE2 THIN FILM SOLAR CELLS | | WO1999017379 | 1998 | 1999 | EVERGREEN
SOLAR INC | METHODS FOR IMPROVING POLYMERIC MATERIALS FOR USE IN SOLAR CELL APPLICATIONS | | WO1999037832 | 1999 | 1999 | MIDWEST
RESEARCH
INSTITUTE | SOLUTION SYNTHESIS OF MIXED-
METAL CHALCOGENIDE
NANOPARTICLES AND SPRAY
DEPOSITION OF PRECURSOR FILMS | | 6037758 | 1999 | 2000 | STATE UNIV OF
NEW YORK | LOAD CONTROLLER AND METHOD
TO ENHANCE EFFECTIVE CAPACITY
OF A PHOTOVOLTAIC POWER
SUPPLY | | 6055089 | 1999 | 2000 | 3M CO | PHOTOVOLTAIC POWERING AND
CONTROL SYSTEM FOR
ELECTROCHROMIC WINDOWS | | 6061978 | 1998 | 2000 | POWERLIGHT
CORP | VENTED CAVITY RADIANT
BARRIER ASSEMBLY AND METHOD | | 6063995 | 1998 | 2000 | FIRST SOLAR
LLC | RECYCLING SILICON
PHOTOVOLTAIC MODULES | | 6091021 | 1998 | 2000 | SANDIA CORP | SILICON CELLS MADE BY SELF-
ALIGNED SELECTIVE-EMITTER
PLASMA-ETCHBACK PROCESS | | 6114046 | 1997 | 2000 | EVERGREEN
SOLAR INC | ENCAPSULANT MATERIAL FOR
SOLAR CELL MODULE AND
LAMINATED GLASS APPLICATIONS | | 6124186 | 1998 | 2000 | MIDWEST
RESEARCH
INSTITUTE | DEPOSITION OF DEVICE QUALITY,
LOW HYDROGEN CONTENT,
HYDROGENATED AMORPHOUS
SILICON AT HIGH DEPOSITION | | | | | | RATES WITH INCREASED
STABILITY USING THE HOT WIRE
FILAMENT TECHNIQUE | |--------------|------|------|----------------------------------|--| | 6126740 | 1998 | 2000 | MIDWEST
RESEARCH
INSTITUTE | SOLUTION SYNTHESIS OF MIXED-
METAL CHALCOGENIDE
NANOPARTICLES AND SPRAY
DEPOSITION OF PRECURSOR FILMS | | 6137048 | 1998 | 2000 | MIDWEST
RESEARCH
INSTITUTE | PROCESS FOR FABRICATING POLYCRYSTALLINE SEMICONDUCTOR THIN-FILM SOLAR CELLS, AND CELLS PRODUCED THEREBY | | 6139811 | 1999 | 2000 | ASE AMERICAS
INC | EFG CRYSTAL GROWTH
APPARATUS | | EP0991827 | 1998 | 2000 | POWERLIGHT
CORP | VENTED CAVITY RADIANT
BARRIER ASSEMBLY AND METHOD | | EP0998389 | 1998 | 2000 | EVERGREEN
SOLAR INC | ENCAPSULANT MATERIAL FOR
SOLAR CELL MODULE AND
LAMINATED GLASS APPLICATIONS | | EP0998524 | 1998 | 2000 | EVERGREEN
SOLAR INC | UV LIGHT STABILIZATION ADDITIVE PACKAGE FOR SOLAR CELL MODULE AND LAMINATED GLASS APPLICATIONS | | EP1010012 | 1998 | 2000 | MIDWEST
RESEARCH
INSTITUTE | APPARATUS FOR MEASURING
MINORITY CARRIER LIFETIMES IN
SEMICONDUCTOR MATERIALS | | EP1025594 | 1998 | 2000 | EVERGREEN
SOLAR INC | METHODS FOR IMPROVING POLYMERIC MATERIALS FOR USE IN SOLAR CELL APPLICATIONS | | WO2000011726 | 1999 | 2000 | UNITED SOLAR
SYSTEMS CORP | METHOD FOR DEPOSITING LAYERS OF HIGH QUALITY SEMICONDUCTOR MATERIAL | | WO2000014812 | 1999 | 2000 | MIDWEST
RESEARCH
INSTITUTE | PHOTOVALTAIC DEVICES COMPRISING ZINC STANNATE BUFFER LAYER AND METHOD FOR MAKING | | WO2000043573 | 2000 | 2000 | MIDWEST
RESEARCH
INSTITUTE | PASSIVATING ETCHANTS FOR
METALLIC PARTICLES | | WO2000047343 | 2000 | 2000 | FIRST SOLAR
LLC | METHOD AND APPARATUS FOR ETCHING COATED SUBSTRATES | | WO2000057980 | 2000 | 2000 | ASE AMERICAS
INC | EFG CRYSTAL GROWTH
APPARATUS | | WO2000060368 | 2000 | 2000 | MIDWEST
RESEARCH
INSTITUTE | IMPROVED APPARATUS AND METHOD FOR MEASURING MINORITY CARRIER LIFETIMES IN SEMICONDUCTOR MATERIALS | | WO2000067001 |
2000 | 2000 | MIDWEST
RESEARCH
INSTITUTE | OPTICAL SYSTEM FOR
DETERMINING PHYSICAL
CHARACTERISTICS OF A SOLAR
CELL | | WO2000077837 | 2000 | 2000 | MIDWEST
RESEARCH
INSTITUTE | PROCESS FOR POLYCRYSTALLINE
SILICON FILM GROWTH AND
APPARATUS FOR SAME | | 6169246 | 1998 | 2001 | MIDWEST
RESEARCH | PHOTOVOLTAIC DEVICES
COMPRISING ZINC STANNATE | | | | | INSTITUTE | BUFFER LAYER AND METHOD FOR
MAKING | |-----------|------|------|----------------------------------|--| | 6187448 | 1998 | 2001 | EVERGREEN
SOLAR INC | ENCAPSULANT MATERIAL FOR
SOLAR CELL MODULE AND
LAMINATED GLASS APPLICATIONS | | 6201261 | 1998 | 2001 | MIDWEST
RESEARCH
INSTITUTE | HIGH EFFICIENCY, LOW COST, THIN
FILM SILICON SOLAR CELL DESIGN
AND METHOD FOR MAKING | | 6221495 | 1996 | 2001 | MIDWEST
RESEARCH
INSTITUTE | THIN TRANSPARENT CONDUCTING FILMS OF CADMIUM STANNATE | | 6239354 | 1999 | 2001 | MIDWEST
RESEARCH
INSTITUTE | ELECTRICAL ISOLATION OF
COMPONENT CELLS IN
MONOLITHICALLY
INTERCONNECTED MODULES | | 6251183 | 1999 | 2001 | MIDWEST
RESEARCH
INSTITUTE | RAPID LOW-TEMPERATURE EPITAXIAL GROWTH USING A HOT- ELEMENT ASSISTED CHEMICAL VAPOR DEPOSITION PROCESS | | 6274461 | 1999 | 2001 | UNITED SOLAR
SYSTEMS CORP | METHOD FOR DEPOSITING LAYERS
OF HIGH QUALITY
SEMICONDUCTOR MATERIAL | | 6275060 | 1999 | 2001 | MIDWEST
RESEARCH
INSTITUTE | APPARATUS AND METHOD FOR
MEASURING MINORITY CARRIER
LIFETIMES IN SEMICONDUCTOR
MATERIALS | | 6275295 | 1999 | 2001 | MIDWEST
RESEARCH
INSTITUTE | OPTICAL SYSTEM FOR
DETERMINING PHYSICAL
CHARACTERISTICS OF A SOLAR
CELL | | 6281035 | 1997 | 2001 | MIDWEST
RESEARCH
INSTITUTE | ION-BEAM TREATMENT TO
PREPARE SURFACES OF P-CDTE
FILMS | | 6281098 | 1999 | 2001 | MIDWEST
RESEARCH
INSTITUTE | PROCESS FOR POLYCRYSTALLINE FILM SILICON GROWTH | | 6281426 | 2000 | 2001 | MIDWEST
RESEARCH
INSTITUTE | MULTI-JUNCTION, MONOLITHIC
SOLAR CELL USING LOW-BAND-
GAP MATERIALS LATTICE
MATCHED TO GAAS OR GE | | 6295818 | 2000 | 2001 | POWERLIGHT
CORP | PV-THERMAL SOLAR POWER
ASSEMBLY | | 6300557 | 1999 | 2001 | MIDWEST
RESEARCH
INSTITUTE | LOW-BANDGAP DOUBLE-
HETEROSTRUCTURE INASP/GAINAS
PHOTOVOLTAIC CONVERTERS | | 6320116 | 1997 | 2001 | EVERGREEN
SOLAR INC | METHODS FOR IMPROVING POLYMERIC MATERIALS FOR USE IN SOLAR CELL APPLICATIONS | | 6329296 | 2000 | 2001 | SANDIA CORP | METAL CATALYST TECHNIQUE FOR TEXTURING SILICON SOLAR CELLS | | EP1066416 | 2000 | 2001 | MIDWEST
RESEARCH
INSTITUTE | PASSIVATING ETCHANTS FOR
METALLIC PARTICLES | | EP1066418 | 1999 | 2001 | MIDWEST
RESEARCH
INSTITUTE | SOLUTION SYNTHESIS OF MIXED-
METAL CHALCOGENIDE
NANOPARTICLES AND SPRAY | | EP1110248 | 1999 | 2001 | UNITED SOLAR | DEPOSITION OF PRECURSOR FILMS METHOD FOR DEPOSITING LAYERS | |---------------|------|------|--------------------------|--| | LI 1110240 | 1999 | 2001 | SYSTEMS CORP | OF HIGH QUALITY | | | | | 515121115 00111 | SEMICONDUCTOR MATERIAL | | EP1149961 | 2001 | 2001 | KAWNEER CO | SUNSHADE FOR BUILDING | | | | | INC | EXTERIORS | | WO2001001498 | 2000 | 2001 | POWERLIGHT | PV/THERMAL SOLAR POWER | | WO2001037324 | 2000 | 2001 | CORP
MIDWEST | ASSEMBLY A NOVEL PROCESSING APPROACH | | W O2001037324 | 2000 | 2001 | RESEARCH | TOWARDS THE FORMATION OF | | | | | INSTITUTE | THIN-FILM CU(IN,GA)SE2 | | WO2001067503 | 2001 | 2001 | MIDWEST | A1 PROCESSING FOR IMPURITY | | | | | RESEARCH | GETTERING IN SILICON | | 62.404.50 | 1000 | 2002 | INSTITUTE | WERMOR AND ARRANGED | | 6348159 | 1999 | 2002 | FIRST SOLAR | METHOD AND APPARATUS FOR | | 6353042 | 1997 | 2002 | LLC
EVERGREEN | ETCHING COATED SUBSTRATES UV-LIGHT STABILIZATION | | 0333042 | 1997 | 2002 | SOLAR INC | ADDITIVE PACKAGE FOR SOLAR | | | | | SOLI III II (C | CELL MODULE AND LAMINATED | | | | | | GLASS APPLICATIONS | | 6416814 | 2000 | 2002 | FIRST SOLAR | VOLATILE ORGANOMETALLIC | | | | | INC | COMPLEXES OF LOWERED | | | | | | REACTIVITY SUITABLE FOR USE IN | | | | | | CHEMICAL VAPOR DEPOSITION OF METAL OXIDE FILMS | | 6421966 | 2000 | 2002 | KAWNEER CO | SUNSHADE FOR BUILDING | | 0421700 | 2000 | 2002 | INC | EXTERIORS | | 6436305 | 2001 | 2002 | MIDWEST | PASSIVATING ETCHANTS FOR | | | | | RESEARCH | METALLIC PARTICLES | | 6450054 | 1007 | 2002 | INSTITUTE | DI AGNA AND DE AGENTE ION | | 6458254 | 1997 | 2002 | MIDWEST
RESEARCH | PLASMA AND REACTIVE ION
ETCHING TO PREPARE OHMIC | | | | | INSTITUTE | CONTACTS | | 6468885 | 2000 | 2002 | MIDWEST | DEPOSITION OF DEVICE QUALITY, | | | | | RESEARCH | LOW HYDROGEN CONTENT, | | | | | INSTITUTE | HYDROGENATED AMORPHOUS | | | | | | SILICON AT HIGH DEPOSITION | | 6468886 | 2001 | 2002 | MIDWECT | RATES PUBLICATION AND DEPOSITION OF | | 0400000 | 2001 | 2002 | MIDWEST
RESEARCH | PURIFICATION AND DEPOSITION OF SILICON BY AN IODIDE | | | | | INSTITUTE | DISPROPORTIONATION REACTION | | 6495750 | 2001 | 2002 | POWERLIGHT | STABILIZED PV SYSTEM | | | | | CORP | | | EP1171211 | 2000 | 2002 | ASE AMERICAS | EFG CRYSTAL GROWTH | | ED1104050 | 2000 | 2002 | INC | APPARATUS | | EP1194950 | 2000 | 2002 | MIDWEST
RESEARCH | PROCESS FOR POLYCRYSTALLINE SILICON FILM GROWTH AND | | | | | INSTITUTE | APPARATUS FOR SAME | | WO2002013279 | 2001 | 2002 | SANDIA CORP | METAL CATALYST TECHNIQUE FOR | | | | | | TEXTURING SILICON SOLAR CELLS | | WO2002017359 | 2001 | 2002 | MIDWEST | HIGH CARRIER CONCENTRATION P- | | | | | RESEARCH | TYPE TRANSPARENT CONDUCTING | | WO2002046242 | 2001 | 2002 | INSTITUTE
FIRST SOLAR | OXIDE FILMS | | WO2002046242 | 2001 | 2002 | FIRST SOLAR
INC | VOLATILE ORGANOMETALLIC
COMPLEXES OF LOWERED | | | | | INC | REACTIVITY SUITABLE FOR USE IN | | | | | | REACTIVITY SUITABLE FOR USE IN | | | | | | CHEMICAL VAPOR DEPOSITION OF METAL OXIDE FILMS | |--------------|------|------|----------------------------------|---| | WO2002081044 | 2001 | 2002 | ASE AMERICAS
INC | EFG CRYSTAL GROWTH
APPARATUS AND METHOD | | 6518086 | 2001 | 2003 | MIDWEST | PROCESSING APPROACH TOWARDS THE FORMATION OF THIN-FILM | | | | | RESEARCH
INSTITUTE | CU(IN,GA)SE2 | | 6534703 | 2001 | 2003 | POWERLIGHT
CORP | MULTI-POSITION PHOTOVOLTAIC
ASSEMBLY | | 6537845 | 2001 | 2003 | UNIV
DELAWARE | CHEMICAL SURFACE DEPOSITION OF ULTRA-THIN SEMICONDUCTORS | | 6542791 | 2000 | 2003 | STATE UNIV OF
NEW YORK | LOAD CONTROLLER AND METHOD TO ENHANCE EFFECTIVE CAPACITY OF A PHOTOVOTAIC POWER SUPPLY USING A DYNAMICALLY DETERMINED EXPECTED PEAK LOADING | | 6559411 | 2001 | 2003 | FIRST SOLAR
INC | METHOD AND APPARATUS FOR
LASER SCRIBING GLASS SHEET
SUBSTRATE COATINGS | | 6562132 | 2001 | 2003 | ASE AMERICAS
INC | EFG CRYSTAL GROWTH
APPARATUS AND METHOD | | 6570084 | 2001 | 2003 | POWERLIGHT
CORP | PRESSURE EQUALIZING PHOTOVOLTAIC ASSEMBLY AND METHOD | | 6583350 | 2002 | 2003 | SANDIA CORP | THERMOPHOTOVOLTAIC ENERGY
CONVERSION USING PHOTONIC
BANDGAP SELECTIVE EMITTERS | | 6586271 | 2001 | 2003 | EVERGREEN
SOLAR INC | METHODS FOR IMPROVING
POLYMERIC MATERIALS FOR USE
IN SOLAR CELL APPLICATIONS | | 6611085 | 2001 | 2003 | SANDIA CORP | PHOTONICALLY ENGINEERED INCANDESCENT EMITTER | | 6627765 | 2002 | 2003 | FIRST SOLAR
INC | VOLATILE ORGANOMETALLIC
COMPLEXES SUITABLE FOR USE IN
CHEMICAL VAPOR DEPOSITIONS ON
METAL OXIDE FILMS | | 6660930 | 2002 | 2003 | RWE SCHOTT
SOLAR INC | SOLAR CELL MODULES WITH
IMPROVED BACKSKIN | | EP1288163 | 2002 | 2003 | MIDWEST
RESEARCH
INSTITUTE | PURIFIED SILICON PRODUCTION SYSTEM | | EP1316115 | 2001 | 2003 | SANDIA CORP | METAL CATALYST TECHNIQUE FOR TEXTURING SILICON SOLAR CELLS | | EP1356132 | 2001 | 2003 | FIRST SOLAR
INC | VOLATILE ORGANOMETALLIC
COMPLEXES OF LOWERED
REACTIVITY SUITABLE FOR USE IN
CHEMICAL VAPOR DEPOSITION OF
METAL OXIDE FILMS | | WO2003007388 | 2002 | 2003 | POWERLIGHT
CORP | PRESSURE-EQUALIZING PHOTOVOLTAIC ASSEMBLY AND METHOD | | WO2003013778 | 2002 | 2003 | FIRST SOLAR
INC | METHOD AND APPARATUS FOR
LASER SCRIBING GLASS SHEET
SUBSTRATE COATINGS | | WO2003017380 | 2002 | 2003 | POWERLIGHT | MULTI-POSITION PHOTOVOLTAIC | | | | | CORP | ASSEMBLY | |--------------|------|------|-------------------------------------|---| | WO2003017381 | 2002 | 2003 | POWERLIGHT
CORP | STABILIZED PV SYSTEM | | WO2003019680 | 2002 | 2003 | SANDIA CORP | PHOTONICALLY ENGINEERED INCANDESCENT EMITTER | | WO2003021648 | 2002 | 2003 | UNIV
DELAWARE | CHEMICAL SURFACE DEPOSITION OF ULTRA-THIN SEMICONDUCTORS | | WO2003036687 | 2002 | 2003 | ENERGY
CONVERSION
DEVICES INC | NON-CONTACTING CAPACITIVE
DIAGNOSTIC DEVICE | | WO2003036688 | 2002 | 2003 | SANDIA CORP | ALTERNATING CURRENT PHOTOVOLTAIC BUILDING BLOCK | | WO2003044832 | 2002 | 2003 | ENERGY
PHOTOVOLTAI
CS | METHOD OF JUNCTION FORMATION FOR CIGS PHOTOVOLTAIC DEVICES | | WO2003071047 | 2003 | 2003 | POWERLIGHT
CORP | SHINGLE ASSEMBLY | | WO2003071054 | 2003 | 2003 | POWERLIGHT
CORP | SHINGLE SYSTEM | | WO2003072891 | 2003 | 2003 | POWERLIGHT
CORP | SHINGLE SYSTEM AND METHOD | | WO2003087493 | 2002 | 2003 | RWE SCHOTT
SOLAR INC | APPARATUS AND METHOD FOR
MOUNTING PHOTOVOLTAIC POWER
GENERATING SYSTEMS ON
BUILDINGS | | WO2003095718 | 2003 | 2003 | RWE SCHOTT
SOLAR INC | PROCESS FOR COATING SILICON
SHOT WITH DOPANT FOR ADDITION
OF DOPANT IN CRYSTAL GROWTH | | WO2003107438 | 2003 | 2003 | RWE SCHOTT
SOLAR INC | SOLAR CELL MODULES WITH IMPROVED BACKSKIN | | WO2003107439 | 2003 | 2003 | RWE SCHOTT
SOLAR INC | PHOTOVOLTAIC MODULE WITH LIGHT REFLECTING
BACKSKIN | | 6675580 | 2001 | 2004 | POWERLIGHT
CORP | PV/THERMAL SOLAR POWER
ASSEMBLY | | 6712908 | 2002 | 2004 | MIDWEST
RESEARCH
INSTITUTE | PURIFIED SILICON PRODUCTION
SYSTEM | | 6713400 | 2000 | 2004 | MIDWEST
RESEARCH
INSTITUTE | METHOD FOR IMPROVING THE
STABILITY OF AMORPHOUS
SILICON | | 6740158 | 2002 | 2004 | RWE SCHOTT
SOLAR INC | PROCESS FOR COATING SILICON
SHOT WITH DOPANT FOR ADDITION
OF DOPANT IN CRYSTAL GROWTH | | 6750391 | 2002 | 2004 | SANDIA CORP | ATERNATING CURRENT PHOTOVOLTAIC BUILDING BLOCK | | 6784361 | 2001 | 2004 | BP CORP | AMORPHOUS SILICON PHOTOVOLTAIC DEVICES | | 6787385 | 2003 | 2004 | MIDWEST
RESEARCH
INSTITUTE | METHOD OF PREPARING NITROGEN
CONTAINING SEMICONDUCTOR
MATERIAL | | 6809251 | 2002 | 2004 | POWERLIGHT
CORP | INCLINED PHOTOVOLTAIC
ASSEMBLY | | 6809253 | 2003 | 2004 | POWERLIGHT
CORP | PRESSURE-EQUALIZING PV
ASSEMBLY AND METHOD | | 6815246 | 2003 | 2004 | RWE SCHOTT
SOLAR INC | SURFACE MODIFICATION OF SILICON NITRIDE FOR THICK FILM | | | | | | SILVER METALLIZATION OF SOLAR CELL | |--------------|------|------|-------------------------------------|---| | 6815736 | 2001 | 2004 | MIDWEST
RESEARCH
INSTITUTE | ISOELECTRONIC CO-DOPING | | EP1372805 | 2001 | 2004 | RWE SCHOTT
SOLAR INC | EFG CRYSTAL GROWTH
APPARATUS AND METHOD | | EP1410432 | 2001 | 2004 | MIDWEST
RESEARCH
INSTITUTE | A1 PROCESSING FOR IMPURITY
GETTERING IN SILICON | | EP1412988 | 2002 | 2004 | POWERLIGHT
CORP | PRESSURE-EQUALIZING PHOTOVOLTAIC ASSEMBLY AND METHOD FOR REDUCING WIND UPLIFT FORCES | | EP1423229 | 2002 | 2004 | FIRST SOLAR
INC | METHOD AND APPARATUS FOR
LASER SCRIBING GLASS SHEET
SUBSTRATE COATINGS | | EP1423881 | 2002 | 2004 | SANDIA CORP | PHOTONICALLY ENGINEERED INCANDESCENT EMITTER | | EP1428250 | 2002 | 2004 | UNIV
DELAWARE | CHEMICAL SURFACE DEPOSITION OF ULTRA-THIN SEMICONDUCTORS | | EP1442473 | 2002 | 2004 | SANDIA CORP | ALTERNATING CURRENT PHOTOVOLTAIC BUILDING BLOCK | | EP1476614 | 2003 | 2004 | POWERLIGHT
CORP | SHINGLE SYSTEM AND METHOD FOR MOUNTING THE SAME | | EP1476617 | 2003 | 2004 | POWERLIGHT
CORP | SHINGLE SYSTEM | | WO2004070850 | 2004 | 2004 | BP CORP | IMPROVED PHOTOVOLTAIC CELL AND PRODUCTION THEREOF | | WO2004075252 | 2004 | 2004 | RWE SCHOTT
SOLAR INC | SURFACE MODIFICATION OF
SILICON NITRIDE FOR THICK FILM
SILVER METALLIZATION OF SOLAR
CELL | | 6852371 | 2002 | 2005 | MIDWEST
RESEARCH
INSTITUTE | METAL PROCESSING FOR IMPURITY
GETTERING IN SILICON | | 6852614 | 2001 | 2005 | UNIV MAINE | METHOD OF MANUFACTURING
SEMICONDUCTOR HAVING GROUP
II-GROUP VI COMPOUNDS DOPED
WITH NITROGEN | | 6869330 | 2003 | 2005 | SANDIA CORP | METHOD FOR FABRICATING A PHOTONIC CRYSTAL | | 6883290 | 2002 | 2005 | POWERLIGHT
CORP | SHINGLE SYSTEM AND METHOD | | 6908782 | 2001 | 2005 | MIDWEST
RESEARCH
INSTITUTE | HIGH CARRIER CONCENTRATION P-
TYPE TRANSPARENT CONDUCTING
OXIDE FILMS | | 6917209 | 2001 | 2005 | ENERGY
CONVERSION
DEVICES INC | NON- CONTACTING CAPACITIVE DIAGNOSTIC DEVICE | | 6919530 | 2003 | 2005 | FIRST SOLAR
INC | METHOD AND APPARATUS FOR
LASER SCRIBING GLASS SHEET
SUBSTRATE COATINGS | | EP1573145 | 2003 | 2005 | POWERLIGHT
CORP | SHINGLE ASSEMBLY | | EP1597775 | 2004 | 2005 | BP CORP | IMPROVED PHOTOVOLTAIC CELL | | | | | | AND METHOD OF PRODUCTION THEREOF | |--------------|------|------|-------------------------------------|--| | EP1602132 | 2004 | 2005 | RWE SCHOTT
SOLAR INC | SURFACE MODIFICATION OF
SILICON NITRIDE FOR THICK FILM
SILVER METALLIZATION OF SOLAR
CELL | | WO2005018007 | 2004 | 2005 | ADVENT
SOLAR INC,
SANDIA CORP | BACK-CONTACTED SOLAR CELLS
WITH INTEGRAL CONDUCTIVE VIAS
AND METHOD OF MAKING | | WO2005029592 | 2004 | 2005 | MIDWEST
RESEARCH
INSTITUTE | ORGANIC PHOTOVOLTAIC CELLS
WITH AN ELECTRIC FIELD
INTEGRALLY-FORMED AT THE
HETEROJUNCTION INTERFACE | | WO2005034247 | 2003 | 2005 | MIDWEST
RESEARCH
INSTITUTE | ZNO/CU(INGA)SE2 SOLAR CELLS
PREPARED BY VAPOR PHASE ZN
DOPING | | WO2005036601 | 2004 | 2005 | MIDWEST
RESEARCH
INSTITUTE | WAFER CHARACTERISTICS VIA
REFLECTOMEYTRY AND WAFER
PROCESSING APPARATUS AND
METHOD | | WO2005072302 | 2005 | 2005 | UNITED SOLAR
SYSTEMS CORP | METHOD FOR DEPOSITING HIGH-
QUALITY MICROCRYSTALLINE
SEMICONDUCTOR MATERIALS | | WO2005105944 | 2004 | 2005 | MIDWEST
RESEARCH
INSTITUTE | ZNS/ZN(O, OH)S-BASED BUFFER
LAYER DEPOSITION FOR SOLAR
CELLS | | 6984263 | 2001 | 2006 | MIDWEST
RESEARCH
INSTITUTE | SHALLOW MELT APPARATUS FOR
SEMICONTINUOUS CZOCHRALSKI
CRYSTAL GROWTH | | 7019208 | 2002 | 2006 | ENERGY
PHOTOVOLTAI
CS | METHOD OF JUNCTION FORMATION FOR CIGS PHOTOVOLTAIC DEVICES | | 7053294 | 2001 | 2006 | MIDWEST
RESEARCH
INSTITUTE | THIN-FILM SOLAR CELL
FABRICATED ON A FLEXIBLE
METALLIC SUBSTRATE | | 7067850 | 2001 | 2006 | MIDWEST
RESEARCH
INSTITUTE | STACKED SWITCHABLE ELEMENT
AND DIODE COMBINATION | | 7095050 | 2002 | 2006 | MIDWEST
RESEARCH
INSTITUTE | VOLTAGE-MATCHED, MONOLITHIC,
MULTI-BAND-GAP DEVICES | | 7098058 | 2005 | 2006 | UNIV TOLEDO | PHOTOVOLTAIC HEALING OF NON-
UNIFORMITIES IN SEMICONDUCTOR
DEVICES | | 7122736 | 2001 | 2006 | MIDWEST
RESEARCH
INSTITUTE | METHOD AND APPARATUS FOR
FABRICATING A THIN-FILM SOLAR
CELL UTILIZING A HOT WIRE
CHEMICAL VAPOR DEPOSITION
TECHNIQUE | | 7135069 | 2004 | 2006 | RWE SCHOTT
SOLAR INC | COATING SILICON PELLETS WITH
DOPANT FOR ADDITION OF DOPANT
IN CRYSTAL GROWTH | | EP1642344 | 2004 | 2006 | ADVENT
SOLAR INC,
SANDIA CORP | BACK-CONTACTED SOLAR CELLS
WITH INTEGRAL CONDUCTIVE VIAS
AND METHOD OF MAKING | | RE038988 | 2003 | 2006 | POWERLIGHT | LIGHTWEIGHT, SELF-BALLASTING | | | | | CORP | PHOTOVOLTAIC ROOFING
ASSEMBLY | |-----------------|------|------|-----------------|-------------------------------------| | WO2006025820 | 2004 | 2006 | MIDWEST | METHOD FOR PASSIVATING | | | | | RESEARCH | CRYSTAL SILICON SURFACES | | | | | INSTITUTE | CRIBINE SIEICON SCIUNCES | | 7157641 | 2004 | 2007 | MIDWEST | ORGANIC PHOTOVOLTAIC CELLS | | /13/041 | 2004 | 2007 | RESEARCH | WITH AN ELECTRIC FIELD | | | | | | | | | | | INSTITUTE | INTEGRALLY-FORMED AT THE | | 717 0001 | 2002 | 2005 | ADVIENT | HETEROJUNCTION INTERFACE | | 7170001 | 2003 | 2007 | ADVENT | FABRICATION OF BACK- | | | | | SOLAR INC, | CONTACTED SILICON SOLAR CELLS | | | | | SANDIA CORP | USING THERMOMIGRATION TO | | | | | | CREATE CONDUCTIVE VIAS | | 7178295 | 2002 | 2007 | POWERLIGHT | SHINGLE ASSEMBLY | | | | | CORP | | | 7179665 | 2005 | 2007 | MIDWEST | OPTICAL METHOD FOR | | | | | RESEARCH | DETERMINING THE DOPING DEPTH | | | | | INSTITUTE | PROFILE IN SILICON | | 7179677 | 2003 | 2007 | MIDWEST | ZNO/CU(INGA)SE ₂ | | 1117011 | 2005 | 2007 | RESEARCH | SOLAR CELLS PREPARED BY VAPOR | | | | | INSTITUTE | PHASE ZN DOPING | | 7229498 | 2002 | 2007 | MIDWEST | NANOSTRUCTURES PRODUCED BY | | 1229490 | 2002 | 2007 | | | | | | | RESEARCH | PHASE-SEPARATION DURING | | | | | INSTITUTE | GROWTH OF (III-V) _{1-X} | | | | | | (IV ₂) | | | | | | X ALLOYS | | 7238878 | 2003 | 2007 | RWE SCHOTT | PHOTOVOLTAIC MODULE WITH | | | | | SOLAR INC | LIGHT REFLECTING BACKSKIN | | 7238912 | 2004 | 2007 | MIDWEST | WAFER CHARACTERISTICS VIA | | | | | RESEARCH | REFLECTOMETRY AND WAFER | | | | | INSTITUTE | PROCESSING APPARATUS AND | | | | | | METHOD | | 7300890 | 2003 | 2007 | MIDWEST | METHOD AND APPARATUS FOR | | | | | RESEARCH | FORMING CONFORMAL SIN _X | | | | | INSTITUTE | FILMS | | 7309832 | 2001 | 2007 | MIDWEST | MULTI-JUNCTION SOLAR CELL | | | | | RESEARCH | DEVICE | | | | | INSTITUTE | | | EP1743360 | 2005 | 2007 | UNITED SOLAR | METHOD FOR DEPOSITING HIGH- | | | | | SYSTEMS CORP | QUALITY MICROCRYSTALLINE | | | | | | SEMICONDUCTOR MATERIALS | | WO2007041413 | 2006 | 2007 | PRINCETON | HIGH MOBILITY HIGH EFFICIENCY | | 02007011113 | _000 | 2007 | UNIVERSITY | ORGANIC FILMS BASED ON PURE | | | | | OTAT / LIXOIT I | ORGANIC MATERIALS | | WO2007084934 | 2007 | 2007 | BP CORP | METHODS AND APPARATUSES FOR | | 11 0200/004334 | 2007 | 2007 | DI COM | MANUFACTURING | | | | | | MONOCRYSTALLINE CAST SILICON | | | | | | AND MONOCRYSTALLINE CAST SILICON | | | | | | | | | | | | SILICON BODIES FOR | | WO2007004026 | 2007 | 2007 | DD CODD | PHOTOVOLTAICS | | WO2007084936 | 2007 | 2007 | BP CORP | METHODS AND APPARATUSES FOR | | | | | | MANUFACTURING GEOMETRIC | | | | | | MULTICRYSTALLINE CAST SILICON | | | | | | AND GEOMETRIC | | | | | | MULTICRYSTALLINE CAST SILICON | | | | | | BODIES FOR PHOTOVOLTAICS | | WO2007120788 | 2007 | 2007 | TINITY | ODC ANIC ELECTRONIC DEVICES | |--------------|------|------|--|--| | WO200/120/88 | 2007 | 2007 | UNIV
SOUTHERN
CALIFORNIA | ORGANIC ELECTRONIC DEVICES USING PHTHALIMIDE COMPOUNDS | | WO2007139704 | 2007 | 2007 | UNIV
MICHIGAN,
PRINCETON
UNIVERSITY,
USC | ORGANIC PHOTOSENSITIVE DEVICES USING SUBPHTHALOCYANINE COMPOUNDS | | 7328534 | 2005 | 2008 | SUNPOWER
CORP | SHINGLE SYSTEM | | 7402448 | 2004 | 2008 | BP CORP | PHOTOVOLTAIC CELL AND PRODUCTION THEREOF | | 7435897 | 2002 | 2008 | RWE SCHOTT
SOLAR INC | APPARATUS AND METHOD FOR
MOUNTING PHOTOVOLTAIC POWER
GENERATING SYSTEMS ON
BUILDINGS | | 7459188 | 2004 | 2008 | ALLIANCE FOR
SUST ENERGY
LLC | METHOD AND APPARATUS FOR
MAKING DIAMOND-LIKE CARBON
FILMS | | EP1938400 | 2006 | 2008 | PRINCETON
UNIVERSITY | HIGH MOBILITY HIGH EFFICIENCY
ORGANIC FILMS
BASED ON PURE
ORGANIC MATERIALS | | EP1974076 | 2007 | 2008 | BP CORP | METHODS AND APPARATUSES FOR MANUFACTURING GEOMETRIC MULTICRYSTALLINE CAST SILICON AND GEOMETRIC MULTICRYSTALLINE CAST SILICON BODIES FOR PHOTOVOLTAICS | | EP1974077 | 2007 | 2008 | BP CORP | METHODS AND APPARATUSES FOR
MANUFACTURING
MONOCRYSTALLINE CAST SILICON
AND MONOCRYSTALLINE CAST
SILICON BODIES FOR
PHOTOVOLTAICS | | EP2005500 | 2007 | 2008 | UNIV
SOUTHERN
CALIFORNIA | ORGANIC ELECTRONIC DEVICES USING PHTHALIMIDE COMPOUNDS | | WO2008008477 | 2007 | 2008 | UNIV
MICHIGAN,
PRINCETON
UNIVERSITY | ARCHITECTURES AND CRITERIA
FOR THE DESIGN OF HIGH
EFFICIENCY ORGANIC
PHOTOVOLTAIC CELLS | | WO2008013547 | 2006 | 2008 | MIDWEST
RESEARCH
INSTITUTE | SCREENING OF SILICON WAFERS
USED IN PHOTOVOLTAICS | | WO2008042194 | 2007 | 2008 | SUNPOWER
CORP | FORMED PHOTOVOLTAIC MODULE BUSBARS | | WO2008063519 | 2007 | 2008 | UNIV
MICHIGAN,
PRINCETON
UNIVERSITY | ORGANIC HYBRID PLANAR-
NANOCRYSTALLINE BULK
HETEROJUNCTIONS | | WO2008066910 | 2007 | 2008 | UNIV
MICHIGAN,
PRINCETON
UNIVERSITY | ORGANIC PHOTOVOLTAIC CELLS
UTILIZING ULTRATHIN
SENSITIZING LAYER | | WO2008088551 | 2007 | 2008 | MIDWEST
RESEARCH | TRANSPARENT CONDUCTING OXIDES AND PRODUCTION | | | | | T) (OPENE) INC. | THEREOF | |---|-------|------|-----------------|-------------------------------| | *************************************** | 2005 | 2000 | INSTITUTE | THEREOF | | WO2008097258 | 2007 | 2008 | UNIV | CONTROLLED GROWTH OF LARGER | | | | | MICHIGAN, | HETEROJUNCTION INTERFACE | | | | | PRINCETON | AREA FOR ORGANIC | | | | | UNIVERSITY | PHOTOSENSITIVE DEVICES | | WO2008118518 | 2008 | 2008 | SUNPOWER | STACKABLE TRACKING SOLAR | | | | | CORP | COLLECTOR ASSEMBLY | | WO2008118519 | 2008 | 2008 | SUNPOWER | TRACKING SOLAR COLLECTOR | | | | | CORP | ASSEMBLY | | WO2008118520 | 2008 | 2008 | SUNPOWER | TILT ASSEMBLY FOR TRACKING | | | | | CORP | SOLAR COLLECTOR ASSEMBLY | | WO2008137174 | 2008 | 2008 | GEORGIA TECH | FORMATION OF HIGH QUALITY | | | | | RES CORP | BACK CONTACT WITH SCREEN- | | | | | | PRINTED LOCAL BACK SURFACE | | | | | | FIELD | | 7482195 | 2006 | 2009 | PRINCETON | HIGH MOBILITY HIGH EFFICIENCY | | | | | UNIVERSITY | ORGANIC FILMS BASED ON PURE | | | | | | ORGANIC MATERIALS | | 7517784 | 2002 | 2009 | ALLIANCE FOR | METHOD FOR PRODUCING HIGH | | | | | SUST ENERGY | CARRIER CONCENTRATION P-TYPE | | | | | LLC | TRANSPARENT CONDUCTING | | | | | | OXIDES | | 7574842 | 2005 | 2009 | RWE SCHOTT | APPARATUS FOR MOUNTING | | | | | SOLAR INC | PHOTOVOLTAIC POWER | | | | | | GENERATING SYSTEMS ON | | | | | | BUILDINGS | | 7611573 | 2004 | 2009 | ALLIANCE FOR | ZNS/ZN(O,OH)S-BASED BUFFER | | | | | SUST ENERGY | LAYER DEPOSITION FOR SOLAR | | | | | LLC | CELLS | | 7629236 | 2004 | 2009 | ALLIANCE FOR | METHOD FOR PASSIVATING | | | | | SUST ENERGY | CRYSTAL SILICON SURFACES | | | | | LLC | | | 7638356 | 2006 | 2009 | UNIV | CONTROLLED GROWTH OF LARGER | | | | | MICHIGAN, | HETEROJUNCTION INTERFACE | | | | | PRINCETON | AREA FOR ORGANIC | | | | | UNIVERSITY | PHOTOSENSITIVE DEVICES | | EP2020047 | 2007 | 2009 | UNIV | ORGANIC PHOTOSENSITIVE | | | | | MICHIGAN, | DEVICES USING | | | | | PRINCETON | SUBPHTHALOCYANINE | | | | | UNIVERSITY, | COMPOUNDS | | | | | USC | | | EP2041817 | 2007 | 2009 | UNIV | ARCHITECTURES AND CRITERIA | | | ~ ~ . | / | MICHIGAN, | FOR THE DESIGN OF HIGH | | | | | PRINCETON | EFFICIENCY ORGANIC | | | | | UNIVERSITY | PHOTOVOLTAIC CELLS | | EP2070131 | 2007 | 2009 | UNIV | CONTROLLED GROWTH OF LARGER | | | | | MICHIGAN, | HETEROJUNCTION INTERFACE | | | | | PRINCETON | AREA FOR ORGANIC | | | | | UNIVERSITY | PHOTOSENSITIVE DEVICES | | EP2082433 | 2007 | 2009 | SUNPOWER | FORMED PHOTOVOLTAIC MODULE | | LI 2002 133 | 2007 | 2007 | CORP | BUSBARS | | EP2089920 | 2007 | 2009 | UNIV | ORGANIC PHOTOVOLTAIC CELLS | | LI 2007720 | 2007 | 2007 | MICHIGAN, | UTILIZING ULTRATHIN | | | | | PRINCETON | SENSITIZING LAYER | | | | | UNIVERSITY | SEI WITEH WE ENTER | | EP2089921 | 2007 | 2009 | UNIV | ORGANIC HYBRID PLANAR- | | L1 2007721 | 2007 | 2007 | O111 1 | ONOMING ITTUNID I LANAK- | | MICHIGAN, PRINCETION UNIVERSITY | | | | | | |--|---------------|------|------|---------------------------------------|--------------------------------| | EP2130231 | | | | | | | EP2130231 | | | | | HETEROJUNCTIONS | | CORP | EP2130231 | 2008 | 2009 | | SOLAR COLLECTOR ASSEMBLY | | W02009005824 2008 2009 MICROLINK DEVICES INC CIELL OF STRUCTURE STRUCTUR | El 2130231 | 2000 | 2007 | | | | W02009005824 2008 2009 MICROLINK THIN FILM III-V COMPOUND SOLAR ELL | | | | | A SOLAR COLLECTOR | | DEVICES INC CELL | | | | | INSTALLATION | | W02009005825 2008 2009 | WO2009005824 | 2008 | 2009 | | THIN FILM III-V COMPOUND SOLAR | | DEVICES INC | | | | | | | W02009015167 2008 2009 | WO2009005825 | 2008 | 2009 | | | | RES CORP | WO200000045 | 2000 | 2000 | | | | W02009015167 2008 2009 BP CORP METHODS FOR MANUFACTURING MONOCRYSTALLINE OR NEAR-MONOCRYSTALLINE CAST MATERIALS | W O2009008945 | 2008 | 2009 | | | | W02009015167 2008 2009 | | | | KES COKF | | | WO2009015168 | WO2009015167 | 2008 | 2009 | RP CORP | | | WO2009015168 2008 2009 BP CORP METHODS FOR MANUFACTURING GEOMETRIC MULTI-CRYSTALLINE CAST MATERIALS | W 02007013107 | 2000 | 2007 | ы сон | | | W02009015168 2008 2009 | | | | | | | WO2009017552 2008 2009 BRP MFG CO, ALL FOR SUST ENERGY | | | | | MATERIALS | | WO2009017552 2008 2009 BRP MFG CO, ALL FOR SUST ENERGY | WO2009015168 | 2008 | 2009 | BP CORP | | | WO2009017552 2008 2009 BRP MFG CO, ALL FOR SUST ENERGY ENCAPSULANT MATERIALS AND ASSOCIATED DEVICES WO2009017906 2008 2009 BOEING CO STRUCTURALLY ISOLATED THERMAL INTERFACE WO2009059302 2008 2009 ALLIANCE FOR SUST ENERGY SILICON SOLAR CELLS INCLUDING PRINTING BURN THROUGH LAYERS WO2009061322 2007 2009 MIDWEST LOW-TEMPERATURE JUNCTION GROWTH USING HOT-WIRE INSTITUTE CHEMICAL VAPOR DEPOSITION IMPROVED SOLUTION DEPOSITION INC WO2009075944 2008 2009 NANOSOLAR IMPROVED SOLUTION DEPOSITION INC ASSEMBLY WO2009099605 2009 2009 LIGHT TRANSPARENT HEAT-SPREADER FOR OPTOELECTRONIC APPLICATIONS INNOVATORS LLC APPLICATIONS INSOVATORS LLC WO2009099838 2009 2009 SUNPOWER COPY SUBSTRATES AND METHODS FOR USING SAME WO2009099839 2009 2009 SUNPOWER CONTROL SYSTEM FOR NON-CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES WO2009105314 2009 2009 SUNPOWER CONTROL SYSTEM FOR NON-CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES WO2009120955 2009 2009 GREENRAY INC AN ELECTRICAL CABLE HARNESS AND ASSEMBLY FOR TRANSMITTING AC ELECTRICAL POWER WO2009 | | | | | | | MO2009017906 2008 2009 BOEING CO STRUCTURALLY ISOLATED | WY0000045550 | 2000 | 2000 | DDD 1 (EG GO | | | No | WO2009017552 | 2008 | 2009 | · · · · · · · · · · · · · · · · · · · | | | WO2009017906 2008 2009 BOEING CO STRUCTURALLY ISOLATED THERMAL INTERFACE | | | | | ASSOCIATED DEVICES | | WO2009059302 2008 2009 ALLIANCE FOR FABRICATION OF CONTACTS FOR SUST ENERGY LLC FABRICATION OF CONTACTS FOR SUST ENERGY LLC PRINTING BURN THROUGH LAYERS | WO2009017906 | 2008 | 2009 | | STRUCTURALLY ISOLATED | | WO2009059302 2008 2009 SUST ENERGY SUST ENERGY ENILICON SOLAR CELLS INCLUDING PRINTING BURN THROUGH LAYERS WO2009061322 2007 2009 MIDWEST ENERGY ENILICON SOLAR CELLS INCLUDING PRINTING BURN THROUGH LAYERS WO2009075944 2008 2009 MIDWEST ENERGY ENING BURN THROUGH LAYERS WO200909605 2008 2009 NANOSOLAR IMPROVED SOLUTION DEPOSITION ASSEMBLY WO2009099838 2009 2009 LIGHT TRANSPARENT HEAT-SPREADER PRESCRIPTIONS INNOVATORS LLC FOR OPTOELECTRONIC APPLICATIONS WO2009099839 2009 SUNPOWER CORP APPARATUS FOR SOLAR CELL SUBSTRATES AND METHODS FOR USING SAME CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES WO2009105314 2009 2009 SUNPOWER CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES WO2009120955 2009 SUNPOWER CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES WO2009137347
2009 2009 SUNPOWER CONTACT EDGE COATING APPARATUS FOR SOLAR CELL WITH FORMED EMITTER WO2009137347 2009 DOW GLOBAL TRANSMITTING AC ELECTRICAL POWER TRANSMITTING AC ELECTRICAL POWER WO2009137347 2009 DOW GLOBAL TRECH INC BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | W 02007017700 | 2000 | 2007 | BOLING CO | | | WO2009061322 2007 2009 MIDWEST LOW-TEMPERATURE JUNCTION RESEARCH INSTITUTE CHEMICAL VAPOR DEPOSITION WO2009075944 2008 2009 NANOSOLAR IMPROVED SOLUTION DEPOSITION ASSEMBLY | WO2009059302 | 2008 | 2009 | ALLIANCE FOR | | | WO2009061322 2007 2009 MIDWEST RESEARCH GROWTH USING HOT-WIRE GROWTH USING HOT-WIRE CHEMICAL VAPOR DEPOSITION HOT WING HOT WIRE CHEMICAL VAPOR DEPOSITION ENCOURSED SOLUTION DEPOSITION INC ASSEMBLY WO2009099605 2009 2009 LIGHT TRANSPARENT HEAT-SPREADER FOR OPTOELECTRONIC APPLICATIONS LLC WO2009099838 2009 2009 SUNPOWER ON-CONTACT EDGE COATING APPLICATIONS LLC WO2009099839 2009 SUNPOWER CORP CONTROL SYSTEM FOR NON-CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES WO2009105314 2009 SUNPOWER CONTROL SYSTEM FOR NON-CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES WO2009120955 2009 SUNPOWER CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES WO2009137347 2009 SUNPOWER CORP WITH FORMED EMITTER AND ASSEMBLY FOR TRANSMITTING AC ELECTRICAL POWER | | | | SUST ENERGY | | | RESEARCH INSTITUTE CHEMICAL VAPOR DEPOSITION WO2009075944 2008 2009 NANOSOLAR IMPROVED SOLUTION DEPOSITION INC ASSEMBLY WO2009099605 2009 LIGHT TRANSPARENT HEAT-SPREADER PRESCRIPTIONS FOR OPTOELECTRONIC INNOVATORS LLC WO2009099838 2009 2009 SUNPOWER CORP APPARATUS FOR SOLAR CELL SUBSTRATES AND METHODS FOR USING SAME WO2009099839 2009 2009 SUNPOWER CONTROL SYSTEM FOR NON-CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES WO2009105314 2009 2009 SUNPOWER CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES WO2009120955 2009 2009 SUNPOWER CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES WO2009120955 2009 2009 SUNPOWER CORP FRONT CONTACT SOLAR CELL WO2009137347 2009 2009 GREENRAY INC WO2009137347 2009 2009 DOW GLOBAL TECH INC BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | | | | | | | WO2009075944 2008 2009 NANOSOLAR IMPROVED SOLUTION DEPOSITION WO2009099605 2009 2009 LIGHT TRANSPARENT HEAT-SPREADER PRESCRIPTIONS INNOVATORS LLC WO2009099838 2009 2009 SUNPOWER CORP CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES AND METHODS FOR USING SAME WO2009099839 2009 2009 SUNPOWER CONTROL SYSTEM FOR NON-CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES WO2009105314 2009 2009 SUNPOWER CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES WO2009120955 2009 2009 SUNPOWER CORP FRONT CONTACT SOLAR CELL SUBSTRATES WO2009137347 2009 2009 GREENRAY INC AN ELECTRICAL CABLE HARNESS AND ASSEMBLY FOR TRANSMITTING AC ELECTRICAL POWER WO2009137347 2009 DOW GLOBAL CONNECTOR DEVICE FOR BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | WO2009061322 | 2007 | 2009 | | | | WO2009075944 2008 2009 NANOSOLAR INC IMPROVED SOLUTION DEPOSITION ASSEMBLY WO2009099605 2009 2009 LIGHT TRANSPARENT HEAT-SPREADER PRESCRIPTIONS INNOVATORS INTO INDICATOR SUBSTRATES AND METHODS FOR USING SAME WO2009099839 2009 SUNPOWER CONTROL SYSTEM FOR NON-CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES WO2009105314 2009 SUNPOWER FRONT CONTACT SOLAR CELL SUBSTRATES WO2009120955 2009 SUNPOWER FRONT CONTACT SOLAR CELL CORP WITH FORMED EMITTER WO2009137347 2009 GREENRAY INC AN ELECTRICAL CABLE HARNESS AND ASSEMBLY FOR TRANSMITTING AC ELECTRICAL POWER WO2009137347 2009 DOW GLOBAL CONNECTOR DEVICE FOR BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | | | | | | | WO2009099605 2009 2009 LIGHT PRESCRIPTIONS FOR OPTOELECTRONIC APPLICATIONS LLC WO2009099838 2009 2009 SUNPOWER CORP APPARATUS FOR SOLAR CELL SUBSTRATES AND METHODS FOR USING SAME WO2009099839 2009 SUNPOWER CORP CORP CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES AND METHODS FOR USING SAME WO2009105314 2009 SUNPOWER CORP CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES WO2009120955 WO2009120955 2009 SUNPOWER CORP WITH FORMED EMITTER AN ELECTRICAL CABLE HARNESS AND ASSEMBLY FOR TRANSMITTING AC ELECTRICAL POWER WO2009137347 2009 DOW GLOBAL TECH INC BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | WO2000075044 | 2009 | 2000 | | | | WO2009099605 WO2009099605 WO2009099838 WO2009099838 WO2009099839 WO2009099839 WO2009105314 WO2009120955 WO2009137347 WO2009137347 WO200910501 WO200910501 WO200910501 WO2009137347 WO200910501 WO200910501 WO2009137347 WO200910501 WO2009137347 WO200910501 WO200 | W O2009073944 | 2008 | 2009 | | | | PRESCRIPTIONS INNOVATORS INNOVATORS LLC WO2009099838 2009 2009 SUNPOWER CORP APPARATUS FOR SOLAR CELL SUBSTRATES AND METHODS FOR USING SAME WO2009099839 2009 SUNPOWER CONTROL SYSTEM FOR NON-CORP CORP CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES OF SOLAR CELL SUBSTRATES OF SOLAR CELL SUBSTRATES OF SOLAR CELL SUBSTRATES WO2009105314 2009 2009 SUNPOWER CONTACT SOLAR CELL SUBSTRATES WO2009120955 2009 2009 SUNPOWER FRONT CONTACT SOLAR CELL SUBSTRATES WO2009137347 2009 2009 DOW GLOBAL TRANSMITTING AC ELECTRICAL POWER WO2009137347 2009 2009 DOW GLOBAL CONNECTOR DEVICE FOR BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | WO2009099605 | 2009 | 2009 | | | | INNOVATORS APPLICATIONS | | | | _ | | | WO2009099838 2009 2009 SUNPOWER APPARATUS FOR SOLAR CELL SUBSTRATES AND METHODS FOR USING SAME WO2009099839 2009 2009 SUNPOWER CONTROL SYSTEM FOR NON-CORP CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES WO2009105314 2009 2009 SUNPOWER FRONT CONTACT SOLAR CELL SUBSTRATES WO2009120955 2009 2009 GREENRAY INC AN ELECTRICAL CABLE HARNESS AND ASSEMBLY FOR TRANSMITTING AC ELECTRICAL POWER WO2009137347 2009 2009 DOW GLOBAL CONNECTOR DEVICE FOR BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | | | | INNOVATORS | APPLICATIONS | | CORP APPARATUS FOR SOLAR CELL SUBSTRATES AND METHODS FOR USING SAME WO2009099839 2009 2009 SUNPOWER CONTROL SYSTEM FOR NON- CORP CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES WO2009105314 2009 2009 SUNPOWER FRONT CONTACT SOLAR CELL CORP WITH FORMED EMITTER WO2009120955 2009 2009 GREENRAY INC AN ELECTRICAL CABLE HARNESS AND ASSEMBLY FOR TRANSMITTING AC ELECTRICAL POWER WO2009137347 2009 2009 DOW GLOBAL CONNECTOR DEVICE FOR BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | | | | | | | WO2009099839 2009 2009 SUNPOWER CONTROL SYSTEM FOR NON- CORP CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES WO2009105314 2009 2009 SUNPOWER FRONT CONTACT SOLAR CELL CORP WITH FORMED EMITTER WO2009120955 2009 GREENRAY INC WO2009137347 2009 DOW GLOBAL TECH INC WO2009137347 2009 DOW GLOBAL TECH INC BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | WO2009099838 | 2009 | 2009 | | | | WO2009099839 2009 2009 SUNPOWER CONTROL SYSTEM FOR NON- CORP CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES WO2009105314 2009 2009 SUNPOWER CORP WITH FORMED EMITTER WO2009120955 2009 GREENRAY INC AN ELECTRICAL CABLE HARNESS AND ASSEMBLY FOR TRANSMITTING AC ELECTRICAL POWER WO2009137347 2009 DOW GLOBAL TECH INC BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | | | | CORP | | | WO2009099839 2009 2009 SUNPOWER CORP CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES WO2009105314 2009 2009 SUNPOWER CORP WITH FORMED EMITTER WO2009120955 2009 GREENRAY INC AN ELECTRICAL CABLE HARNESS AND ASSEMBLY FOR TRANSMITTING AC ELECTRICAL POWER WO2009137347 2009 DOW GLOBAL TECH INC BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | | | | | | | CORP CONTACT EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES WO2009105314 2009 2009 SUNPOWER CORP WITH FORMED EMITTER WO2009120955 2009 2009 GREENRAY INC AN ELECTRICAL CABLE HARNESS AND ASSEMBLY FOR TRANSMITTING AC ELECTRICAL POWER WO2009137347 2009 2009 DOW GLOBAL TECH INC BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | WO200000020 | 2000 | 2000 | SHMDOWED | | | WO2009105314 2009 2009 SUNPOWER FRONT CONTACT SOLAR CELL CORP WITH FORMED EMITTER WO2009120955 2009 2009 GREENRAY INC AN ELECTRICAL CABLE HARNESS AND ASSEMBLY FOR TRANSMITTING AC ELECTRICAL POWER WO2009137347 2009 2009 DOW GLOBAL CONNECTOR DEVICE FOR BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | W 02009099639 | 2009 | 2009 | | | | WO2009105314 2009 2009 SUNPOWER FRONT CONTACT SOLAR CELL CORP WITH FORMED EMITTER WO2009120955 2009 2009 GREENRAY INC AN ELECTRICAL CABLE HARNESS AND ASSEMBLY FOR TRANSMITTING AC ELECTRICAL POWER WO2009137347 2009 2009 DOW GLOBAL CONNECTOR DEVICE FOR BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | | | | COM | | | WO2009105314 2009 2009 SUNPOWER CORP WITH FORMED EMITTER WO2009120955 2009 2009 GREENRAY INC AN ELECTRICAL CABLE HARNESS AND ASSEMBLY FOR TRANSMITTING AC ELECTRICAL POWER WO2009137347 2009 2009 DOW GLOBAL CONNECTOR DEVICE FOR BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | | | | | | | WO2009120955 2009 2009 GREENRAY INC AN ELECTRICAL CABLE HARNESS AND ASSEMBLY FOR TRANSMITTING AC ELECTRICAL POWER WO2009137347 2009 DOW GLOBAL CONNECTOR DEVICE FOR BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | WO2009105314 | 2009 | 2009 | SUNPOWER | FRONT CONTACT SOLAR CELL | | AND ASSEMBLY FOR TRANSMITTING AC ELECTRICAL POWER WO2009137347 2009 2009 DOW GLOBAL CONNECTOR DEVICE FOR TECH INC BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | | | | CORP | WITH FORMED EMITTER | | TRANSMITTING AC ELECTRICAL POWER WO2009137347 2009 2009 DOW GLOBAL CONNECTOR DEVICE FOR TECH INC BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | WO2009120955 | 2009 | 2009 | GREENRAY INC | | | WO2009137347 2009 2009 DOW GLOBAL CONNECTOR DEVICE FOR TECH INC BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | | | | | | | WO2009137347 2009 2009 DOW GLOBAL CONNECTOR DEVICE FOR TECH INC BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | | | | | | | TECH INC BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | WO2000127247 | 2000 | 2000 | DOW GLOD VI | | | PHOTOVOLTAIC DEVICE | W 02009137347 | 2009 | 2009 | | | | | | | | ILCII II C | | | | WO2009137348 | 2009 | 2009 | DOW GLOBAL | | | **** | • • • • • | • • • • • | TECH INC | AND METHOD | |---|-----------|-----------|-----------------------------|--| | WO2009137351 | 2009 | 2009
 DOW GLOBAL | IMPROVED METHOD FOR | | | | | TECH INC | ENCAPSULATING THE EDGE OF A | | WO2009137352 | 2009 | 2009 | DOW GLOBAL | FLEXIBLE SHEET SYSTEM FOR INSTALLATION OF | | W 02009137332 | 2009 | 2009 | TECH INC | PHOTOVOLTAIC DEVICES ON A | | | | | TECH IIVC | STRUCTURE | | WO2009137353 | 2009 | 2009 | DOW GLOBAL | PHOTOVOLTAIC DEVICE ASSEMBLY | | | | | TECH INC | AND METHOD | | WO2009139896 | 2009 | 2009 | SOLIANT | CONCENTRATING PHOTOVOLTAIC | | | | | ENERGY INC | SOLAR PANEL | | WO2009139918 | 2009 | 2009 | SOLIANT | SOLAR SYSTEMS THAT INCLUDE | | | | | ENERGY INC | ONE OR MORE SHADE-TOLERANT | | W02000120025 | 2000 | 2000 | ALLIANCE EOD | WIRING SCHEMES | | WO2009139935 | 2009 | 2009 | ALLIANCE FOR
SUST ENERGY | HIGH PERFORMANCE, HIGH | | | | | LLC | BANDGAP, LATTICE-MISMATCHED,
GAINP SOLAR CELLS | | WO2009140174 | 2009 | 2009 | UNIVERSITY OF | SOLAR CONCENTRATOR | | *************************************** | 2007 | 2009 | ARIZONA | APPARATUS WITH LARGE, | | | | | | MULTIPLE, CO-AXIAL DISH | | | | | | REFLECTORS | | WO2009140175 | 2009 | 2009 | UNIVERSITY OF | PHOTOVOLTAIC GENERATOR WITH | | | | | ARIZONA | A SPHERICAL IMAGING LENS FOR | | | | | | USE WITH A PARABOLOIDAL SOLAR | | W02000140176 | 2000 | 2000 | LIMINEDCITY | REFLECTOR | | WO2009140176 | 2009 | 2009 | UNIVERSITY OF
ARIZONA | METHOD OF MANUFACTURING
LARGE DISH REFLECTORS FOR A | | | | | ARIZONA | SOLAR CONCENTRATOR | | | | | | APPARATUS | | WO2009143253 | 2009 | 2009 | GREENRAY INC | AN AC PHOTOVOLTAIC MODULE | | | | | | AND INVERTER ASSEMBLY | | WO2009151808 | 2009 | 2009 | SUNPOWER | TRENCH PROCESS AND STRUCTURE | | | | | CORP | FOR BACKSIDE CONTACT SOLAR | | | | | | CELLS WITH POLYSILICON DOPED | | WO2009151809 | 2009 | 2009 | SUNPOWER | REGIONS TRENCH PROCESS AND STRUCTURE | | W 02009131609 | 2009 | 2009 | CORP | FOR BACKSIDE CONTACT SOLAR | | | | | COM | CELLS WITH POLYSILICON DOPED | | | | | | REGIONS | | WO2009158710 | 2009 | 2009 | SUNPOWER | BALLASTED PHOTOVOLTAIC | | | | | CORP | MODULE AND MODULE ARRAYS | | WO2009158712 | 2009 | 2009 | SUNPOWER | PHOTOVOLTAIC MODULE KIT | | | | | CORP | INCLUDING CONNECTOR | | | | | | ASSEMBLY FOR NON-PENETRATING | | WO2009158714 | 2009 | 2009 | SUNPOWER | ARRAY INSTALLATION PHOTOVOLTAIC MODULE WITH | | 11 0200/130/14 | 2009 | 2009 | CORP | REMOVABLE WIND DEFLECTOR | | WO2009158715 | 2009 | 2009 | SUNPOWER | PHOTOVOLTAIC MODULE AND | | | | | CORP | MODULE ARRAYS | | 7652209 | 2006 | 2010 | ENERGY | METHOD OF JUNCTION FORMATION | | | | | PHOTOVOLTAI | FOR CIGS PHOTOVOLTAIC DEVICES | | | -06- | | CS | | | 7741225 | 2008 | 2010 | GEORGIA TECH | METHOD FOR CLEANING A SOLAR | | | | | RES CORP | CELL SURFACE OPENING MADE | | 7743763 | 2007 | 2010 | BOEING CO | WITH A SOLAR ETCH PASTE
STRUCTURALLY ISOLATED | | 1143103 | 2007 | 2010 | DOEING CO | STRUCTURALLT ISOLATED | | 7700200 | 2007 | 2010 | TINITY / | THERMAL INTERFACE | |--------------|------|------|------------------|--| | 7790298 | 2007 | 2010 | UNIV
SOUTHERN | ORGANIC ELECTRONIC DEVICES USING PHTHALIMIDE COMPOUNDS | | | | | CALIFORNIA | USING TITTIALIMIDE COMI GUNDS | | 7790574 | 2005 | 2010 | GEORGIA TECH | BORON DIFFUSION IN SILICON | | | | | RES CORP | DEVICES | | 7803419 | 2006 | 2010 | ABOUND | APPARATUS AND METHOD FOR | | | | | SOLAR INC | RAPID COOLING OF LARGE AREA | | | | | | SUBSTRATES IN VACUUM | | 7812250 | 2009 | 2010 | SUNPOWER | TRENCH PROCESS AND STRUCTURE | | | | | CORP | FOR BACKSIDE CONTACT SOLAR | | | | | | CELLS WITH POLYSILICON DOPED REGIONS | | 7842596 | 2008 | 2010 | GEORGIA TECH | METHOD FOR FORMATION OF HIGH | | 7042370 | 2000 | 2010 | RES CORP | QUALITY BACK CONTACT WITH | | | | | RES COR | SCREEN-PRINTED LOCAL BACK | | | | | | SURFACE FIELD | | 7851698 | 2009 | 2010 | SUNPOWER | TRENCH PROCESS AND STRUCTURE | | | | | CORP | FOR BACKSIDE CONTACT SOLAR | | | | | | CELLS WITH POLYSILICON DOPED | | ED24.4024.4 | 2000 | 2010 | arn monren | REGIONS | | EP2140211 | 2008 | 2010 | SUNPOWER
CORP | TRACKING SOLAR COLLECTOR
ASSEMBLY | | EP2140212 | 2008 | 2010 | SUNPOWER | TILT ASSEMBLY FOR TRACKING | | E1 2140212 | 2008 | 2010 | CORP | SOLAR COLLECTOR ASSEMBLY | | EP2149155 | 2008 | 2010 | GEORGIA TECH | FORMATION OF HIGH QUALITY | | | | | RES CORP | BACK CONTACT WITH SCREEN- | | | | | | PRINTED LOCAL BACK SURFACE | | | | | | FIELD | | EP2149156 | 2008 | 2010 | GEORGIA TECH | METHOD FOR CLEANING A SOLAR | | | | | RES CORP | CELL SURFACE OPENING MADE | | EP2168171 | 2008 | 2010 | MICROLINK | WITH A SOLAR ETCH PASTE THIN FILM III-V COMPOUND SOLAR | | EP21081/1 | 2008 | 2010 | DEVICES INC | CELL | | EP2168172 | 2008 | 2010 | MICROLINK | METHODS FOR FABRICATING THIN | | 21 21001/2 | 2000 | 2010 | DEVICES INC | FILM III-V COMPOUND SOLAR CELL | | EP2185646 | 2008 | 2010 | BRP MFG CO, | ENCAPSULANT MATERIALS AND | | | | | ALL FOR SUST | ASSOCIATED DEVICES | | | | | ENERGY | | | EP2206141 | 2008 | 2010 | NANOSOLAR | IMPROVED SOLUTION DEPOSITION | | ED2240202 | 2000 | 2010 | INC | ASSEMBLY NON CONTACT EDGE COATING | | EP2240283 | 2009 | 2010 | SUNPOWER
CORP | NON-CONTACT EDGE COATING
APPARATUS FOR SOLAR CELL | | | | | CORP | SUBSTRATES | | EP2240284 | 2009 | 2010 | SUNPOWER | CONTROL SYSTEM FOR NON- | | 21 22 .020 1 | _00/ | 2010 | CORP | CONTACT EDGE COATING | | | | | | APPARATUS FOR SOLAR CELL | | | | | | SUBSTRATES | | EP2245671 | 2009 | 2010 | SUNPOWER | FRONT-CONTACT SOLAR CELL | | | | | CORP | WITH BACKSIDE POLY- | | WO2010002625 | 2000 | 2010 | CLINIDONALD | CRYSTALLINE SILICON EMITTER | | WO2010002635 | 2009 | 2010 | SUNPOWER
CORP | FRONT CONTACT SOLAR CELL | | | | | CORF | WITH FORMED ELECTRICALLY CONDUCTING LAYERS ON THE | | | | | | FRONT SIDE AND BACKSIDE | | WO2010017364 | 2009 | 2010 | MAYATERIALS | LOW COST ROUTES TO HIGH | | | | | | | | | | | INC | PURITY SILICON AND DERIVATIVES THEREOF | |--------------|------|------|------------------------------------|--| | WO2010017373 | 2009 | 2010 | ELECTRODYNA
MIC APPLIC INC | PLASMA PROCESSES FOR
PRODUCING SILANES AND
DERIVATIVES THEREOF | | WO2010021623 | 2008 | 2010 | MIDWEST
RESEARCH
INSTITUTE | EPITAXIAL GROWTH OF SILICON
FOR LAYER TRANSFER | | WO2010027833 | 2009 | 2010 | BP CORP | SYSTEM AND METHOD FOR LIQUID SILICON CONTAINMENT | | WO2010027869 | 2009 | 2010 | AMONIX INC | A HIGH-STIFFNESS, LIGHTWEIGHT
BEAM STRUCTURE | | WO2010036776 | 2009 | 2010 | ALLIANCE FOR
SUST ENERGY
LLC | THIN FILM ELECTRONIC DEVICES
WITH CONDUCTIVE AND
TRANSPARENT GAS AND MOISTURE
PERMEATION BARRIERS | | WO2010051258 | 2009 | 2010 | UNIV
MICHIGAN | INVERTED ORGANIC PHOTOSENSITIVE DEVICES | | WO2010051355 | 2009 | 2010 | DOW CORNING
CORP | PHOTOVOLTAIC CELL MODULE
AND METHOD OF FORMING | | WO2010065434 | 2009 | 2010 | SUNPOWER
CORP | BACKSIDE CONTACT SOLAR CELL
WITH FORMED POLYSILICON
DOPED REGIONS | | WO2010077535 | 2009 | 2010 | SUNPOWER
CORP | MOUNTING SUPPORT FOR A PHOTOVOLTAIC MODULE | | WO2010088419 | 2010 | 2010 | UNIV
WASHINGTON | CROSS-CONJUGATED POLYMERS
FOR ORGANIC ELECTRONIC
DEVICES AND RELATED METHODS | | WO2010098806 | 2009 | 2010 | SUNPOWER
CORP | PHOTOVOLTAIC ASSEMBLIES AND METHODS FOR TRANSPORTING | | WO2010098903 | 2010 | 2010 | SUNPOWER
CORP | PHOTOVOLTAIC MODULE AND
INTERLOCKED STACK OF
PHOTOVOLTAIC MODULES | | WO2010102178 | 2010 | 2010 | UNIV FLORIDA | AIR STABLE ORGANIC-INORGANIC
NANOPARTICLES HYBRID SOLAR
CELLS | | WO2010107522 | 2010 | 2010 | BOEING CO | HIGHLY DOPED LAYER FOR
TUNNEL JUNCTIONS IN SOLAR
CELLS | | WO2010111125 | 2010 | 2010 | DOW GLOBAL
TECH INC | OPTOELECTRONIC DEVICE | | WO2010115007 | 2010 | 2010 | UNIVERSITY OF
ARKANSAS | PHOTOVOLTAIC DEVICE USING
SINGLE WALL CARBON
NANOTUBES AND METHOD OF
FABRICATING THE SAME | | WO2010120397 | 2010 | 2010 | SUNPOWER
CORP | PHOTOVOLTAIC ARRAY WITH
MINIMALLY PENETRATING
ROOFTOP SUPPORT SYSTEM | | WO2010124212 | 2010 | 2010 | UNIV CHICAGO | MATERIALS AND METHODS FOR
THE PREPARATION OF
NANOCOMPOSITES | | WO2010148024 | 2010 | 2010 | UNIV HOUSTON | WRAPPED OPTOELECTRONIC
DEVICES AND METHODS FOR
MAKING SAME | | 7877937 | 2008 | 2011 | AMONIX INC | HIGH-STIFFNESS, LIGHTWEIGHT
BEAM STRUCTURE | | 7897429 | 2006 | 2011 | PRINCETON
UNIVERSITY, | ORGANIC HYBRID PLANAR-
NANOCRYSTALLINE BULK | |-----------|------|------|--|---| | | | | USC | HETEROJUNCTIONS | | 7902049 | 2004 | 2011 | UNITED SOLAR
OVONIC LLC | METHOD FOR DEPOSITING HIGH-
QUALITY MICROCRYSTALLINE
SEMICONDUCTOR MATERIALS | | 7902301 | 2008 | 2011 | BRP MFG CO,
ALL FOR SUST
ENERGY | ENCAPSULANT MATERIALS AND ASSOCIATED DEVICES | | 7955889 | 2006 | 2011 | PRINCETON
UNIVERSITY | ORGANIC PHOTOSENSITIVE CELLS
GROWN ON ROUGH ELECTRODE
WITH NANO-SCALE MORPHOLOGY
CONTROL | | 7973307 | 2009 | 2011 | UNIV
MICHIGAN,
PRINCETON
UNIVERSITY,
USC | ORGANIC PHOTOSENSITIVE DEVICES USING SUBPHTHALOCYANINE COMPOUNDS | | 7994419 | 2008 | 2011 | MICROLINK
DEVICES INC | METHODS FOR FABRICATING THIN FILM III-V COMPOUND SOLAR CELL | | 8006566 | 2006 | 2011 | ALLIANCE FOR
SUST ENERGY
LLC | SCREENING OF SILICON WAFERS USED IN PHOTOVOLTAICS | | 8013240 | 2006 | 2011 | PRINCETON
UNIVERSITY | ORGANIC PHOTOVOLTAIC CELLS
UTILIZING ULTRATHIN
SENSITIZING LAYER | | 8023266 | 2009 | 2011 | GREENRAY INC | AC PHOTOVOLTAIC MODULE AND INVERTER ASSEMBLY | | 8048221 | 2007 | 2011 | AMG
IDEALCAST
SOLAR CORP | METHODS AND APPARATUSES FOR
MANUFACTURING
MONOCRYSTALLINE CAST SILICON
AND MONOCRYSTALLINE CAST
SILICON BODIES FOR
PHOTOVOLTAICS | | 8061091 | 2009 | 2011 | SUNPOWER
CORP | PHOTOVOLTAIC MODULE KIT
INCLUDING
CONNECTOR
ASSEMBLY FOR NON-PENETRATING
ARRAY INSTALLATION | | 8065844 | 2009 | 2011 | SUNPOWER
CORP | BALLASTED PHOTOVOLTAIC MODULE AND MODULE ARRAYS | | 8067687 | 2004 | 2011 | ALLIANCE FOR
SUST ENERGY
LLC | HIGH-EFFICIENCY, MONOLITHIC,
MULTI-BANDGAP, TANDEM
PHOTOVOLTAIC ENERGY
CONVERTERS | | 8075792 | 2008 | 2011 | ALLIANCE FOR
SUST ENERGY
LLC | NANOPARTICLE-BASED ETCHING
OF SILICON SURFACES | | 8082755 | 2009 | 2011 | UNIVERSITY OF
ARIZONA | METHOD OF MANUFACTURING
LARGE DISH REFLECTORS FOR A
SOLAR CONCENTRATOR
APPARATUS | | EP2272096 | 2009 | 2011 | DOW GLOBAL
TECH INC | SYSTEM FOR INSTALLATION OF
PHOTOVOLTAIC DEVICES ON A
STRUCTURE | | EP2272141 | 2009 | 2011 | GREENRAY INC | AN ELECTRICAL CABLE HARNESS
AND ASSEMBLY FOR | | | | | | TRANSMITTING AC ELECTRICAL POWER | |------------|------|------|------------------------------------|--| | EP2274776 | 2009 | 2011 | DOW GLOBAL
TECH INC | IMPROVED PHOTOVOLTAIC DEVICE
AND METHOD | | EP2282891 | 2009 | 2011 | DOW GLOBAL
TECH INC | IMPROVED METHOD FOR
ENCAPSULATING THE EDGE OF A | | EP2282976 | 2009 | 2011 | UNIVERSITY OF | FLEXIBLE SHEET METHOD OF MANUFACTURING | | E1 2202970 | 2009 | 2011 | ARIZONA | LARGE DISH REFLECTORS FOR A | | | | | | SOLAR CONCENTRATOR
APPARATUS | | EP2283543 | 2009 | 2011 | DOW GLOBAL
TECH INC | CONNECTOR DEVICE FOR
BUILDING INTEGRATED | | ED2296466 | 2000 | 2011 | LIMINED CITY OF | PHOTOVOLTAIC DEVICE | | EP2286466 | 2009 | 2011 | UNIVERSITY OF
ARIZONA | SOLAR CONCENTRATOR APPARATUS WITH LARGE MULTIPLE CO-AXIAL DISH REFLECTORS | | EP2286467 | 2009 | 2011 | UNIVERSITY OF
ARIZONA | PHOTOVOLTAIC GENERATOR WITH
A SPHERICAL IMAGING LENS FOR
USE WITH A PARABOLOIDAL SOLAR
REFLECTOR | | EP2286645 | 2009 | 2011 | GREENRAY INC | AN AC PHOTOVOLTAIC MODULE
AND INVERTER ASSEMBLY | | EP2294629 | 2009 | 2011 | SOLIANT
ENERGY INC | CONCENTRATING PHOTOVOLTAIC SOLAR PANEL | | EP2294630 | 2009 | 2011 | SOLIANT
ENERGY INC | SOLAR SYSTEMS THAT INCLUDE
ONE OR MORE SHADE-TOLERANT
WIRING SCHEMES | | EP2297788 | 2009 | 2011 | SUNPOWER
CORP | BACK-CONTACTED SOLAR CELLS
WITH DOPED POLYSILICON
REGIONS SEPARATED VIA TRENCH
STRUCTURES AND FABRICATION
PROCESS THEREFOR | | EP2297789 | 2009 | 2011 | SUNPOWER
CORP | TRENCH PROCESS AND STRUCTURE
FOR BACKSIDE CONTACT SOLAR
CELLS WITH POLYSILICON DOPED
REGIONS | | EP2298955 | 2010 | 2011 | AIR PRODUCTS
& CHEMICALS
INC | ADDITIVES TO SILANE FOR THIN FILM SILICON PHOTOVOLTAIC DEVICES | | EP2301079 | 2009 | 2011 | DOW GLOBAL
TECH INC | PHOTOVOLTAIC DEVICE ASSEMBLY AND METHOD | | EP2304807 | 2009 | 2011 | SUNPOWER
CORP | BALLASTED PHOTOVOLTAIC MODULE AND MODULE ARRAYS | | EP2304810 | 2009 | 2011 | SUNPOWER
CORP | PHOTOVOLTAIC MODULE KIT
INCLUDING CONNECTOR
ASSEMBLY FOR NON-PENETRATING
ARRAY INSTALLATION | | EP2304811 | 2009 | 2011 | SUNPOWER
CORP | PHOTOVOLTAIC MODULE WITH REMOVABLE WIND DEFLECTOR | | EP2304812 | 2009 | 2011 | SUNPOWER
CORP | PHOTOVOLTAIC MODULE AND MODULE ARRAYS | | EP2311102 | 2009 | 2011 | SUNPOWER
CORP | FRONT CONTACT SOLAR CELL WITH FORMED ELECTRICALLY CONDUCTING LAYERS ON THE | | ED2221221 | 2000 | 2011 | MANAMEDIALC | FRONT SIDE AND BACKSIDE | |---|------|------|---|---| | EP2321221 | 2009 | 2011 | MAYATERIALS
INC | LOW COST ROUTES TO HIGH
PURITY SILICON AND DERIVATIVES | | | | | 11 (0 | THEREOF | | EP2331277 | 2009 | 2011 | AMONIX INC | A HIGH-STIFFNESS, LIGHTWEIGHT | | | | | | BEAM STRUCTURE | | EP2337881 | 2009 | 2011 | BP CORP | SYSTEM AND METHOD FOR LIQUID | | ED2242770 | 2000 | 2011 | TINITY | SILICON CONTAINMENT | | EP2342770 | 2009 | 2011 | UNIV
MICHIGAN | INVERTED ORGANIC PHOTOSENSITIVE DEVICES | | EP2351102 | 2009 | 2011 | DOW CORNING | PHOTOVOLTAIC CELL MODULE | | EI 2331102 | 2007 | 2011 | CORP | AND METHOD OF FORMING | | EP2367758 | 2009 | 2011 | ELECTRODYNA | PLASMA PROCESSES FOR | | | | | MIC APPLIC INC | PRODUCING SILANES AND | | | | | | DERIVATIVES THEREOF | | EP2374160 | 2009 | 2011 | SUNPOWER | BACKSIDE CONTACT SOLAR CELL | | | | | CORP | WITH FORMED POLYSILICON | | EP2378583 | 2007 | 2011 | UNIV | DOPED REGIONS METHOD OF FABRICATING AN | | EF 2370303 | 2007 | 2011 | MICHIGAN, | ORGANIC PHOTOVOLTAIC CELLS | | | | | PRINCETON | UTILIZING ULTRATHIN | | | | | UNIVERSITY | SENSITIZING LAYER | | EP2378586 | 2007 | 2011 | UNIV | ORGANIC ELECTRONIC DEVICES | | | | | SOUTHERN | USING PHTHALIMIDE COMPOUNDS | | | | | CALIFORNIA | | | WO2011016894 | 2010 | 2011 | SUNPOWER | MODULE LEVEL SOLUTIONS TO | | WO2011034640 | 2010 | 2011 | CORP
BOEING CO | SOLAR CELL POLARIZATION
ENCLOSED, OFF-AXIS SOLAR | | W 02011034040 | 2010 | 2011 | BOEING CO | CONCENTRATOR | | WO2011034676 | 2010 | 2011 | BOEING CO | PHOTOVOLTAIC CONCENTRATOR | | | | | | ASSEMBLY WITH OPTICALLY | | | | | | ACTIVE COVER | | WO2011038227 | 2010 | 2011 | GREENRAY INC | | | | | | | , , | | | | | | | | WO2011046578 | 2010 | 2011 | SUNLINK CORP | | | | | | SUNLINK CORP | PHOTOVOLTAIC MODULE | | | | | | MOUNTING SYSTEM | | WO2011049933 | 2010 | 2011 | UNIV TOLEDO | BACK CONTACT BUFFER LAYER | | *************************************** | | | | | | WO2011049944 | 2010 | 2011 | | | | | | | TECH INC | | | WO2011050225 | 2010 | 2011 | DOW GLOBAL | | | 02011030223 | 2010 | 2011 | TECH INC | PHOTOVOLTAIC DEVICE WITH | | | | | | IMPROVED ADHESION AND | | | | | | METHOD THEREOF | | WO2011057207 | 2010 | 2011 | NANO C INC | FULLERENE-FUNCTIONALIZED | WO2011060193 | 2010 | 2011 | ALLIANCE FOR | | | 2_311300170 | | | SUST ENERGY | METHODS FOR PRODUCING BLACK | | | | | LLC | SILICON SUBSTRATES | | WO2011049944
WO2011050225 | 2010 | 2011 | UNIV TOLEDO DOW GLOBAL TECH INC DOW GLOBAL TECH INC NANO C INC ALLIANCE FOR SUST ENERGY | MODIFIED ZERO VOLTAGE TRANSITION (ZVT) FULL BRIDGE CONVERTER AND PHOTOVOLTAIC (PV) ARRAY USING THE SAME PHOTOVOLTAIC PANEL CLAMP PHOTOVOLTAIC MODULE MOUNTING SYSTEM BACK CONTACT BUFFER LAYER FOR THIN-FILM SOLAR CELLS A DIRECT MOUNTED PHOTOVOLTAIC DEVICE WITH IMPROVED FRONT CLIP A DIRECT MOUNTED PHOTOVOLTAIC DEVICE WITH IMPROVED ADHESION AND METHOD THEREOF FULLERENE-FUNCTIONALIZED PARTICLES, METHODS FOR MAKING THE SAME AND THEIR USE IN BLUKHETEROJUNCTION ORGANIC PHOTOVOLTAIC DEVICES WET-CHEMICAL SYSTEMS AND METHODS FOR PRODUCING BLACK | | WO2011068590 | 2010 | 2011 | SUNPOWER
CORP | SOLAR CELL CONTACT FORMATION USING LASER ABLATION | |-----------------------|------------------|--------------|------------------|---| | WO2011069054 | 2010 | 2011 | MASSACHUSET | PHONON-ENHANCED CRYSTAL | | W 02011007051 | 2010 | 2011 | TS INST | GROWTH AND LATTICE HEALING | | | | | TECHNOLOGY | OROW III AND LAI IICE HEALING | | WO2011071596 | 2010 | 2011 | DOW GLOBAL | A DIRECT MOUNTED | | W O20110/1390 | 2010 | 2011 | | | | | | | TECH INC | PHOTOVOLTAIC DEVICE WITH | | | | | | IMPROVED CLIP | | WO2011103341 | 2011 | 2011 | ALLIANCE FOR | MOISTURE BARRIER | | | | | SUST ENERGY | | | | | | LLC | | | WO2011109058 | 2010 | 2011 | SUNPOWER | METHOD OF FABRICATING A BACK- | | | | | CORP | CONTACT SOLAR CELL AND | | | | | | DEVICE THEREOF | | WO2011112612 | 2011 | 2011 | ALLIANCE FOR | BORON, BISMUTH CO-DOPING OF | | | | | SUST ENERGY | GALLIUM ARSENIDE AND OTHER | | | | | LLC | COMPOUNDS FOR PHOTONIC AND | | | | | LLC | HETEROJUNCTION BIPOLAR | | | | | | TRANSISTOR DEVICES | | W/O2011112750 | 2011 | 2011 | DOW CLODAL | IMPROVED PHOTOVOLTAIC DEVICE | | WO2011112759 | 2011 | 2011 | DOW GLOBAL | IMPROVED PHOTOVOLTAIC DEVICE | | W/02011126702 | 2011 | 2011 | TECH INC | LEAVA CE DATIMANA AVED FOR | | WO2011126593 | 2011 | 2011 | SUNPOWER | LEAKAGE PATHWAY LAYER FOR | | | | | CORP | SOLAR CELL | | WO2011127186 | 2011 | 2011 | UNIV | ENHANCED BULK | | | | | MICHIGAN; | HETEROJUNCTION DEVICES | | | | | UNIV | PREPARED BY THERMAL AND | | | | | SOUTHERN | SOLVENT VAPOR ANNEALING | | | | | CALIFORNIA | PROCESSES | | WO2011133236 | 2011 | 2011 | SUNPOWER | PHOTOVOLTAIC LAMINATE | | | | | CORP | SEGMENTS AND SEGMENTED | | | | | | PHOTOVOLTAIC MODULES | | WO2011139395 | 2011 | 2011 | SUNPOWER | METHODS AND APPARATUSES TO | | | | | CORP | SUPPORT PHOTOVOLTAIC | | | | | cora | MODULES | | WO2011150290 | 2011 | 2011 | UNIV TOLEDO | PHOTOVOLTAIC STRUCTURES | | W 02011130270 | 2011 | 2011 | CIVIV TOLLDO | HAVING A LIGHT SCATTERING | | | | | | | | | | | | INTERFACE LAYER AND METHODS | | W/O201115/042 | 2011 | 2011 | CLINIDOMED | OF MAKING THE SAME | | WO2011156043 | 2011 | 2011 | SUNPOWER | ABLATION OF FILM STACKS IN | | | | | CORP | SOLAR CELL FABRICATION | | | | | | PROCESSES | | WO2011160031 | 2011 | 2011 | UNIV FLORIDA | THIN FILM PHOTOVOLTAIC | | | | | | DEVICES WITH MICROLENS | | | | | | ARRAYS | | 8088499 | 2006 | 2012 | AGILTRON INC | OPTOELECTRONIC DEVICE WITH | | | | | | NANOPARTICLE EMBEDDED HOLE | | | | | | INJECTION/TRANSPORT LAYER | | 8101849 | 2008 | 2012 | SUNPOWER | TILT ASSEMBLY FOR TRACKING | | | | | CORP | SOLAR COLLECTOR ASSEMBLY | | 8134217 | 2010 | 2012 | SUNPOWER | BYPASS DIODE FOR A SOLAR CELL | | - · - ·- · | ~ - ~ | - | CORP | | | 8156697 | 2009 | 2012 |
SUNLINK CORP | PHOTOVOLTAIC MODULE | | 0130071 | 2007 | 2012 | JOI LININ COM | MOUNTING SYSTEM | | 8173891 | 2008 | 2012 | ALLIANCE FOR | MONOLITHIC, MULTI-BANDGAP, | | 01/30/1 | 2000 | 2012 | SUST ENERGY | TANDEM, ULTRA-THIN, STRAIN- | | | | | | | | | | | LLC | COUNTERBALANCED, | | | | | | PHOTOVOLTAIC ENERGY | |---------|------|------|-----------------------------|--| | | | | | CONVERTERS WITH OPTIMAL | | 0102220 | 2011 | 2012 | DDD MEG GO | SUBCELL BANDGAPS | | 8183329 | 2011 | 2012 | BRP MFG CO,
ALL FOR SUST | ENCAPSULANT MATERIALS AND ASSOCIATED DEVICES | | | | | ENERGY | ASSOCIATED DEVICES | | 8188363 | 2009 | 2012 | SUNPOWER | MODULE LEVEL SOLUTIONS TO | | 0100303 | 2009 | 2012 | CORP | SOLAR CELL POLARIZATION | | 8191320 | 2009 | 2012 | SUNLINK CORP | PHOTOVOLTAIC PANEL CLAMP | | 8201994 | 2008 | 2012 | BOEING CO | FLEXIBLE THERMAL CYCLE TEST | | 0201774 | 2000 | 2012 | BOLING CO | EQUIPMENT FOR CONCENTRATOR | | | | | | SOLAR CELLS | | 8207444 | 2008 | 2012 | SUNPOWER | FRONT CONTACT SOLAR CELL | | 0207111 | 2000 | 2012 | CORP | WITH FORMED ELECTRICALLY | | | | | | CONDUCTING LAYERS ON THE | | | | | | FRONT SIDE AND BACKSIDE | | 8211731 | 2010 | 2012 | SUNPOWER | ABLATION OF FILM STACKS IN | | | | | CORP | SOLAR CELL FABRICATION | | | | | | PROCESSES | | 8220210 | 2009 | 2012 | SUNPOWER | PHOTOVOLTAIC MODULE AND | | | | | CORP | MODULE ARRAYS | | 8222516 | 2008 | 2012 | SUNPOWER | FRONT CONTACT SOLAR CELL | | | | | CORP | WITH FORMED EMITTER | | 8234824 | 2009 | 2012 | SUNPOWER | PHOTOVOLTAIC MODULE WITH | | | | | CORP | REMOVABLE WIND DEFLECTOR | | 8239165 | 2008 | 2012 | ALLIANCE FOR | ULTRA-FAST DETERMINATION OF | | | | | SUST ENERGY | QUANTUM EFFICIENCY OF A SOLAR | | | | | LLC | CELL | | 8242350 | 2009 | 2012 | SOLIANT | CONCENTRATING PHOTOVOLTAIC | | 0040074 | 2000 | 2012 | ENERGY INC | SOLAR PANEL | | 8242354 | 2009 | 2012 | SUNPOWER | BACKSIDE CONTACT SOLAR CELL | | | | | CORP | WITH FORMED POLYSILICON | | 8242493 | 2011 | 2012 | UNIV | DOPED REGIONS ORGANIC PHOTOSENSITIVE | | 8242493 | 2011 | 2012 | MICHIGAN, | DEVICES USING | | | | | PRINCETON | SUBPHTHALOCYANINE | | | | | UNIVERSITY, | COMPOUNDS | | | | | USC USC | COMI OUNDS | | 8247243 | 2010 | 2012 | NANOSOLAR | SOLAR CELL INTERCONNECTION | | 0217213 | 2010 | 2012 | INC | SOEIN CEEE INTERCONNECTION | | 8258395 | 2009 | 2012 | SUNPOWER | PHOTOVOLTAIC MODULE AND | | | | | CORP | INTERLOCKED STACK OF | | | | | | PHOTOVOLTAIC MODULES | | 8263899 | 2010 | 2012 | SUNPOWER | HIGH THROUGHPUT SOLAR CELL | | | | | CORP | ABLATION SYSTEM | | 8266848 | 2012 | 2012 | SUNLINK CORP | PHOTOVOLTAIC MODULE | | | | | | MOUNTING SYSTEM | | 8291654 | 2011 | 2012 | SUNPOWER | PHOTOVOLTAIC MODULE KIT | | | | | CORP | INCLUDING CONNECTOR | | | | | | ASSEMBLY FOR NON-PENETRATING | | 0.7.7.7 | | | | ARRAY INSTALLATION | | 8293385 | 2010 | 2012 | UNIV | ORGANIC ELECTRONIC DEVICES | | | | | SOUTHERN | USING PHTHALIMIDE COMPOUNDS | | 0204022 | 2000 | 2012 | CALIFORNIA | DIJOTOVOJ TAJO ADDAM WYTY | | 8294022 | 2009 | 2012 | SUNPOWER | PHOTOVOLTAIC ARRAY WITH | | | | | CORP | MINIMALLY PENETRATING | | 8302554 | 2010 | 2012 | COLORADA | ROOFTOP SUPPORT SYSTEM APPARATUS AND METHOD FOR | |-----------|------|------|--|--| | 050256 | -010 | | STATE UNIV | RAPID COOLING OF LARGE AREA
SUBSTRATES IN VACUUM | | 8304302 | 2010 | 2012 | UNIVERSITY OF
ARKANSAS | PHOTOVOLTAIC DEVICE USING
SINGLE WALL CARBON
NANOTUBES AND METHOD OF
FABRICATING THE SAME | | 8322300 | 2008 | 2012 | SUNPOWER
CORP | EDGE COATING APPARATUS WITH
MOVABLE ROLLER APPLICATOR
FOR SOLAR CELL SUBSTRATES | | 8324015 | 2010 | 2012 | SUNPOWER
CORP | SOLAR CELL CONTACT FORMATION USING LASER ABLATION | | 8330299 | 2011 | 2012 | GENERAL
ELECTRIC CO | DC TO DC POWER CONVERTERS
AND METHODS OF CONTROLLING
THE SAME | | 8334161 | 2010 | 2012 | SUNPOWER
CORP | METHOD OF FABRICATING A SOLAR
CELL WITH A TUNNEL DIELECTRIC
LAYER | | EP2401769 | 2009 | 2012 | SUNPOWER
CORP | PHOTOVOLTAIC ASSEMBLIES AND METHODS FOR TRANSPORTING | | EP2401770 | 2010 | 2012 | SUNPOWER
CORP | PHOTOVOLTAIC MODULE AND
INTERLOCKED STACK OF
PHOTOVOLTAIC MODULES | | EP2409334 | 2010 | 2012 | BOEING CO | HIGHLY DOPED LAYER FOR
TUNNEL JUNCTIONS IN SOLAR
CELLS | | EP2414743 | 2010 | 2012 | SUNPOWER
CORP | PHOTOVOLTAIC ARRAY WITH
MINIMALLY PENETRATING
ROOFTOP SUPPORT SYSTEM | | EP2416394 | 2007 | 2012 | UNIV
MICHIGAN,
PRINCETON
UNIVERSITY | ORGANIC HYBRID PLANAR -
NANOCRYSTALLINE BULK
HETEROJUNCTIONS | | EP2417631 | 2010 | 2012 | DOW GLOBAL
TECH INC | OPTOELECTRONIC DEVICE | | EP2430112 | 2010 | 2012 | UNIV CHICAGO | MATERIALS AND METHODS FOR
THE PREPARATION OF
NANOCOMPOSITES | | EP2443683 | 2010 | 2012 | UNIV HOUSTON | WRAPPED OPTOELECTRONIC
DEVICES AND METHODS FOR
MAKING SAME | | EP2462623 | 2010 | 2012 | SUNPOWER
CORP | MODULE LEVEL SOLUTIONS TO PREVENT SOLAR CELL POLARIZATION | | EP2478569 | 2010 | 2012 | BOEING CO | ENCLOSED, OFF-AXIS SOLAR CONCENTRATOR | | EP2481090 | 2010 | 2012 | BOEING CO | PHOTOVOLTAIC CONCENTRATOR
ASSEMBLY WITH OPTICALLY
ACTIVE COVER | | EP2485276 | 2009 | 2012 | DOW CORNING
CORP | PHOTOVOLTAIC CELL MODULE
AND METHOD OF FORMING | | EP2485277 | 2009 | 2012 | DOW CORNING
CORP | PHOTOVOLTAIC CELL MODULE
AND METHOD OF FORMING | | EP2491315 | 2010 | 2012 | DOW GLOBAL
TECH INC | A DIRECT MOUNTED PHOTOVOLTAIC DEVICE WITH | | IMPROVED CLIP EP2491597 2010 2012 DOW GLOBAL A DIRECT MOUNTED TECH INC PHOTOVOLTAIC DEVICE WITH | |---| | | | TECH INC PHOTOVOLIAIC DEVICE WITH | | IMPROVED FRONT CLIP | | EP2491598 2010 2012 DOW GLOBAL A DIRECT MOUNTED | | TECH INC PHOTOVOLTAIC DEVICE WITH | | IMPROVED ADHESION AND | | METHOD THEREOF | | EP2497130 2010 2012 NANO C INC FULLERENE-FUNCTIONALIZED | | PARTICLES, METHODS FOR MAKIN | | THE SAME AND THEIR USE IN | | BULKHETEROJUNCTION ORGANIC | | EP2507844 2010 2012 SUNPOWER SOLAR CELL CONTACT FORMATIO | | CORP USING LASER ABLATION | | EP2518855 2012 2012 GENERAL SWITCHING COORDINATION OF | | ELECTRIC CO DISTRIBUTED DC-DC CONVERTERS | | FOR HIGHLY EFFICIENT | | PHOTOVOLTAIC POWER PLANTS | | WO2012003032 2011 2012 SUNPOWER FABRICATION OF SOLAR CELLS | | CORP WITH COUNTER DOPING | | PREVENTION | | WO2012003033 2011 2012 SUNPOWER HIGH THROUGHPUT SOLAR CELL | | CORP ABLATION SYSTEM WO2012003038 2011 2012 SUNPOWER METHOD OF FABRICATING A SOLA | | WO2012003038 2011 2012 SUNPOWER METHOD OF FABRICATING A SOLA CORP CELL WITH A TUNNEL DIELECTRIC | | LAYER | | WO2012039830 2011 2012 SUNPOWER METHOD OF FABRICATING A SOLA | | CORP CELL | | WO2012044762 2011 2012 DOW GLOBAL AN IMPROVED CONNECTOR AND | | TECH INC ELECTRONIC CIRCUIT ASSEMBLY | | FOR IMPROVED WET INSULATION | | WO2012047749 2011 2012 3M CO ANTI-REFLECTIVE ARTICLES WITH | | WO2012047749 2011 2012 SM CO ANTI-REFLECTIVE ARTICLES WITH NANOSILICA-BASED COATINGS | | AND BARRIER LAYER | | WO2012074523 2010 2012 ALLIANCE FOR METHODS OF PRODUCING FREE- | | SUST ENERGY STANDING SEMICONDUCTORS | | LLC USING SACRIFICIAL BUFFER | | LAYERS AND RECYCLABLE | | SUBSTRATES | | WO2012074524 2010 2012 ALLIANCE FOR COINCIDENT SITE LATTICE- | | SUST ENERGY MATCHED GROWTH OF
LLC SEMICONDUCTORS ON | | SUBSTRATES USING COMPLIANT | | BUFFER LAYERS | | WO2012074602 2011 2012 SUNPOWER METHOD OF FORMING CONTACTS | | CORP FOR A BACK-CONTACT SOLAR CEL | | WO2012078227 2011 2012 PPG CORROSION RESISTANT SOLAR | | INDUSTRIES MIRROR | | OHIO INC | | WO2012082604 2011 2012 DOW GLOBAL IMPROVED PHOTOVOLTAIC DEVIC | | TECH INC WO2012082608 2011 2012 DOW GLOBAL IMPROVED PHOTOVOLTAIC DEVIC | | WO2012082608 2011 2012 DOW GLOBAL IMPROVED PHOTOVOLTAIC DEVIC | | WO2012082613 2011 2012 DOW GLOBAL IMPROVED PHOTOVOLTAIC DEVIC | | | | | TECH INC | | |----------------------------|------|------|----------------------|---| | WO2012096715 | 2011 | 2012 | SUNPOWER | SUPPORT FOR SOLAR ENERGY | | | | | CORP | COLLECTORS | | WO2012102777 | 2011 | 2012 | SUNPOWER | FRAME-MOUNTED WIRE | | | | | CORP | MANAGEMENT DEVICE | | WO2012108882 | 2011 | 2012 | ALLIANCE FOR | WAFER SCREENING DEVICE AND | | | | | SUST ENERGY | METHODS FOR WAFER SCREENING | | | | | LLC | | | WO2012112191 | 2011 | 2012 | SUNPOWER | PROCESS AND STRUCTURES FOR | | | | | CORP | FABRICATION OF SOLAR CELLS | | WO2012112880 | 2012 | 2012 | ALLIANCE FOR | IN SITU OPTICAL DIAGNOSTIC FOR | | | | | SUST ENERGY | MONITORING OR CONTROL OF | | | | | LLC | SODIUM DIFFUSION IN | | | | | | PHOTOVOLTAICS | | | | | | MANUFACTURING | | WO2012129355 | 2012 | 2012 | DOW GLOBAL | IMPROVED PHOTOVOLTAIC | | W 02012129888 | _01_ | _01_ | TECH INC | BUILDING SHEATHING ELEMENT | | | | | 120111110 | WITH ANTI-SLIDE FEATURES | | WO2012129356 | 2012 | 2012 | DOW GLOBAL | IMPROVED PHOTOVOLTAIC | | W 0201212)330 | 2012 | 2012 | TECH INC | SHEATHING ELEMENT WITH ONE | | | | | TECHTIVE | OR MORE TABS | | WO2012145012 | 2011 | 2012 | UNIV | LIGHT TRAPPING ARCHITECTURE | | W 020121 4 3012 | 2011 | 2012 | MICHIGAN | FOR PHOTOVOLTAIC AND | | | | | MICHIGAIN | PHOTODETECTOR APPLICATIONS | | WO2012148523 | 2012 | 2012 | SUNPOWER | METHOD OF FORING EMITTERS FOR | | W 02012140323 | 2012 | 2012 | CORP | A BACK-CONTACT SOLAR CELL | | WO2012154307 | 2012 | 2012 | DOW GLOBAL | IMPROVED PHOTOVOLTAIC | | W 02012134307 | 2012 | 2012 | TECH INC | SHEATHING ELEMENT WITH A | | | | | TECHINC | FLEXIBLE CONNECTOR ASSEMBLY | | WO2012158847 | 2012 | 2012 | UNIV CHICAGO | MATERIALS AND METHODS FOR | | W O2012138847 | 2012 | 2012 | UNIV CHICAGO | | | | | | | THE PREPARATION OF NANOCOMPOSITES | | WO2012177804 | 2012 | 2012 | ALLIANCE FOR | IMPROVED CDTE DEVICES AND | | W 02012177804 | 2012 | 2012 | | | | | | | SUST ENERGY |
METHOD OF MANUFACTURING | | 0250145 | 2000 | 2012 | LLC
UNIVERSITY OF | SAME | | 8350145 | 2009 | 2013 | | PHOTOVOLTAIC GENERATOR WITH | | | | | ARIZONA | A SPHERICAL IMAGING LENS FOR
USE WITH A PARABOLOIDAL SOLAR | | | | | | | | 0277250 | 2000 | 2012 | DOW OF OR AT | REFLECTOR | | 8377358 | 2009 | 2013 | DOW GLOBAL | METHOD FOR ENCAPSULATING THE | | 0277720 | 2010 | 2012 | TECH INC | EDGE OF A FLEXIBLE SHEET | | 8377738 | 2010 | 2013 | SUNPOWER | FABRICATION OF SOLAR CELLS | | | | | CORP | WITH COUNTER DOPING | | 0000015 | 2000 | 2015 | CDEEN ATTEND | PREVENTION | | 8383943 | 2009 | 2013 | GREENRAY INC | ELECTRICAL CABLE HARNESS AND | | | | | | ASSEMBLY FOR TRANSMITTING AC | | 0000 | | | a | ELECTRICAL POWER | | 8397448 | 2012 | 2013 | SUNLINK CORP | PHOTOVOLTAIC PANEL CLAMP | | 8399109 | 2012 | 2013 | UNIV | ORGANIC ELECTRONIC DEVICES | | | | | SOUTHERN | USING PHTHALIMIDE COMPOUNDS | | | | | CALIFORNIA | | | 8402703 | 2009 | 2013 | SUNPOWER | MOUNTING SUPPORT FOR A | | | | | CORP | PHOTOVOLTAIC MODULE | | 8409902 | 2012 | 2013 | SUNPOWER | ABLATION OF FILM STACKS IN | | | | | CORP | SOLAR CELL FABRICATION | | | | | | PROCESSES | | | | | | | | 8415757 | 2011 | 2013 | UNIV
MICHIGAN,
PRINCETON
UNIVERSITY | ORGANIC HYBRID PLANAR-
NANOCRYSTALLINE BULK
HETEROJUNCTIONS | |---------|------|------|--|---| | 8418688 | 2009 | 2013 | GREENRAY INC | ASSEMBLY AND METHOD FOR
MOUNTING SOLAR PANELS TO
STRUCTURAL SURFACES | | 8430090 | 2009 | 2013 | UNIVERSITY OF
ARIZONA | SOLAR CONCENTRATOR
APPARATUS WITH LARGE,
MULTIPLE, CO-AXIAL DISH
REFLECTORS | | 8448391 | 2012 | 2013 | SUNPOWER
CORP | PHOTOVOLTAIC MODULE WITH REMOVABLE WIND DEFLECTOR | | 8449674 | 2009 | 2013 | AMG
IDEALCAST
SOLAR CORP | SYSTEM AND METHOD FOR LIQUID SILICON CONTAINMENT | | 8450134 | 2010 | 2013 | SUNPOWER
CORP | TRENCH PROCESS AND STRUCTURE
FOR BACKSIDE CONTACT SOLAR
CELLS WITH POLYSILICON DOPED
REGIONS | | 8450704 | 2010 | 2013 | MASSACHUSET
TS INST
TECHNOLOGY | PHONON-ENHANCED CRYSTAL
GROWTH AND LATTICE HEALING | | 8460963 | 2010 | 2013 | SUNPOWER
CORP | TRENCH PROCESS AND STRUCTURE
FOR BACKSIDE CONTACT SOLAR
CELLS WITH POLYSILICON DOPED
REGIONS | | 8466447 | 2009 | 2013 | ALLIANCE FOR
SUST ENERGY
LLC | BACK CONTACT TO FILM SILICON
ON METAL FOR PHOTOVOLTAIC
CELLS | | 8475758 | 2009 | 2013 | MAYATERIALS
INC | LOW COST ROUTES TO HIGH
PURITY SILICON AND DERIVATIVES
THEREOF | | 8492253 | 2010 | 2013 | SUNPOWER
CORP | METHOD OF FORMING CONTACTS
FOR A BACK-CONTACT SOLAR CELL | | 8501526 | 2012 | 2013 | ALLIANCE FOR
SUST ENERGY
LLC | SYNTHESIZING PHOTOVOLTAIC
THIN FILMS OF HIGH QUALITY
COPPER-ZINC-TIN ALLOY WITH AT
LEAST ONE CHALCOGEN SPECIES | | 8507365 | 2009 | 2013 | ALLIANCE FOR
SUST ENERGY
LLC | GROWTH OF COINCIDENT SITE
LATTICE MATCHED
SEMICONDUCTOR LAYERS AND
DEVICES ON CRYSTALLINE
SUBSTRATES | | 8513050 | 2010 | 2013 | US DEPT OF
ENERGY | BI-SE DOPED WITH CU, P-TYPE
SEMICONDUCTOR | | 8516754 | 2012 | 2013 | SUNPOWER
CORP | PHOTOVOLTAIC MODULE AND MODULE ARRAYS | | 8519262 | 2010 | 2013 | NANO C INC | FULLERENE-FUNCTIONALIZED PARTICLES, METHODS FOR MAKING THE SAME AND THEIR USE IN BULK-HETEROJUNCTION ORGANIC PHOTOVOLTAIC DEVICES | | 8534007 | 2009 | 2013 | SUNPOWER
CORP | PHOTOVOLTAIC ASSEMBLIES AND METHODS FOR TRANSPORTING | | 8535760 | 2010 | 2013 | AIR PRODUCTS | ADDITIVES TO SILANE FOR THIN | | & CHEMICALS FILM SILICON PHOTOVO INC DEVICES 8552288 2009 2013 SUNPOWER PHOTOVOLTAIC MODUL | OLTAIC | |---|-----------------------| | | | | CORP ADHESION PROMOTER | LE WITH | | 8552419 2011 2013 UNIV CROSS-CONJUGATED PO
WASHINGTON FOR ORGANIC ELECTRO
DEVICES AND RELATED | ONIC | | 8568828 2010 2013 ALLIANCE FOR AMORPHOUS TIN-CADM
SUST ENERGY FILMS AND THE PRODUC
LLC THEREOF | IIUM OXIDE | | 8572836 2010 2013 SUNPOWER METHOD OF MANUFACT
CORP LARGE-AREA SEGMENT
PHOTOVOLTAIC MODUL | ΈD | | 8572908 2010 2013 DOW GLOBAL DIRECT MOUNTED PHOTE TECH INC DEVICE WITH IMPROVE CLIP | TOVOLTAIC | | 8575471 2009 2013 ALLIANCE FOR LATTICE MATCHED SUST ENERGY SEMICONDUCTOR GROV LLC CRYSTALLINE METALLI SUBSTRATES | | | 8580599 2012 2013 SUNPOWER BYPASS DIODE FOR A SO CORP | OLAR CELL | | 8580661 2011 2013 US DEPT OF METHOD FOR THE ENERGY HYDROGENATION OF PO | OLY-SI | | 8584406 2010 2013 SUNPOWER HOLE-THRU-LAMINATE CORP SUPPORTS FOR PHOTOV MODULES | | | 8584407 2010 2013 DOW GLOBAL DIRECT MOUNTED PHOT
TECH INC DEVICE WITH IMPROVE | | | 8586397 2011 2013 SUNPOWER METHOD FOR FORMING CORP REGIONS IN A SILICON S | | | 8586403 2011 2013 SUNPOWER PROCESS AND STRUCTU CORP FABRICATION OF SOLAI WITH LASER ABLATION FORM CONTACT HOLES | R CELLS
I STEPS TO | | 8591649 2008 2013 AMG METHODS FOR MANUFA
IDEALCAST GEOMETRIC MULTI-CRY
SOLAR CORP CAST MATERIALS | | | 8592673 2009 2013 BOEING CO ENCLOSED, OFF-AXIS SO CONCENTRATOR | OLAR | | 8604333 2011 2013 UNIVERSITY OF METHOD OF MANUFACT
ARIZONA REFLECTORS FOR A SOI
CONCENTRATOR APPAR | LAR | | 8609994 2009 2013 ALLIANCE FOR THIN FILM ELECTRONIC SUST ENERGY WITH CONDUCTIVE ANI LLC TRANSPARENT GAS ANI PERMEATION BARRIERS | D
D MOISTURE | | 8615941 2012 2013 SUNPOWER PHOTOVOLTAIC MODUL
CORP INCLUDING CONNECTOR
ASSEMBLY FOR NON-PE
ARRAY INSTALLATION | LE KIT
R | | EP2541747 2012 2013 GENERAL DC TO DC POWER CONV
ELECTRIC CO AND METHODS OF CONT
THE SAME | | | EP2545591 2011 2013 DOW GLOBAL IMPROVED PHOTOVOLT | TAIC DEVICE | | EP2556548 | 2011 | 2013 | UNIV
MICHIGAN;
UNIV
SOUTHERN | ENHANCED BULK HETEROJUNCTION DEVICES PREPARED BY THERMAL AND SOLVENT VAPOR ANNEALING | |--------------|------|------|---------------------------------------|--| | EP2567409 | 2011 | 2013 | CALIFORNIA
SUNPOWER
CORP | PROCESSES METHODS AND APPARATUSES TO SUPPORT PHOTOVOLTAIC | | EP2576128 | 2011 | 2013 | SUNPOWER
CORP | MODULES ABLATION OF FILM STACKS IN SOLAR CELL FABRICATION | | EP2577736 | 2011 | 2013 | UNIV TOLEDO | PROCESSES PHOTOVOLTAIC STRUCTURES HAVING A LIGHT SCATTERING INTERFACE LAYER AND METHODS OF MAKING THE SAME | | EP2588267 | 2011 | 2013 | SUNPOWER
CORP | HIGH THROUGHPUT SOLAR CELL
ABLATION SYSTEM | | EP2589086 | 2011 | 2013 | SUNPOWER
CORP | FABRICATION OF SOLAR CELLS
WITH COUNTER DOPING
PREVENTION | | EP2589087 | 2011 | 2013 | SUNPOWER
CORP | METHOD OF FABRICATING A SOLAR
CELL WITH A TUNNEL DIELECTRIC
LAYER | | EP2619805 | 2011 | 2013 | SUNPOWER
CORP | METHOD OF FABRICATING A SOLAR CELL | | EP2622646 | 2011 | 2013 | DOW GLOBAL
TECH INC | AN IMPROVED CONNECTOR AND
ELECTRONIC CIRCUIT ASSEMBLY
FOR IMPROVED WET INSULATION
RESISTANCE | | EP2625314 | 2011 | 2013 | 3M CO | ANTI-REFLECTIVE ARTICLES WITH
NANOSILICA-BASED COATINGS
AND BARRIER LAYER | | EP2647056 | 2011 | 2013 | SUNPOWER
CORP | METHOD OF FORMING CONTACTS
FOR A BACK-CONTACT SOLAR CELL | | EP2649652 | 2011 | 2013 | PPG
INDUSTRIES
OHIO INC | CORROSION RESISTANT SOLAR
MIRROR | | EP2652795 | 2011 | 2013 | SUNPOWER
CORP | BYPASS DIODE FOR A SOLAR CELL | | EP2652797 | 2011 | 2013 | DOW GLOBAL
TECH INC | IMPROVED PHOTOVOLTAIC DEVICE | | EP2652798 | 2011 | 2013 | DOW GLOBAL
TECH INC | PHOTOVOLTAIC DEVICE | | EP2652799 | 2011 | 2013 | DOW GLOBAL
TECH INC | IMPROVED PHOTOVOLTAIC DEVICE | | EP2663816 | 2011 | 2013 | SUNPOWER
CORP | SUPPORT FOR SOLAR ENERGY COLLECTORS | | EP2668671 | 2011 | 2013 | SUNPOWER
CORP | FRAME-MOUNTED WIRE
MANAGEMENT DEVICE | | EP2676302 | 2011 | 2013 | SUNPOWER
CORP | PROCESS AND STRUCTURES FOR FABRICATION OF SOLAR CELLS | | WO2013002882 | 2012 | 2013 | PPG
INDUSTRIES
OHIO INC | REFLECTIVE ARTICLE HAVING A
SACRIFICIAL CATHODIC LAYER | | WO2013006223 | 2012 | 2013 | SUNPOWER
CORP | PHOTOVOLTAIC MODULE AND LAMINATE | | WO2013006616 | 2012 | 2013 | DOW GLOBAL
TECH INC | OPTOELECTRONIC DEVICES INCORPORATING FLUOROPOLYMER COMPOSITIONS FOR PROTECTION | |--------------|------|------|------------------------------------|---| | WO2013028196 | 2011 | 2013 | ALLIANCE FOR
SUST ENERGY
LLC | ON-LINE, CONTINUOUS MONITORING IN SOLAR CELL AND FUEL CELL MANUFACTURING USING SPECTRAL REFLECTANCE IMAGING | | WO2013033729 | 2012 | 2013 | ALLIANCE FOR
SUST ENERGY
LLC | ELECTRODEPOSTION OF GALLIUM FOR PHOTOVOLTAICS | | WO2013049215 | 2012 | 2013 | SUNPOWER
CORP | DOPANT INK COMPOSITION AND
METHOD OF FABRICATING A SOLAR
CELL THERE FROM | | WO2013049216 | 2012 | 2013 | SUNPOWER
CORP | METHOD FOR FORMING DIFFUSION REGIONS IN A SILICON SUBSTRATE | | WO2013058724 | 2011 | 2013 | SUNPOWER
CORP | BYPASS DIODE FOR A SOLAR CELL | | WO2013089879 | 2012 | 2013 | SUNPOWER
CORP | SOLAR CELL WITH DOPED GROOVE
REGIONS SEPARATED BY RIDGES | | WO2013095924 | 2012 | 2013 | SUNPOWER
CORP | LASER CONTACT PROCESSES,
LASER SYSTEM, AND SOLAR CELL
STRUCTURES FOR FABRICATING
SOLAR CELLS WITH SILICON
NANOPARTICLES | | WO2013119550 | 2013 | 2013 | ALLIANCE FOR
SUST ENERGY
LLC | THIN FILM PHOTOVOLTAIC DEVICES WITH A MINIMALLY CONDUCTIVE BUFFER LAYER | | WO2013130652 | 2013 | 2013 | ALLIANCE FOR
SUST ENERGY
LLC | SYSTEMS AND METHODS FOR
FORMING SOLAR CELLS WITH
CUINSE2 AND CU(IN,GA)SE2 FILMS | | WO2013138132 | 2013 | 2013 | UNIV
MICHIGAN | METAL OXIDE CHARGE TRANSPORT
MATERIAL DOPED WITH ORGANIC
MOLECULES | | WO2013152132 | 2013 | 2013 | CALIFORNIA
INST
TECHNOLOGY | SEMICONDUCTOR STRUCTURES FOR FUEL
GENERATION | | WO2013158177 | 2013 | 2013 | PLANT PV INC | MULTI-CRYSTALLINE II-VI BASED
MULTIJUNCTION SOLAR CELLS | | 8624105 | 2010 | 2014 | SYNKERA
TECHNOLOGIES
INC | ENERGY CONVERSION DEVICE
WITH SUPPORT MEMBER HAVING
PORE CHANNELS | | 8628614 | 2011 | 2014 | AMG
IDEALCAST
SOLAR CORP | METHODS AND APPARATUS FOR
MANUFACTURING
MONOCRYSTALLINE CAST SILICON
AND MONOCRYSTALLINE CAST
SILICON BODIES FOR
PHOTOVOLTAICS | | 8631757 | 2009 | 2014 | NANOSOLAR
INC | SOLUTION DEPOSITION ASSEMBLY | | 8633376 | 2009 | 2014 | BOEING CO | PHOTOVOLTAIC CONCENTRATOR
ASSEMBLY WITH OPTICALLY
ACTIVE COVER | | 8642450 | 2007 | 2014 | ALLIANCE FOR
SUST ENERGY
LLC | LOW TEMPERATURE JUNCTION
GROWTH USING HOT-WIRE
CHEMICAL VAPOR DEPOSITION | | 8647897 | 2012 | 2014 | STANFORD
UNIV | AIR-STABLE INK FOR SCALABLE,
HIGH-THROUGHPUT LAYER
DEPOSITION | |---------|------|------|------------------------------------|---| | 8647911 | 2012 | 2014 | SUNPOWER
CORP | BACKSIDE CONTACT SOLAR CELL
WITH FORMED POLYSILICON
DOPED REGIONS | | 8650813 | 2013 | 2014 | SUNPOWER
CORP | PHOTOVOLTAIC MODULE WITH REMOVABLE WIND DEFLECTOR | | 8658454 | 2010 | 2014 | SUNPOWER
CORP | METHOD OF FABRICATING A SOLAR CELL | | 8659880 | 2011 | 2014 | GREENRAY INC | AC PHOTOVOLTAIC MODULE AND INVERTER ASSEMBLY | | 8662008 | 2008 | 2014 | SUNPOWER
CORP | EDGE COATING APPARATUS FOR SOLAR CELL SUBSTRATES | | 8665610 | 2010 | 2014 | GREENRAY INC | MODIFIED ZERO VOLTAGE TRANSITION (ZVT) FULL BRIDGE CONVERTER AND PHOTOVOLTAIC (PV) ARRAY USING THE SAME | | 8673673 | 2013 | 2014 | SUNPOWER
CORP | TRENCH PROCESS AND STRUCTURE
FOR BACKSIDE CONTACT SOLAR
CELLS WITH POLYSILICON DOPED
REGIONS | | 8677701 | 2008 | 2014 | BOEING CO | ATTACHING SOLAR COLLECTORS
TO A STRUCTURAL FRAMEWORK
UTILIZING A FLEXIBLE CLIP | | 8679438 | 2011 | 2014 | MAYATERIALS
INC | PLASMA PROCESSES FOR
PRODUCING SILANES AND
DERIVATIVES THEREOF | | 8685781 | 2011 | 2014 | ALLIANCE FOR
SUST ENERGY
LLC | SECONDARY TREATMENT OF FILMS OF COLLOIDAL QUANTUM DOTS FOR OPTOELECTRONICS AND DEVICES PRODUCED THEREBY | | 8691663 | 2009 | 2014 | ALLIANCE FOR
SUST ENERGY
LLC | METHODS OF MANIPULATING STRESSED EPISTRUCTURES | | 8697983 | 2012 | 2014 | SUNCORE
PHOTOVOLTAI
CS INC | CONCENTRATING PHOTOVOLTAIC SOLAR PANEL | | 8709154 | 2008 | 2014 | AMG
IDEALCAST
SOLAR CORP | METHODS FOR MANUFACTURING
MONOCRYSTALLINE OR NEAR-
MONOCRYSTALLINE CAST
MATERIALS | | 8709851 | 2012 | 2014 | SUNPOWER
CORP | METHOD OF FABRICATING A SOLAR
CELL WITH A TUNNEL DIELECTRIC
LAYER | | 8734621 | 2007 | 2014 | ALLIANCE FOR
SUST ENERGY
LLC | TRANSPARENT CONDUCTING OXIDES AND PRODUCTION THEREOF | | 8735202 | 2011 | 2014 | ALLIANCE FOR
SUST ENERGY
LLC | HIGH-EFFICIENCY, MONOLITHIC,
MULTI-BANDGAP, TANDEM,
PHOTOVOLTAIC ENERGY
CONVERTERS | | 8735204 | 2013 | 2014 | ALLIANCE FOR
SUST ENERGY
LLC | CONTACT FORMATION AND GETTERING OF PRECIPITATED IMPURITIES BY MULTIPLE FIRING DURING SEMICONDUCTOR DEVICE | | 07.106.10 | 2000 | 2014 | DOW! GLODAI | FABRICATION CONNECTION DEVICE FOR | |---------------------|--------------|------|-----------------------------|---| | 8740642 | 2009 | 2014 | DOW GLOBAL | CONNECTOR DEVICE FOR | | | | | TECH INC | BUILDING INTEGRATED PHOTOVOLTAIC DEVICE | | 8741060 | 2013 | 2014 | AMG | SYSTEM AND METHOD FOR LIQUID | | 0741000 | 2013 | 2014 | IDEALCAST | SILICON CONTAINMENT | | | | | SOLAR CORP | 2.2.001, 001,11.12,1.12.11 | | 8744791 | 2011 | 2014 | SUNPOWER | AUTOMATIC GENERATION AND | | | | | CORP | ANALYSIS OF SOLAR CELL IV | | | | | | CURVES | | 8757567 | 2010 | 2014 | SUNPOWER | BRACKET FOR PHOTOVOLTAIC | | 0750144 | 2000 | 2014 | CORP | MODULES | | 8759144 | 2008 | 2014 | ALLIANCE FOR
SUST ENERGY | FABRICATION OF CONTACTS FOR SILICON SOLAR CELLS INCLUDING | | | | | LLC | PRINTING BURN THROUGH LAYERS | | 8772623 | 2012 | 2014 | ALLIANCE FOR | LOW-BANDGAP, MONOLITHIC, | | 0112023 | 2012 | 2017 | SUST ENERGY | MULTI-BANDGAP, | | | | | LLC | OPTOELECTRONIC DEVICES | | 8772628 | 2009 | 2014 | ALLIANCE FOR | HIGH PERFORMANCE, HIGH | | | | | SUST ENERGY | BANDGAP, LATTICE-MISMATCHED, | | | | | LLC | GAINP SOLAR CELLS | | 8772894 | 2013 | 2014 | SUNPOWER | TRENCH PROCESS AND STRUCTURE | | | | | CORP | FOR BACKSIDE CONTACT SOLAR | | | | | | CELLS WITH POLYSILICON DOPED REGIONS | | 8778787 | 2013 | 2014 | SUNPOWER | METHOD OF FORMING CONTACTS | | 0770707 | 2013 | 2014 | CORP | FOR A BACK-CONTACT SOLAR CELL | | 8780343 | 2011 | 2014 | ALLIANCE FOR | WAFER SCREENING DEVICE AND | | | | | SUST ENERGY | METHODS FOR WAFER SCREENING | | | | | LLC | | | 8785236 | 2012 | 2014 | SUNPOWER | SOLAR CELL CONTACT FORMATION | | 0500055 | 2010 | 2011 | CORP | USING LASER ABLATION | | 8790957 | 2010 | 2014 | SUNPOWER | METHOD OF FABRICATING A BACK- | | | | | CORP | CONTACT SOLAR CELL AND
DEVICE THEREOF | | 8793942 | 2013 | 2014 | SUNPOWER | PHOTOVOLTAIC ASSEMBLIES AND | | 0173772 | 2013 | 2017 | CORP | METHODS FOR TRANSPORTING | | 8802486 | 2012 | 2014 | SUNPOWER | METHOD OF FORMING EMITTERS | | | | | CORP | FOR A BACK-CONTACT SOLAR CELL | | 8815104 | 2012 | 2014 | ALLIANCE FOR | COPPER-ASSISTED, ANTI- | | | | | SUST ENERGY | REFLECTION ETCHING OF SILICON | | 001610# | 2000 | 2014 | LLC | SURFACES | | 8816195 | 2009 | 2014 | BOEING CO | LIGHT SHIELD FOR SOLAR | | 8822262 | 2011 | 2014 | SUNPOWER | CONCENTRATORS FABRICATING SOLAR CELLS WITH | | 0022202 | 2011 | 2014 | CORP | SILICON NANOPARTICLES | | 8822812 | 2012 | 2014 | SUNPOWER | PHOTOVOLTAIC MODULE AND | | | -~. ~ | | CORP | INTERLOCKED STACK OF | | | | | | PHOTOVOLTAIC MODULES | | 8828765 | 2010 | 2014 | ALLIANCE FOR | FORMING HIGH EFFICIENCY | | | | | SUST ENERGY | SILICON SOLAR CELLS USING | | | | | LLC | DENSITY-GRADED ANTI- | | 0020242 | 2010 | 2014 | LINIU/TOLEDO | REFLECTION SURFACES | | 8829342 | 2010 | 2014 | UNIV TOLEDO | BACK CONTACT BUFFER LAYER
FOR THIN-FILM SOLAR CELLS | | 8829634 | 2010 | 2014 | DOW GLOBAL | OPTOELECTRONIC DEVICE | | 002703 T | 2010 | 2017 | DOW GLODAL | OF TOLLECTROTHE DEVICE | | | | | TECH INC | | |-------------|------|------|---------------|------------------------------------| | 8829715 | 2011 | 2014 | GENERAL | SWITCHING COORDINATION OF | | | | | ELECTRIC CO | DISTRIBUTED DC-DC CONVERTERS | | | | | | FOR HIGHLY EFFICIENT | | | | | | PHOTOVOLTAIC POWER PLANTS | | 8852994 | 2010 | 2014 | MASIMO | METHOD OF FABRICATING | | | | | SEMICONDUCT | BIFACIAL TANDEM SOLAR CELLS | | | | | OR INC | | | 8859933 | 2012 | 2014 | SUNPOWER | HIGH THROUGHPUT SOLAR CELL | | | | | CORP | ABLATION SYSTEM | | 8860424 | 2012 | 2014 | SOLAR | APPARATUS AND METHOD FOR | | 0000121 | 2012 | 2011 | JUNCTION | HIGHLY ACCELERATED LIFE | | | | | CORP | TESTING OF SOLAR CELLS | | 8878053 | 2012 | 2014 | SUNPOWER | FRONT CONTACT SOLAR CELL | | 0070033 | 2012 | 2014 | CORP | WITH FORMED EMITTER | | 0070252 | 2000 | 2014 | | | | 8879253 | 2009 | 2014 | LIGHT | TRANSPARENT HEAT-SPREADER | | | | | PRESCRIPTIONS | FOR OPTOELECTRONIC | | | | | INNOVATORS | APPLICATIONS | | 0005044 | 2011 | 2011 | LLC | GOV A D. GEV A. GOV (DENGIN) G. A. | | 8895844 | 2011 | 2014 | STANFORD | SOLAR CELL COMPRISING A | | | | | UNIV | PLASMONIC BACK REFLECTOR AND | | | | | | METHOD THEREFOR | | 8898971 | 2013 | 2014 | ZEP SOLAR LLC | PHOTOVOLTAIC ARRAY MOUNTING | | | | | | APPARATUS, SYSTEMS, AND | | | | | | METHODS | | 8912038 | 2014 | 2014 | SUNPOWER | METHOD OF FORMING EMITTERS | | | | | CORP | FOR A BACK-CONTACT SOLAR CELL | | 8912426 | 2011 | 2014 | DOW GLOBAL | PHOTOVOLTAIC DEVICE | | | | | TECH INC | | | 8915030 | 2010 | 2014 | DOW GLOBAL | DIRECT MOUNTED PHOTOVOLTAIC | | 00.00 | | | TECH INC | DEVICE WITH IMPROVED | | | | | TECH IIVC | ADHESION AND METHOD THEREOF | | EP2689467 | 2012 | 2014 | DOW GLOBAL | IMPROVED PHOTOVOLTAIC | | LI 2007 107 | 2012 | 2011 | TECH INC | SHEATHING ELEMENT WITH ONE | | | | | TECH INC | OR MORE TABS | | EP2689469 | 2012 | 2014 | DOW GLOBAL | IMPROVED PHOTOVOLTAIC | | EF 2009409 | 2012 | 2014 | TECH INC | BUILDING SHEATHING ELEMENT | | | | | I ECH INC | | | ED2600470 | 2012 | 2014 | DOW CLODAL | WITH ANTI-SLIDE FEATURES | | EP2689470 | 2012 | 2014 | DOW GLOBAL | IMPROVED PHOTOVOLTAIC | | | | | TECH INC | SHEATHING ELEMENT WITH A | | WWW.000000 | -010 | | | FLEXIBLE CONNECTOR ASSEMBLY | | EP2697820 | 2010 | 2014 | ALLIANCE FOR | WET-CHEMICAL METHOD FOR | | | | | SUST ENERGY | PRODUCING A BLACK SILICON | | | | | LLC | SUBSTRATE | | EP2700114 | 2011 | 2014 | UNIV | LIGHT TRAPPING ARCHITECTURE | | | | | MICHIGAN | FOR PHOTOVOLTAIC AND | | | | | | PHOTODETECTOR APPLICATIONS | | EP2702614 | 2012 | 2014 | SUNPOWER | METHOD OF FORMING EMITTERS | | | | | CORP | FOR A BACK-CONTACT SOLAR CELL | | EP2726918 | 2012 | 2014 | PPG | REFLECTIVE ARTICLE HAVING A | | | | | INDUSTRIES | SACRIFICIAL CATHODIC LAYER | | | | | OHIO INC | | | EP2727237 | 2012 | 2014 | SUNPOWER | PHOTOVOLTAIC MODULE AND | | L. 2121231 | 2012 | 2017 | CORP | LAMINATE | | EP2729260 | 2012 | 2014 | DOW GLOBAL | OPTOELECTRONIC DEVICES | | LI 2129200 | 2012 | 2014 | TECH INC | INCORPORATING FLUOROPOLYMER | | | | | I LCII INC | INCOM OKATINO PLUUKUFUL IMEK | | ED2761671 | 2012 | 2014 | CLINIDOWED | COMPOSITIONS FOR PROTECTION | |---|------|------|--------------------|---| | EP2761671 | 2012 | 2014 | SUNPOWER
CORP | SOLAR CELL WITH DOPED GROOVE
REGIONS SEPARATED BY RIDGES | | WO2014082002 | 2013 | 2014 | UNIV | USE OF INVERSE QUASI-EPITAXY | | W 0201 4 002002 | 2013 | 2014 | MICHIGAN | TO MODIFY ORDER DURING POST- | | | | | Memorit | DEPOSITION PROCESSING OR | | | | | | ORGANIC PHOTOVOLTAICS | | WO2014085639 | 2013 | 2014 | UNIV | HYBRID PLANAR-GRADED | | | | |
MICHIGAN | HETEROJUNCTION FOR ORGANIC | | | | | | PHOTOVOLTAICS | | WO2014099308 | 2013 | 2014 | SUNPOWER | SOLAR CELL WITH SILICON | | | | | CORP | OXYNITRIDE DIELECTRIC LAYER | | WO2014100004 | 2013 | 2014 | SUNPOWER | HYBRID EMITTER ALL BACK | | | | | CORP | CONTACT SOLAR CELL | | WO2014138558 | 2014 | 2014 | ALLIANCE FOR | METHODS FOR PRODUCING THIN | | | | | SUST ENERGY | FILM CHARGE SELECTIVE | | WO2014150405 | 2014 | 2014 | LLC | TRANSPORT LAYERS | | WO2014150485 | 2014 | 2014 | SOLARBRIDGE | INVERTER COMMUNICATIONS | | | | | TECHNOLOGIES INC | USING OUTPUT SIGNAL | | WO2014160942 | 2014 | 2014 | GEORGIA TECH | MOUNTING CLIPS FOR PANEL | | W 02014100742 | 2014 | 2014 | RES CORP | INSTALLATION | | WO2014169270 | 2014 | 2014 | UNIV | ORGANIC PHOTOSENSITIVE | | *************************************** | 2011 | 2011 | MICHIGAN; | DEVICES WITH EXCITON-BLOCKING | | | | | UNIV | CHARGE CARRIER FILTERS | | | | | SOUTHERN | | | | | | CALIFORNIA | | | 8938920 | 2009 | 2015 | DOW GLOBAL | PHOTOVOLTAIC DEVICE AND | | | | | TECH INC | METHOD | | 8940999 | 2009 | 2015 | BOEING CO | MODULAR OFF-AXIS SOLAR | | | | | | CONCENTRATOR | | 8951344 | 2007 | 2015 | AMG | METHODS AND APPARATUSES FOR | | | | | IDEALCAST | MANUFACTURING GEOMETRIC | | | | | SOLAR CORP | MULTICRYSTALLINE CAST SILICON | | | | | | AND GEOMETRIC MULTICRYSTALLINE CAST SILICON | | | | | | BODIES FOR PHOTOVOLTAICS | | 8955267 | 2013 | 2015 | SUNPOWER | HOLE-THRU-LAMINATE MOUNTING | | 0733201 | 2013 | 2013 | CORP | SUPPORTS FOR PHOTOVOLTAIC | | | | | cora | MODULES | | 8962082 | 2012 | 2015 | SUNPOWER | CONTROL SYSTEM FOR NON- | | | | | CORP | CONTACT EDGE COATING | | | | | | APPARATUS FOR SOLAR CELL | | | | | | SUBSTRATES | | 8975717 | 2014 | 2015 | SUNPOWER | TRENCH PROCESS AND STRUCTURE | | | | | CORP | FOR BACKSIDE CONTACT SOLAR | | | | | | CELLS WITH POLYSILICON DOPED | | 0.6.7.7.7 | | | ~~~~ | REGIONS | | 8981204 | 2011 | 2015 | SUNCORE | INTEGRATED SHIPPING AND | | | | | PHOTOVOLTAI | INSTALLATION RACKING | | 0007115 | 2009 | 2015 | CS INC | EDITAVIAL CDOW/TH OF CHICON | | 8987115 | 2008 | 2015 | ALLIANCE FOR | EPITAXIAL GROWTH OF SILICON | | | | | SUST ENERGY
LLC | FOR LAYER TRANSFER | | 8987589 | 2006 | 2015 | UNIV | ARCHITECTURES AND CRITERIA | | 0701307 | 2000 | 2013 | MICHIGAN, | FOR THE DESIGN OF HIGH | | | | | MICHIGAIN, | TOR THE DESIGN OF HIGH | | | | | PRINCETON | EFFICIENCY ORGANIC | |---------|------|------|-----------------------------|---| | 0002002 | 2011 | 2015 | UNIVERSITY | PHOTOVOLTAIC CELLS | | 8992803 | 2011 | 2015 | SUNPOWER | DOPANT INK COMPOSITION AND | | | | | CORP | METHOD OF FABRICATING A SOLAR | | 0002001 | 2012 | 2015 | T IN ITS I | CELL THERE FROM | | 8993881 | 2013 | 2015 | UNIV | ARCHITECTURES AND CRITERIA | | | | | MICHIGAN, | FOR THE DESIGN OF HIGH | | | | | PRINCETON | EFFICIENCY ORGANIC | | 0002720 | 2014 | 2015 | UNIVERSITY
ZEP SOLAR LLC | PHOTOVOLTAIC CELLS PHOTOVOLTAIC ARRAY MOUNTING | | 9003729 | 2014 | 2015 | ZEP SOLAR LLC | | | | | | | APPARATUS, SYSTEMS, AND
METHODS | | 9013018 | 2011 | 2015 | BENEQ OY, U S | MULTILAYER MOISTURE BARRIER | | 9013016 | 2011 | 2013 | DEPT OF | MULTILATER MOISTURE BARRIER | | | | | ENERGY | | | 9018033 | 2013 | 2015 | SUNPOWER | METHOD FOR FORMING DIFFUSION | | 9010033 | 2013 | 2013 | CORP | REGIONS IN A SILICON SUBSTRATE | | 9018516 | 2012 | 2015 | SUNPOWER | SOLAR CELL WITH SILICON | | 7010310 | 2012 | 2013 | CORP | OXYNITRIDE DIELECTRIC LAYER | | 9034216 | 2010 | 2015 | ALLIANCE FOR | WET-CHEMICAL SYSTEMS AND | | 7034210 | 2010 | 2013 | SUST ENERGY | METHODS FOR PRODUCING BLACK | | | | | LLC | SILICON SUBSTRATES | | 9041027 | 2010 | 2015 | ALLIANCE FOR | METHODS OF PRODUCING FREE- | | 7011027 | 2010 | 2015 | SUST ENERGY | STANDING SEMICONDUCTORS | | | | | LLC | USING SACRIFICIAL BUFFER | | | | | LLC | LAYERS AND RECYCLABLE | | | | | | SUBSTRATES | | 9048358 | 2011 | 2015 | DOW GLOBAL | PHOTOVOLTAIC DEVICE | | | | | TECH INC | | | 9054251 | 2011 | 2015 | BOEING CO | SOLAR COLLECTOR ARRAY | | 9054264 | 2013 | 2015 | ALLIANCE FOR | SYSTEMS AND METHODS FOR | | | | | SUST ENERGY | SOLAR CELLS WITH CIS AND CIGS | | | | | LLC | FILMS MADE BY REACTING | | | | | | EVAPORATED COPPER CHLORIDES | | | | | | WITH SELENIUM | | 9070811 | 2013 | 2015 | PLANT PV INC | MULTI-CRYSTALLINE II-VI BASED | | | | | | MULTIJUNCTION SOLAR CELLS | | | | | | AND MODULES | | 9075012 | 2012 | 2015 | ALLIANCE FOR | PHOTOLUMINESCENCE-BASED | | | | | SUST ENERGY | QUALITY CONTROL FOR THIN FILM | | | | | LLC | ABSORBER LAYERS OF | | 007/000 | 2011 | 2017 | 11111100000 | PHOTOVOLTAIC DEVICES | | 9076903 | 2014 | 2015 | ALLIANCE FOR | FORMING HIGH-EFFICIENCY | | | | | SUST ENERGY | SILICON SOLAR CELLS USING | | | | | LLC | DENSITY-GRADED ANTI- | | 0076015 | 2011 | 2015 | ALLIANCE EOD | REFLECTION SURFACES | | 9076915 | 2011 | 2015 | ALLIANCE FOR
SUST ENERGY | BORON, BISMUTH CO-DOPING OF
GALLIUM ARSENIDE AND OTHER | | | | | | | | | | | LLC | COMPOUNDS FOR PHOTONIC AND HETEROJUNCTION BIPOLAR | | | | | | TRANSISTOR DEVICES | | 9087939 | 2014 | 2015 | SUNPOWER | SOLAR CELL CONTACT FORMATION | | 7001737 | 2017 | 2013 | CORP | USING LASER ABLATION | | 9093661 | 2013 | 2015 | ALLIANCE FOR | THIN FILM ELECTRONIC DEVICES | | 7075001 | 2013 | 2013 | SUST ENERGY | WITH CONDUCTIVE AND | | | | | LLC | TRANSPARENT GAS AND MOISTURE | | | | | | THE STANDARD WOOD ONE | | 0112066 | 2014 | 2015 | CLUMPOWER | PERMEATION BARRIERS | |----------------------|------|--------|--------------------|---| | 9112066 | 2014 | 2015 | SUNPOWER | METHOD OF FABRICATING A SOLAR | | | | | CORP | CELL WITH A TUNNEL DIELECTRIC LAYER | | 9123847 | 2011 | 2015 | DOW GLOBAL | PHOTOVOLTAIC DEVICE | | 7123047 | 2011 | 2013 | TECH INC | THOTO VOLTAIC DEVICE | | 9130091 | 2012 | 2015 | DOW GLOBAL | PHOTOVOLTAIC BUILDING | | | | | TECH INC | SHEATHING ELEMENT WITH ANTI- | | | | | | SLIDE FEATURES | | 9130092 | 2010 | 2015 | SANDIA CORP | PHOTOVOLTAIC SOLAR CELL | | 9136184 | 2012 | 2015 | ALLIANCE FOR | IN SITU OPTICAL DIAGNOSTIC FOR | | | | | SUST ENERGY | MONITORING OR CONTROL OF | | | | | LLC | SODIUM DIFFUSION IN | | | | | | PHOTOVOLTAICS
MANUFACTURING | | 9142696 | 2014 | 2015 | SUNPOWER | SOLAR CELLS WITH SILICON | | 7142070 | 2014 | 2013 | CORP | NANOPARTICLES THAT ARE | | | | | 00111 | COATED WITH NANOPARTICLE | | | | | | PASSIVATION FILM | | 9147786 | 2009 | 2015 | DOW GLOBAL | PHOTOVOLTAIC DEVICE ASSEMBLY | | | | | TECH INC | AND METHOD | | 9147793 | 2012 | 2015 | ALLIANCE FOR | CDTE DEVICES AND METHOD OF | | | | | SUST ENERGY | MANUFACTURING SAME | | 9147795 | 2014 | 2015 | LLC
SUNPOWER | METHOD OF FORMING EMITTERS | | 914/793 | 2014 | 2013 | CORP | FOR A BACK-CONTACT SOLAR CELL | | 9147852 | 2010 | 2015 | UNIV FLORIDA | AIR STABLE ORGANIC-INORGANIC | | , | | | | NANOPARTICLES HYBRID SOLAR | | | | | | CELLS | | 9153720 | 2011 | 2015 | BOEING CO | ELECTRICAL INTERCONNECT | | 9159851 | 2011 | 2015 | UNIV TOLEDO | PHOTOVOLTAIC STRUCTURES | | | | | | HAVING A LIGHT SCATTERING | | | | | | INTERFACE LAYER AND METHODS OF MAKING THE SAME | | 9163861 | 2013 | 2015 | GEORGIA TECH | SOLAR PANEL TRUSS MOUNTING | | 7103001 | 2013 | 2013 | RES CORP, | SYSTEMS AND METHODS | | | | | RADIANCE | STSTEMS THE METHODS | | | | | SOLAR | | | 9166079 | 2014 | 2015 | SUNPOWER | METHOD OF FORMING CONTACTS | | | | | CORP | FOR A BACK-CONTACT SOLAR CELL | | 9184310 | 2014 | 2015 | DOW GLOBAL | CONNECTOR DEVICE FOR | | | | | TECH INC | BUILDING INTEGRATED | | 9184327 | 2006 | 2015 | SUNPOWER | PHOTOVOLTAIC DEVICE FORMED PHOTOVOLTAIC MODULE | | 710 4 341 | 2000 | 2013 | CORP | BUSBARS | | 9186741 | 2009 | 2015 | SUNPOWER | INDUCTION SOLDERING OF | | | | = 3.20 | CORP | PHOTOVOLTAIC SYSTEM | | | | | | COMPONENTS | | 9196756 | 2015 | 2015 | DOW GLOBAL | PHOTOVOLTAIC DEVICE AND | | | | | TECH INC | METHOD | | 9202960 | 2010 | 2015 | SUNPOWER | LEAKAGE PATHWAY LAYER FOR | | 0214574 | 2012 | 2015 | CORP | SOLAR CELL | | 9214574 | 2012 | 2015 | UNIV
WASHINGTON | FULLERENE SURFACTANTS AND
THEIR USE IN POLYMER SOLAR | | | | | WASHINGTON | CELLS | | 9219182 | 2012 | 2015 | DOW GLOBAL | OPTOELECTRONIC DEVICES | | 7217102 | 2012 | 2013 | 2011 GEODITE | OI I OLLLO INOTHO DE VICES | | | | | TECH INC | INCORPORATING FLUOROPOLYMER COMPOSITIONS FOR PROTECTION | |--------------|------|------|--------------------------------------|--| | EP2826081 | 2013 | 2015 | UNIV
MICHIGAN | METAL OXIDE CHARGE TRANSPORT
MATERIAL DOPED WITH ORGANIC
MOLECULES | | EP2834853 | 2013 | 2015 | ALLIANCE FOR
SUST ENERGY
LLC | METHOD FOR FORMING SOLAR
CELLS WITH CUINSE2 AND
CU(IN,GA)SE2 FILMS | | EP2923390 | 2013 | 2015 | UNIV
MICHIGAN | USE OF INVERSE QUASI-EPITAXY TO MODIFY ORDER DURING POST- DEPOSITION PROCESSING OF ORGANIC PHOTOVOLTAICS | | EP2926387 | 2013 | 2015 | UNIV
MICHIGAN | HYBRID PLANAR-GRADED
HETEROJUNCTION FOR ORGANIC
PHOTOVOLTAICS | | EP2936570 | 2013 | 2015 | SUNPOWER
CORP | HYBRID EMITTER ALL BACK
CONTACT SOLAR CELL AND
METHOD OF MANUFACTURING THE
SAME | | WO2015026932 | 2014 | 2015 | MASSACHUSET
TS INST
TECHNOLOGY | INTERNALLY-HEATED THERMAL
AND EXTERNALLY-COOL
PHOTOVOLTAIC CASCADE SOLAR
ENERGY SYSTEM FOR FULL SOLAR
SPECTRUM UTILIZATION | | WO2015038340 | 2014 | 2015 | ADVANCED
SILICON GROUP
INC | METAL ASSISTED ETCH COMBINED WITH REGULARIZING ETCH | | WO2015081204 | 2014 | 2015 | SUNPOWER
CORP | INTEGRATION OF MICROINVERTER WITH PHOTOVOLTAIC MODULE | | WO2015123013 | 2015 | 2015 | PICASOLAR INC | SOLAR CELLS AND METHODS OF FABRICATION THEREOF | | WO2015148156 | 2015 | 2015 | VARIAN
SEMICONDUCT
OR | SYSTEM AND METHOD FOR
CRYSTALLINE SHEET GROWTH
USING A COLD BLOCK AND GAS JET | | 9231135 | 2014 | 2016 | ALLIANCE FOR
SUST ENERGY
LLC
 LOW-BANDGAP, MONOLITHIC,
MULTI-BANDGAP,
OPTOELECTRONIC DEVICES | | 9231145 | 2015 | 2016 | SUNPOWER
CORP | TRENCH PROCESS AND STRUCTURE
FOR BACKSIDE CONTACT SOLAR
CELLS WITH POLYSILICON DOPED
REGIONS | | 9231517 | 2015 | 2016 | SOLARCITY
CORP | PHOTOVOLTAIC ARRAY MOUNTING
APPARATUS, SYSTEMS, AND
METHODS | | 9234843 | 2011 | 2016 | ALLIANCE FOR
SUST ENERGY
LLC | ON-LINE, CONTINUOUS MONITORING IN SOLAR CELL AND FUEL CELL MANUFACTURING USING SPECTRAL REFLECTANCE IMAGING | | 9236511 | 2014 | 2016 | ALLIANCE FOR
SUST ENERGY
LLC | FABRICATION OF IONIC LIQUID
ELECTRODEPOSITED CU—SN—ZN—
S—SE THIN FILMS AND METHOD OF
MAKING | | 9243818 | 2008 | 2016 | SUNPOWER
CORP | STACKABLE TRACKING SOLAR
COLLECTOR ASSEMBLY | | 9263602 | 2013 | 2016 | SUNPOWER | LASER PROCESSING OF SOLAR | | | | | CORP | CELLS WITH ANTI-REFLECTIVE
COATING | |---------|------|------|--|--| | 9263622 | 2014 | 2016 | SUNPOWER
CORP | METHOD OF FABRICATING A SOLAR CELL | | 9281429 | 2012 | 2016 | SUNPOWER
CORP | MODULE LEVEL SOLUTIONS TO
SOLAR CELL POLARIZATION | | 9285584 | 2011 | 2016 | 3M CO | ANTI-REFLECTIVE ARTICLES WITH
NANOSILICA-BASED COATINGS
AND BARRIER LAYER | | 9287426 | 2014 | 2016 | IBM CORP | EPITAXIAL GROWTH OF CZT(S,SE)
ON SILICON | | 9287430 | 2007 | 2016 | SANDIA CORP | PHOTOVOLTAIC SOLAR
CONCENTRATOR | | 9287431 | 2014 | 2016 | ALLIANCE FOR
SUST ENERGY
LLC | SUPERSTRATE SUB-CELL VOLTAGE-
MATCHED MULTIJUNCTION SOLAR
CELLS | | 9293615 | 2015 | 2016 | ALLIANCE FOR
SUST ENERGY
LLC | LOW-BANDGAP, MONOLITHIC,
MULTI-BANDGAP,
OPTOELECTRONIC DEVICES | | 9300140 | 2012 | 2016 | GENERAL
ELECTRIC CO | SYSTEM AND METHOD FOR DESIGN
AND OPTIMIZATION OF GRID
CONNECTED PHOTOVOLTAIC
POWER PLANT WITH MULTIPLE
PHOTOVOLTAIC MODULE
TECHNOLOGIES | | 9312406 | 2012 | 2016 | SUNPOWER
CORP | HYBRID EMITTER ALL BACK
CONTACT SOLAR CELL | | 9324562 | 2015 | 2016 | ALLIANCE FOR
SUST ENERGY
LLC | METAL HALIDE SOLID-STATE
SURFACE TREATMENT FOR
NANOCRYSTAL MATERIALS | | 9324898 | 2013 | 2016 | ALLIANCE FOR
SUST ENERGY
LLC | VARYING CADMIUM TELLURIDE
GROWTH TEMPERATURE DURING
DEPOSITION TO INCREASE SOLAR
CELL RELIABILITY | | 9343378 | 2014 | 2016 | ALLIANCE FOR
SUST ENERGY
LLC | OPTICAL CONTROL OF MULTI-
STAGE THIN FILM SOLAR CELL
PRODUCTION | | 9346998 | 2010 | 2016 | UNIV CHICAGO | MATERIALS AND METHODS FOR
THE PREPARATION OF
NANOCOMPOSITES | | 9362429 | 2014 | 2016 | ALLIANCE FOR
SUST ENERGY
LLC | PHOTOVOLTAIC SEMICONDUCTOR
MATERIALS BASED ON ALLOYS OF
TIN SULFIDE, AND METHODS OF
PRODUCTION | | 9368670 | 2015 | 2016 | UNIV OREGON | GAAS THIN FILMS AND METHODS
OF MAKING AND USING THE SAME | | 9368671 | 2014 | 2016 | MASIMO
SEMICONDUCT
OR INC | BIFACIAL TANDEM SOLAR CELLS | | 9379660 | 2015 | 2016 | GEORGIA TECH
RES CORP,
RADIANCE
SOLAR | SOLAR PANEL TRUSS MOUNTING
SYSTEMS AND METHODS | | 9391223 | 2012 | 2016 | DOW GLOBAL
TECH INC | PHOTOVOLTAIC SHEATHING
ELEMENT WITH A FLEXIBLE
CONNECTOR ASSEMBLY | | 9391380 | 2013 | 2016 | SUNEDISON
INC | ELECTRICAL CABLE HARNESS AND
ASSEMBLY FOR TRANSMITTING AC
ELECTRICAL POWER | |---------|------|------|------------------------------------|---| | 9397240 | 2010 | 2016 | PPG
INDUSTRIES
OHIO INC | CORROSION RESISTANT SOLAR
MIRROR | | 9398712 | 2011 | 2016 | DOW GLOBAL
TECH INC | CONNECTOR AND ELECTRONIC
CIRCUIT ASSEMBLY FOR IMPROVED
WET INSULATION RESISTANCE | | 9406821 | 2014 | 2016 | SUNPOWER
CORP | METHOD OF FABRICATING A BACK-
CONTACT SOLAR CELL AND
DEVICE THEREOF | | 9410259 | 2012 | 2016 | ALLIANCE FOR
SUST ENERGY
LLC | ELECTRODEPOSITION OF GALLIUM FOR PHOTOVOLTAICS | | 9412960 | 2011 | 2016 | UNIV
MICHIGAN | LIGHT TRAPPING ARCHITECTURE
FOR PHOTOVOLTAIC AND
PHOTODECTOR APPLICATIONS | | 9419170 | 2015 | 2016 | ALLIANCE FOR
SUST ENERGY
LLC | CONTROLLING THE
STOICHIOMETRY AND DOPING OF
SEMICONDUCTOR MATERIALS | | 9425249 | 2010 | 2016 | ALLIANCE FOR
SUST ENERGY
LLC | COINCIDENT SITE LATTICE-
MATCHED GROWTH OF
SEMICONDUCTORS ON
SUBSTRATES USING COMPLIANT
BUFFER LAYERS | | 9431621 | 2012 | 2016 | UNIV
MICHIGAN | METAL OXIDE CHARGE TRANSPORT
MATERIAL DOPED WITH ORGANIC
MOLECULES | | 9437755 | 2012 | 2016 | SUNPOWER
CORP | FRONT CONTACT SOLAR CELL WITH FORMED ELECTRICALLY CONDUCTING LAYERS ON THE FRONT SIDE AND BACKSIDE | | 9437763 | 2015 | 2016 | SUNPOWER
CORP | TRENCH PROCESS AND STRUCTURE
FOR BACKSIDE CONTACT SOLAR
CELLS WITH POLYSILICON DOPED
REGIONS | | 9450130 | 2011 | 2016 | SUNPOWER
CORP | FRAME-MOUNTED WIRE MANAGEMENT DEVICE | | 9457429 | 2004 | 2016 | FIRST SOLAR
INC | METHOD AND APPARATUS FOR
LASER SCRIBING GLASS SHEET
SUBSTRATE COATINGS | | 9482449 | 2011 | 2016 | SUNPOWER
CORP | SUPPORT FOR SOLAR ENERGY
COLLECTORS | | 9484480 | 2014 | 2016 | ALLIANCE FOR
SUST ENERGY
LLC | HIGH PERFORMANCE, HIGH
BANDGAP, LATTICE-MISMATCHED,
GAINP SOLAR CELLS | | 9496426 | 2013 | 2016 | ALLIANCE FOR
SUST ENERGY
LLC | THIN FILM PHOTOVOLTAIC
DEVICES WITH A MINIMALLY
CONDUCTIVE BUFFER LAYER | | 9515275 | 2009 | 2016 | UNIV
MICHIGAN | INVERTED ORGANIC
PHOTOSENSITIVE DEVICES | | 9527164 | 2014 | 2016 | SUNPOWER
CORP | HIGH THROUGHPUT LASER
PROCESSING | | 9530908 | 2014 | 2016 | IBM CORP | HYBRID VAPOR PHASE-SOLUTION PHASE GROWTH TECHNIQUES FOR | | | | | | IMPROVED CZT(S,SE)
PHOTOVOLTAIC DEVICE | |--------------|------|------|---|--| | | | | | PERFORMANCE | | EP2965366 | 2014 | 2016 | ALLIANCE FOR
SUST ENERGY | METHODS FOR PRODUCING THIN FILM CHARGE SELECTIVE | | | | | LLC | TRANSPORT LAYERS | | EP2973979 | 2014 | 2016 | SUNPOWER
CORP | INVERTER COMMUNICATIONS USING OUTPUT SIGNAL | | EP2984690 | 2014 | 2016 | UNIV
MICHIGAN;
UNIV
SOUTHERN
CALIFORNIA | ORGANIC PHOTOSENSITIVE DEVICES WITH EXCITON-BLOCKING CHARGE CARRIER FILTERS | | EP2999009 | 2009 | 2016 | DOW GLOBAL
TECH INC | PHOTOVOLTAIC DEVICE ASSEMBLY
AND METHOD | | EP3065184 | 2009 | 2016 | SUNPOWER
CORP | TRENCH PROCESS AND STRUCTURE
FOR BACKSIDE CONTACT SOLAR
CELLS WITH POLYSILICON DOPED
REGIONS | | EP3065191 | 2009 | 2016 | UNIV
MICHIGAN | INVERTED ORGANIC PHOTOSENSITIVE DEVICES | | EP3075218 | 2014 | 2016 | SUNPOWER
CORP | INTEGRATION OF MICROINVERTER WITH PHOTOVOLTAIC MODULE | | EP3093890 | 2010 | 2016 | SUNPOWER
CORP | PHOTOVOLTAIC MODULE AND
INTERLOCKED STACK OF
PHOTOVOLTAIC MODULES | | EP3105797 | 2015 | 2016 | PICASOLAR INC | SOLAR CELLS AND METHODS OF FABRICATION THEREOF | | WO2016057429 | 2015 | 2016 | CALIFORNIA
INST TECH | PHOTON AND CARRIER MANAGEMENT DESIGN FOR NONPLANAR THIN-FILM COPPER INDIUM GALLIUM DISELENIDE PHOTOVOLTAICS | | WO2016118975 | 2016 | 2016 | ALLIANCE FOR
SUST ENERGY
LLC | LUMINESCENCE IMAGING SYSTEMS
AND METHODS FOR EVALUATING
PHOTOVOLTAIC DEVICES | | 9537030 | 2015 | 2017 | SUNPOWER
CORP | METHOD OF FABRICATING A SOLAR
CELL WITH A TUNNEL DIELECTRIC
LAYER | | 9537444 | 2014 | 2017 | TAU SCIENCE
CORP | METHODS AND SYSTEMS FOR
CHARACTERIZING PHOTOVOLTAIC
CELL AND MODULE PERFORMANCE
AT VARIOUS STAGES IN THE
MANUFACTURING PROCESS | | 9540741 | 2013 | 2017 | CALIFORNIA
INST
TECHNOLOGY | LIGHT-DRIVEN HYDROIODIC ACID
SPLITTING FROM SEMICONDUCTIVE
FUEL GENERATOR | | 9543537 | 2014 | 2017 | ALLIANCE FOR
SUST ENERGY
LLC | SOLUTION PROCESSED METAL OXIDE THIN FILM HOLE TRANSPORT LAYERS FOR HIGH PERFORMANCE ORGANIC SOLAR CELLS | | 9559228 | 2011 | 2017 | SUNPOWER
CORP | SOLAR CELL WITH DOPED GROOVE
REGIONS SEPARATED BY RIDGES | | 9564545 | 2012 | 2017 | DOW GLOBAL
TECH INC | PHOTOVOLTAIC SHEATHING
ELEMENT WITH ONE OR MORE | | 9564551 | 2016 | 2017 | SUNPOWER
CORP | TABS METHOD OF MANUFACTURING A HYBRID EMITTER ALL BACK | |---------|------|------|------------------------------------|---| | | | | CORP | CONTACT SOLAR CELL | | 9564835 | 2013 | 2017 | SUNPOWER
CORP | INVERTER COMMUNICATIONS USING OUTPUT SIGNAL | | 9571031 | 2014 | 2017 | GEORGIA TECH
RES CORP | MOUNTING CLIPS FOR PANEL INSTALLATION | | 9583667 | 2013 | 2017 | ALLIANCE FOR
SUST ENERGY
LLC | SYSTEMS AND METHODS FOR
FORMING SOLAR CELLS WITH
CUINSE(SUB)2 AND
CU(IN,GA)SE(SUB)2 FILMS | | 9583724 | 2016 | 2017 | NUTECH
VENTURES | SYSTEMS AND METHODS FOR
SCALABLE PEROVSKITE DEVICE
FABRICATION | | 9590131 | 2014 | 2017 | ALLIANCE FOR
SUST ENERGY
LLC | SYSTEMS AND METHODS FOR
ADVANCED ULTRA-HIGH-
PERFORMANCE INP SOLAR CELLS | | 9602046 | 2011 | 2017 | DOW GLOBAL
TECH INC | PHOTOVOLTAIC DEVICE | | 9608141 | 2015 | 2017 | IBM CORP | FLUORINATED TIN OXIDE BACK
CONTACT FOR AZTSSE
PHOTOVOLTAIC DEVICES | | 9641125 | 2016 | 2017 | ALLIANCE FOR
SUST ENERGY
LLC | LUMINESCENCE IMAGING SYSTEMS
AND METHODS FOR EVALUATING
PHOTOVOLTAIC DEVICES | | 9647158 | 2014 | 2017 | ALLIANCE FOR
SUST ENERGY
LLC | PHOTOVOLTAIC SUB-CELL INTERCONNECTS | | 9660125 | 2015 | 2017 | BOEING CO | METHOD OF MAKING A MODULAR OFF-AXIS SOLAR CONCENTRATOR | | 9666735 | 2016 | 2017 | SUNPOWER
CORP | TRENCH PROCESS AND STRUCTURE
FOR BACKSIDE CONTACT SOLAR
CELLS WITH POLYSILICON DOPED
REGIONS | | 9685904 | 2013 | 2017 | GENERAL
ELECTRIC CO | PHOTOVOLTAIC SYSTEM
WITH
IMPROVED DC CONNECTIONS AND
METHOD OF MAKING SAME | | 9705103 | 2010 | 2017 | UNIV HOUSTON | WRAPPED OPTOELECTRONIC
DEVICES AND METHODS FOR
MAKING SAME | | 9705447 | 2013 | 2017 | GEORGIA TECH
RES CORP | MOUNTING CLIPS FOR PANEL INSTALLATION | | 9716195 | 2015 | 2017 | IBM CORP | DRY ETCH METHOD FOR TEXTURING SILICON AND DEVICE | | 9722111 | 2015 | 2017 | ALLIANCE FOR
SUST ENERGY
LLC | SURFACE PASSIVATION FOR CDTE DEVICES | | 9722122 | 2015 | 2017 | ALLIANCE FOR
SUST ENERGY
LLC | BORON, BISMUTH CO-DOPING OF
GALLIUM ARSENIDE AND OTHER
COMPOUNDS FOR PHOTONIC AND
HETEROJUNCTION BIPOLAR
TRANSISTOR DEVICES | | 9722131 | 2009 | 2017 | BOEING CO | HIGHLY DOPED LAYER FOR
TUNNEL JUNCTIONS IN SOLAR
CELLS | | 9743501 | 2014 | 2017 | SUNPOWER
CORP | APPARATUSES TO SUPPORT PHOTOVOLTAIC MODULES | |------------|------|-------|------------------------------------|---| | 9758426 | 2011 | 2017 | VITRO SAB DE | REFLECTIVE ARTICLE HAVING A | | | | | C V | SACRIFICIAL CATHODIC LAYER | | 9768015 | 2016 | 2017 | ALLIANCE FOR
SUST ENERGY
LLC | METHODS OF FORMING CIGS FILMS | | 9768402 | 2011 | 2017 | UNIV | ENHANCED BULK | | 7700102 | 2011 | 2017 | SOUTHERN | HETEROJUNCTION DEVICES | | | | | CALIFORNIA | PREPARED BY THERMAL AND | | | | | | SOLVENT VAPOR ANNEALING
PROCESSES | | 9799783 | 2015 | 2017 | SUNPOWER | DOPANT INK COMPOSITION AND | | | | | CORP | METHOD OF FABRICATING A SOLAR | | | | | | CELL THERE FROM | | 9812660 | 2016 | 2017 | NUTECH | METHOD FOR SINGLE CRYSTAL | | | | | VENTURES | GROWTH OF PHOTOVOLTAIC | | | | | | PEROVSKITE MATERIAL AND | | 0025102 | 2015 | 2017 | CALIEODNIA | DEVICES PLOTON AND CARRIED | | 9825193 | 2015 | 2017 | CALIFORNIA
INST TECH | PHOTON AND CARRIER MANAGEMENT DESIGN FOR | | | | | INST TECH | NONPLANAR THIN-FILM COPPER | | | | | | INDIUM GALLIUM DISELENIDE | | | | | | PHOTOVOLTAICS | | 9831359 | 2016 | 2017 | SUNPOWER | LASER PROCESS AND | | | | | CORP | CORRESPONDING STRUCTURES FOR | | | | | | FABRICATION OF SOLAR CELLS | | | | | | WITH SHUNT PREVENTION | | | | | | DIELECTRIC | | 9842952 | 2015 | 2017 | DOW CORNING | PHOTOVOLTAIC CELL MODULE | | 9847487 | 2013 | 2017 | CORP
UNIV | AND METHOD OF FORMING | | 9047407 | 2013 | 2017 | MICHIGAN | USE OF INVERSE QUASI-EPITAXY TO MODIFY ORDER DURING POST- | | | | | MICHIGAN | DEPOSITION PROCESSING OF | | | | | | ORGANIC PHOTOVOLTAICS | | EP3123523 | 2015 | 2017 | VARIAN | SYSTEM AND METHOD FOR | | | | | SEMICONDUCT | CRYSTALLINE SHEET GROWTH | | | | | OR | USING A COLD BLOCK AND GAS JET | | EP3136448 | 2007 | 2017 | SUNPOWER | FORMED PHOTOVOLTAIC MODULE | | ED2454400 | 2000 | 2015 | CORP | BUSBARS | | EP3151420 | 2009 | 2017 | SUNPOWER | PHOTOVOLTAIC MODULE AND | | EP3248283 | 2016 | 2017 | CORP
ALLIANCE FOR | MODULE ARRAYS LUMINESCENCE IMAGING SYSTEMS | | EF 3240203 | 2010 | 2017 | SUST ENERGY | AND METHODS FOR EVALUATING | | | | | LLC | PHOTOVOLTAIC DEVICES | | 9859515 | 2014 | 2018 | ALLIANCE FOR | METHODS FOR PRODUCING THIN | | | | | SUST ENERGY | FILM CHARGE SELECTIVE | | | | | LLC | TRANSPORT LAYERS | | 9876130 | 2016 | 2018 | IBM CORP | METHOD FOR FORMING SILVER- | | | | | | COPPER MIXED KESTERITE | | 0000001 | 2012 | 2019 | LINIV CHICACO | SEMICONDUCTOR FILM | | 9882001 | 2012 | 2018 | UNIV CHICAGO | MATERIALS AND METHODS FOR
THE PREPARATION OF | | | | | | NANOCOMPOSITES | | 9882524 | 2016 | 2018 | GEORGIA TECH | SOLAR PANEL TRUSS MOUNTING | | | | , - , | RES CORP, | SYSTEMS AND METHODS | | | | | | | | | | | RADIANCE
SOLAR | | |----------|------|------|--|---| | 9893678 | 2013 | 2018 | GENERAL
ELECTRIC CO | PHOTOVOLTAIC SYSTEM WITH
IMPROVED AC CONNECTIONS AND
METHOD OF MAKING SAME | | 9897642 | 2015 | 2018 | NATL TECH &
ENG
SOLUTIONS OF
SANDIA | DETECTION OF ARCING LOCATION
ON PHOTOVOLTAIC SYSTEMS
USING FILTERS | | 9911873 | 2016 | 2018 | ALLIANCE FOR
SUST ENERGY
LLC | HYDROGENATION OF PASSIVATED CONTACTS | | 9911878 | 2014 | 2018 | ADVANCED
SILICON GROUP
INC | METAL-ASSISTED ETCH COMBINED WITH REGULARIZING ETCH | | 9929296 | 2009 | 2018 | SUNPOWER
CORP | EDGE REFLECTOR OR REFRACTOR FOR BIFACIAL SOLAR MODULE | | 9929298 | 2017 | 2018 | SUNPOWER
CORP | TRENCH PROCESS AND STRUCTURE
FOR BACKSIDE CONTACT SOLAR
CELLS WITH POLYSILICON DOPED
REGIONS | | 9935214 | 2015 | 2018 | IBM CORP | LIFTOFF PROCESS FOR EXFOLIATION OF THIN FILM PHOTOVOLTAIC DEVICES AND BACK CONTACT FORMATION | | 9939485 | 2013 | 2018 | NATL TECH &
ENG
SOLUTIONS OF
SANDIA | PROGNOSTICS AND HEALTH
MANAGEMENT OF PHOTOVOLTAIC
SYSTEMS | | 9941435 | 2011 | 2018 | SUNPOWER
CORP | PHOTOVOLTAIC MODULE AND LAMINATE | | 9947816 | 2013 | 2018 | CALIFORNIA
INST TECH | SEMICONDUCTOR STRUCTURES
FOR FUEL GENERATION | | 9957636 | 2014 | 2018 | VARIAN
SEMICONDUCT
OR | SYSTEM AND METHOD FOR
CRYSTALLINE SHEET GROWTH
USING A COLD BLOCK AND GAS JET | | 9960287 | 2014 | 2018 | PICASOLAR INC | SOLAR CELLS AND METHODS OF FABRICATION THEREOF | | 9985159 | 2016 | 2018 | ALLIANCE FOR
SUST ENERGY
LLC | PASSIVATED CONTACT FORMATION USING ION IMPLANTATION | | 9995796 | 2014 | 2018 | NATL TECH &
ENG
SOLUTIONS OF
SANDIA | IDENTIFYING AN ARC-FAULT TYPE
IN PHOTOVOLTAIC ARRAYS | | 10008618 | 2017 | 2018 | IBM CORP | LIFTOFF PROCESS FOR EXFOLIATION OF THIN FILM PHOTOVOLTAIC DEVICES AND BACK CONTACT FORMATION | | 10008979 | 2014 | 2018 | SUNPOWER
CORP | INTEGRATION OF MICROINVERTER WITH PHOTOVOLTAIC MODULE | | 10014423 | 2016 | 2018 | IBM CORP | CHALCOGEN BACK SURFACE FIELD LAYER | | 10026856 | 2017 | 2018 | ALLIANCE FOR
SUST ENERGY
LLC | SYSTEMS AND METHODS FOR
ADVANCED ULTRA-HIGH-
PERFORMANCE INP SOLAR CELLS | | 10032949 | 2015 | 2018 | IBM CORP | PHOTOVOLTAIC DEVICE BASED ON
AG(SUB)2ZNSN(S,SE)(SUB)4
ABSORBER | |-----------|------|------|---|--| | 10043922 | 2013 | 2018 | UNIV TOLEDO | BACK CONTACT LAYER FOR
PHOTOVOLTAIC CELLS | | 10043932 | 2014 | 2018 | MASSACHUSET
TS INST
TECHNOLOGY | INTERNALLY-HEATED THERMAL AND EXTERNALLY-COOL PHOTOVOLTAIC CASCADE SOLAR ENERGY SYSTEM FOR FULL SOLAR SPECTRUM UTILIZATION | | 10069095 | 2014 | 2018 | UNIV
SOUTHERN
CALIFORNIA | ORGANIC PHOTOSENSITIVE
DEVICES WITH EXCITON-BLOCKING
CHARGE CARRIER FILTERS | | 10079321 | 2016 | 2018 | IBM CORP | TECHNIQUE FOR ACHIEVING
LARGE-GRAIN
AG(SUB)2ZNSN(S,SE)(SUB)4THIN
FILMS | | 10121910 | 2015 | 2018 | SUNPOWER
CORP | FORMED PHOTOVOLTAIC MODULE BUSBARS | | 10121911 | 2015 | 2018 | DOW GLOBAL
TECH INC | PHOTOVOLTAIC DEVICE ASSEMBLY AND METHOD | | 10121925 | 2011 | 2018 | UNIV FLORIDA | THIN FILM PHOTOVOLTAIC
DEVICES WITH MICROLENS
ARRAYS | | 10121952 | 2016 | 2018 | UNIV CHICAGO | MATERIALS AND METHODS FOR
THE PREPARATION OF
NANOCOMPOSITES | | 10128395 | 2018 | 2018 | SUNPOWER
CORP | TRENCH PROCESS AND STRUCTURE
FOR BACKSIDE CONTACT SOLAR
CELLS WITH POLYSILICON DOPED
REGIONS | | 10134929 | 2015 | 2018 | IBM CORP | ACHIEVING BAND GAP GRADING OF CZTS AND CZTSE MATERIALS | | 10135386 | 2014 | 2018 | SMASH SOLAR
INC | SENSING, INTERLOCKING SOLAR
MODULE SYSTEM AND
INSTALLATION METHOD | | 10141531 | 2013 | 2018 | UNIV
MICHIGAN | HYBRID PLANAR-GRADED
HETEROJUNCTION FOR ORGANIC
PHOTOVOLTAICS | | EP3299109 | 2011 | 2018 | SUNPOWER
CORP | HIGH THROUGHPUT SOLAR CELL
ABLATION SYSTEM | | EP3327811 | 2014 | 2018 | UNIV
MICHIGAN;
UNIV
SOUTHERN
CALIFORNIA | ORGANIC PHOTOSENSITIVE
DEVICES WITH EXCITON-BLOCKING
CHARGE CARRIER FILTERS | | 10193092 | 2017 | 2019 | NUTECH
VENTURES | SYSTEMS AND METHODS FOR
SCALABLE PEROVSKITE DEVICE
FABRICATION | | 10211349 | 2015 | 2019 | SUNPOWER
CORP | SOLAR CELL CONTACT FORMATION USING LASER ABLATION | | 10230014 | 2016 | 2019 | IBM CORP | HYBRID VAPOR PHASE-SOLUTION PHASE GROWTH TECHNIQUES FOR IMPROVED CZT(S,SE) PHOTOVOLTAIC DEVICE PERFORMANCE | | 10269994 | 2017 | 2019 | IBM CORP | LIFTOFF PROCESS FOR
EXFOLIATION OF THIN FILM | |-----------|------|------|---------------|---| | | | | | PHOTOVOLTAIC DEVICES AND | | 10201052 | 2015 | 2010 | ar ny povyvep | BACK CONTACT FORMATION | | 10304972 | 2015 | 2019 | SUNPOWER | SOLAR CELL WITH SILICON | | 10210071 | 2010 | 2010 | CORP | OXYNITRIDE DIELECTRIC LAYER | | 10319871 | 2018 | 2019 | IBM CORP | PHOTOVOLTAIC DEVICE BASED ON
AG2ZNSN(S,SE)4 ABSORBER | | 10326042 | 2016 | 2019 | BOEING CO | HIGHLY DOPED LAYER FOR | | | | | | TUNNEL JUNCTIONS IN SOLAR | | | | | | CELLS | | 10396230 | 2018 | 2019 | SUNPOWER | BACKSIDE CONTACT SOLAR CELLS | | | | | CORP | WITH SEPARATED POLYSILICON | | | | | | DOPED REGIONS | | 10396704 | 2017 | 2019 | GEORGIA TECH | SOLAR PANEL TRUSS MOUNTING | | | | | RES CORP | SYSTEMS AND METHODS | | 10404190 | 2017 | 2019 | ENPHASE | INVERTER COMMUNICATIONS | | | | | ENERGY INC | USING OUTPUT SIGNAL | | 10475945 | 2016 | 2019 | SUNPOWER | FRONT CONTACT SOLAR CELL | | | | | CORP | WITH FORMED ELECTRICALLY | | | | | | CONDUCTING LAYERS ON THE | | | | | | FRONT SIDE AND BACKSIDE | | EP3425682 | 2009 | 2019 | SUNPOWER | FRONT CONTACT SOLAR CELL | | | | | CORP | WITH BACKSIDE POLY- | | | | | | CRYSTALLINE SILICON EMITTER | | EP3496164 | 2009 | 2019 | SUNPOWER | FRONT CONTACT SOLAR CELL | | | | | CORP | WITH FORMED ELECTRICALLY | | | | | | CONDUCTING LAYERS ON THE | | 10705110 | | | | FRONT SIDE AND BACKSIDE | | 10536110 | 2016 | 2020 | SUNPOWER | FRAME-MOUNTED WIRE | | | | | CORP | MANAGEMENT DEVICE | **Appendix B. Other DOE-Funded PV Patents used in the Analysis** | Appendix B. Other DOE-Funded PV Patents used in the Analysis | | | |
| | |--|-------------|------------------------|---|--|--| | D () | Application | Issue /
Publication | Original | TO LA | | | Patent # | Year | Year | Assignees | Title | | | 4029519 | 1976 | 1977 | US DEPT OF
ENERGY | SOLAR COLLECTOR HAVING A
SOLID TRANSMISSION MEDIUM | | | 4089705 | 1976 | 1978 | NATIONAL
AERONAUTICS
& SPACE
ADMIN | HEXAGON SOLAR POWER PANEL | | | 4105470 | 1977 | 1978 | US DEPT OF
ENERGY | DYE-SENSITIZED SCHOTTKY
BARRIER SOLAR CELLS | | | 4118249 | 1977 | 1978 | US DEPT OF
ENERGY | MODULAR ASSEMBLY OF A PHOTOVOLTAIC SOLAR ENERGY RECEIVER | | | 4129463 | 1977 | 1978 | US DEPT OF
ENERGY | POLYCRYSTALLINE SILICON SEMICONDUCTING MATERIAL BY NUCLEAR TRANSMUTATION DOPING | | | 4139858 | 1977 | 1979 | RCA CORP | SOLAR CELL WITH A GALLIUM
NITRIDE ELECTRODE | | | 4147563 | 1978 | 1979 | US DEPT OF
ENERGY | METHOD FOR FORMING P-N
JUNCTIONS AND SOLAR-CELLS BY
LASER-BEAM PROCESSING | | | 4152175 | 1978 | 1979 | US DEPT OF
ENERGY | SILICON SOLAR CELL ASSEMBLY | | | 4162505 | 1978 | 1979 | RCA CORP | INVERTED AMORPHOUS SILICON
SOLAR CELL UTILIZING CERMET
LAYERS | | | 4163677 | 1978 | 1979 | RCA CORP | SCHOTTKY BARRIER AMORPHOUS
SILICON SOLAR CELL WITH THIN
DOPED REGION ADJACENT METAL
SCHOTTKY BARRIER | | | 4166880 | 1978 | 1979 | SOLAMAT INC | SOLAR ENERGY DEVICE | | | 4166918 | 1978 | 1979 | RCA CORP | METHOD OF REMOVING THE EFFECTS OF ELECTRICAL SHORTS AND SHUNTS CREATED DURING THE FABRICATION PROCESS OF A SOLAR CELL | | | 4166919 | 1978 | 1979 | RCA CORP | AMORPHOUS SILICON SOLAR CELL
ALLOWING INFRARED
TRANSMISSION | | | 4167015 | 1978 | 1979 | RCA CORP | CERMET LAYER FOR AMORPHOUS SILICON SOLAR CELLS | | | 4177093 | 1978 | 1979 | EXXON
RESEARCH &
ENGINEERING
CO | METHOD OF FABRICATING CONDUCTING OXIDE-SILICON SOLAR CELLS UTILIZING ELECTRON BEAM SUBLIMATION AND DEPOSITION OF THE OXIDE | | | 4178395 | 1977 | 1979 | PHOTON
POWER INC | METHODS FOR IMPROVING SOLAR
CELL OPEN CIRCUIT VOLTAGE | | | 4190950 | 1978 | 1980 | US DEPT OF
ENERGY | DYE-SENSITIZED SOLAR CELLS | | | 4193821 | 1979 | 1980 | EXXON
RESEARCH & | FABRICATION OF HETEROJUNCTION SOLAR CELLS BY IMPROVED TIN | | | | | | ENGINEERING
CO | OXIDE DEPOSITION ON INSULATING
LAYER | |-----------|------|------|--|---| | 4195305 | 1978 | 1980 | VARIAN
ASSOCIATES
INC | LATTICE CONSTANT GRADING IN
THE ALYGA1-YAS1-XSBX ALLOY
SYSTEM | | 4200473 | 1979 | 1980 | RCA CORP | AMORPHOUS SILICON SCHOTTKY BARRIER SOLAR CELLS INCORPORATING A THIN INSULATING LAYER AND A THIN DOPED LAYER | | 4205265 | 1978 | 1980 | RCA CORP | LASER BEAM APPARATUS AND
METHOD FOR ANALYZING SOLAR
CELLS | | 4215185 | 1979 | 1980 | RCA CORP | LIQUID JUNCTION SCHOTTKY
BARRIER SOLAR CELL | | 4217148 | 1979 | 1980 | RCA CORP | COMPENSATED AMORPHOUS
SILICON SOLAR CELL | | 4226643 | 1979 | 1980 | RCA CORP | METHOD OF ENHANCING THE ELECTRONIC PROPERTIES OF AN UNDOPED AND/OR N-TYPE HYDROGENATED AMORPHOUS SILICON FILM | | 4237150 | 1979 | 1980 | US DEPT OF
ENERGY | METHOD OF PRODUCING
HYDROGENATED AMORPHOUS
SILICON FILM | | 4237151 | 1979 | 1980 | US DEPT OF
ENERGY | THERMAL DECOMPOSITION OF SILANE TO FORM HYDROGENATED AMORPHOUS SI FILM | | 4239553 | 1979 | 1980 | UNIVERSITY
OF DELAWARE | THIN FILM PHOTOVOLTAIC CELLS
HAVING INCREASED DURABILITY
AND OPERATING LIFE AND METHOD
FOR MAKING SAME | | EP0007192 | 1979 | 1980 | EXXON
RESEARCH &
ENGINEERING
CO | PROCESS FOR PREPARING
HETROJUNCTION SOLAR-CELL
DEVICES. | | EP0008236 | 1979 | 1980 | EXXON
RESEARCH &
ENGINEERING
CO | PROCESS FOR FORMING TIN OXIDE SEMICONDUCTOR HETEROJUNCTION DEVICES. | | EP0009401 | 1979 | 1980 | UNIVERSITY
OF DELAWARE | PHOTOVOLTAIC CELLS EMPLOYING
A ZINC PHOSPHIDE ABSORBER-
GENERATOR. | | EP0010828 | 1979 | 1980 | RCA CORP | AMORPHOUS SILICON SOLAR CELL
ALLOWING INFRARED
TRANSMISSION. | | 4246050 | 1979 | 1981 | VARIAN
ASSOCIATES
INC | LATTICE CONSTANT GRADING IN
THE AL/Y\ CA/1-Y\ AS/1-X\ SB/X\
ALLOY SYSTEM | | 4249957 | 1979 | 1981 | CALIFORNIA
INSTITUTE OF
TECHNOLOGY | COPPER DOPED POLYCRYSTALLINE
SILICON SOLAR CELL | | 4251287 | 1979 | 1981 | UNIVERSITY
OF DELAWARE | AMORPHOUS SEMICONDUCTOR SOLAR CELL | | 4253882 | 1980 | 1981 | UNIVERSITY
OF DELAWARE | MULTIPLE GAP PHOTOVOLTAIC DEVICE | | 4267 | 398 | 1979 | 1981 | UNIVERSITY
OF DELAWARE | THIN FILM PHOTOVOLTAIC CELLS | |------|-----|------|------|--|--| | 4272 | 641 | 1980 | 1981 | RCA CORP | TANDEM JUNCTION AMORPHOUS SILICON SOLAR CELLS | | 4287 | 473 | 1979 | 1981 | US DEPT OF
ENERGY | NONDESTRUCTIVE METHOD FOR
DETECTING DEFECTS IN
PHOTODETECTOR AND SOLAR CELL
DEVICES | | 4292 | 092 | 1980 | 1981 | RCA CORP | LASER PROCESSING TECHNIQUE
FOR FABRICATING SERIES-
CONNECTED AND TANDEM
JUNCTION SERIES-CONNECTED
SOLAR CELLS INTO A SOLAR
BATTERY | | 4311 | 870 | 1980 | 1982 | CALIFORNIA
INSTITUTE OF
TECHNOLOGY | EFFICIENCY OF SILICON SOLAR CELLS CONTAINING CHROMIUM | | 4316 | 049 | 1980 | 1982 | RCA CORP | HIGH VOLTAGE SERIES CONNECTED
TANDEM JUNCTION SOLAR
BATTERY | | 4320 | 251 | 1980 | 1982 | SOLAMAT INC | OHMIC CONTACTS FOR SOLAR CELLS BY ARC PLASMA SPRAYING | | 4322 | 253 | 1980 | 1982 | RCA CORP | METHOD OF MAKING SELECTIVE
CRYSTALLINE SILICON REGIONS
CONTAINING ENTRAPPED
HYDROGEN BY LASER TREATMENT | | 4328 | 390 | 1980 | 1982 | UNIVERSITY
OF DELAWARE | THIN FILM PHOTOVOLTAIC CELL | | 4331 | 707 | 1980 | 1982 | EXXON
RESEARCH &
ENGINEERING
CO | PROCESS FOR THIN FILM DEPOSITION OF CADMIUM SULFIDE | | 4335 | 266 | 1980 | 1982 | BOEING CO | METHODS FOR FORMING THIN-FILM
HETEROJUNCTION SOLAR CELLS
FROM I-III-VI/2 \ CHALCOPYRITE
COMPOUNDS, AND SOLAR CELLS
PRODUCED THEREBY | | 4339 | 470 | 1981 | 1982 | RCA CORP | FABRICATING AMORPHOUS SILICON
SOLAR CELLS BY VARYING THE
TEMPERATURE OF THE SUBSTRATE
DURING DEPOSITION OF THE
AMORPHOUS SILICON LAYER | | 4342 | 879 | 1980 | 1982 | UNIVERSITY
OF DELAWARE | THIN FILM PHOTOVOLTAIC DEVICE | | 4350 | 836 | 1980 | 1982 | US DEPT OF
ENERGY | SOLAR ARRAY CONSTRUCTION | | 4356 | 341 | 1981 | 1982 | VARIAN
ASSOCIATES
INC | CASCADE SOLAR CELL HAVING CONDUCTIVE INTERCONNECTS | | 4360 | 702 | 1981 | 1982 | EXXON
RESEARCH &
ENGINEERING
CO | COPPER OXIDE/N-SILICON
HETEROJUNCTION PHOTOVOLTAIC
DEVICE | | 4364 | 508 | 1980 | 1982 | US DEPT OF
ENERGY | METHOD OF FABRICATING A SOLAR CELL ARRAY | | 4366 | 335 | 1981 | 1982 | EXXON | INDIUM OXIDE/N-SILICON | | | | | RESEARCH &
ENGINEERING
CO | HETEROJUNCTION SOLAR CELLS | |--------------|------|------|---|--| | EP0060363 | 1981 | 1982 | EXXON
RESEARCH &
ENGINEERING
CO | METHOD OF MANUFACTURE OF A PIN AMORPHOUS SILICON SEMI-CONDUCTOR DEVICE. | | EP0067860 | 1981 | 1982 | BOEING CO | METHODS AND APPARATUS FOR FORMING THIN-FILM HETEROJUNCTION SOLAR CELLS FROM I-III-VI2 CHALCOPYRITE COMPOUNDS, AND SOLAR CELLS PRODUCED THEREBY. | | WO1982002459 | 1981 | 1982 | BOEING CO | METHODS AND APPARATUS FOR
FORMING THIN-FILM
HETEROJUNCTION SOLAR CELLS
FROM I-III-VI2 CHALCOPYRITE
COMPOUNDS,AND SOLAR CELLS
PRODUCED THEREBY | | 4371738 | 1981 | 1983 | RCA CORP | METHOD OF RESTORING DEGRADED SOLAR CELLS | | 4377723 | 1980 | 1983 | UNIVERSITY
OF DELAWARE | HIGH EFFICIENCY THIN-FILM
MULTIPLE-GAP PHOTOVOLTAIC
DEVICE | | 4378460 | 1981 | 1983 | RCA CORP | METAL ELECTRODE FOR
AMORPHOUS SILICON SOLAR CELLS | | 4379020 | 1981 | 1983 | MASSACHUSET
TS INSTITUTE
OF
TECHNOLOGY | POLYCRYSTALLINE
SEMICONDUCTOR PROCESSING | | 4387265 | 1981 | 1983 | UNIVERSITY
OF DELAWARE | TANDEM JUNCTION AMORPHOUS
SEMICONDUCTOR PHOTOVOLTAIC
CELL | | 4388483 | 1981 | 1983 | MONOSOLAR
INC | THIN FILM HETEROJUNCTION PHOTOVOLTAIC CELLS AND METHODS OF MAKING THE SAME | | 4392011 | 1981 | 1983 | RCA CORP | SOLAR CELL STRUCTURE
INCORPORATING A NOVEL SINGLE
CRYSTAL SILICON MATERIAL | | 4392451 | 1981 | 1983 | BOEING CO | APPARATUS FOR FORMING THIN-
FILM HETEROJUNCTION SOLAR
CELLS EMPLOYING MATERIALS
SELECTED FROM THE CLASS OF I-III-
VI/2 \ CHALCOPYRITE COMPOUNDS | | 4400244 | 1982 | 1983 | MONOSOLAR
INC | PHOTO-VOLTAIC POWER
GENERATING MEANS AND
METHODS | | 4407710 | 1981 | 1983 | EXXON
RESEARCH &
ENGINEERING
CO | HYBRID METHOD OF MAKING AN
AMORPHOUS SILICON P-I-N
SEMICONDUCTOR DEVICE | | 4409424 | 1982 | 1983 | US DEPT OF
ENERGY | COMPENSATED AMORPHOUS
SILICON SOLAR CELL | | 4417092 | 1981 | 1983 | EXXON
RESEARCH &
ENGINEERING | SPUTTERED PIN AMORPHOUS
SILICON SEMI-CONDUCTOR DEVICE
AND METHOD THEREFOR | | EP0077601 | 1982 | 1983 | CO EXXON RESEARCH & ENGINEERING CO | PHOTOVOLTAIC SEMICONDUCTOR DEVICE. | |-----------|------|------|---|---| | 4425194 | 1983 | 1984 | MONOSOLAR
INC | PHOTO-VOLTAIC POWER
GENERATING MEANS AND
METHODS | | 4427840 | 1981 | 1984 | US DEPT OF
ENERGY | PLASTIC SCHOTTKY BARRIER
SOLAR CELLS | | 4431858 | 1982 | 1984 | UNIVERSITY
OF FLORIDA | METHOD OF
MAKING QUASI-GRAIN
BOUNDARY-FREE
POLYCRYSTALLINE SOLAR CELL
STRUCTURE AND SOLAR CELL
STRUCTURE OBTAINED THEREBY | | 4436557 | 1982 | 1984 | US DEPT OF
ENERGY | MODIFIED LASER-ANNEALING
PROCESS FOR IMPROVING THE
QUALITY OF ELECTRICAL P-N
JUNCTIONS AND DEVICES | | 4436558 | 1982 | 1984 | US DEPT OF
ENERGY | ELECTROCHEMICAL PHOTOVOLTAIC CELL HAVING TERNARY ALLOY FILM | | 4436765 | 1982 | 1984 | EXXON
RESEARCH &
ENGINEERING
CO | METHOD FOR FORMING INDIUM OXIDE/N-SILICON HETEROJUNCTION SOLAR CELLS | | 4442082 | 1982 | 1984 | SRI
INTERNATION
AL | PROCESS FOR OBTAINING SILICON FROM FLUOSILICIC ACID | | 4442185 | 1982 | 1984 | US DEPT OF
ENERGY | PHOTOELECTROCHEMICAL CELLS
FOR CONVERSION OF SOLAR
ENERGY TO ELECTRICITY AND
METHODS OF THEIR MANUFACTURE | | 4443653 | 1982 | 1984 | UNIVERSITY
OF DELAWARE | THIN FILM PHOTOVOLTAIC DEVICE WITH MULTILAYER SUBSTRATE | | 4444992 | 1982 | 1984 | MASSACHUSET
TS INSTITUTE
OF
TECHNOLOGY | PHOTOVOLTAIC-THERMAL COLLECTORS | | 4471036 | 1983 | 1984 | US DEPT OF
ENERGY | ELECTROCHEMICAL PHOTOVOLTAIC CELLS AND ELECTRODES | | 4475682 | 1982 | 1984 | US DEPT OF
ENERGY | PROCESS FOR REDUCING SERIES
RESISTANCE OF SOLAR CELL
METAL CONTACT SYSTEMS WITH A
SOLDERING FLUX ETCHANT | | 4477688 | 1978 | 1984 | UNIVERSITY
OF DELAWARE | PHOTOVOLTAIC CELLS EMPLOYING ZINC PHOSPHIDE | | 4482780 | 1982 | 1984 | US DEPT OF
ENERGY | SOLAR CELLS WITH LOW COST
SUBSTRATES AND PROCESS OF
MAKING SAME | | 4485265 | 1982 | 1984 | HARVARD
COLLEGE | PHOTOVOLTAIC CELL | | 4488943 | 1982 | 1984 | US DEPT OF
ENERGY | POLYMER BLENDS FOR USE IN
PHOTOELECTROCHEMICAL CELLS
FOR CONVERSION OF SOLAR | | | | | | ENERGY TO ELECTRICITY AND METHODS FOR MANUFACTURING | |----------------|------|------|--------------------|---| | | | | | SUCH BLENDS | | EP0118579 | 1983 | 1984 | MONOSOLAR | THIN FILM HETEROJUNCTION | | | | | INC | PHOTOVOLTAIC CELLS AND | | | | | | METHODS OF MAKING THE SAME. | | EP0125301 | 1983 | 1984 | HARVARD | PHOTOVOLTAIC CELL. | | | | | COLLEGE | | | WO1984002229 | 1983 | 1984 | HARVARD | PHOTOVOLTAIC CELL | | ,, 01, 0.00222 | 1,00 | 1,0. | COLLEGE | 111010 (021) 110 0222 | | WO1984002514 | 1983 | 1984 | SRI | PROCESS AND APPARATUS FOR | | ,, 01,0.00201. | 1,00 | 1,0. | INTERNATION | OBTAINING SILICON FROM | | | | | AL | FLUOSILICIC ACID | | WO1984002515 | 1983 | 1984 | SRI | PROCESS AND APPARATUS FOR | | W 01704002313 | 1703 | 1704 | INTERNATION | OBTAINING SILICON FROM | | | | | AL | FLUOSILICIC ACID | | WO1984002516 | 1983 | 1984 | SRI | PROCESS AND APPARATUS FOR | | W 01904002310 | 1903 | 1704 | INTERNATION | OBTAINING SILICON FROM | | | | | AL | FLUOSILICIC ACID | | WO1984002539 | 1983 | 1984 | SRI | PROCESS AND APPARATUS FOR | | W 01984002339 | 1903 | 1984 | SKI
INTERNATION | OBTAINING SILICON FROM | | | | | | | | 4401701 | 1002 | 1005 | AL LIC DEPT OF | FLUOSILICIC ACID | | 4491681 | 1983 | 1985 | US DEPT OF | LIQUID COOLED, LINEAR FOCUS | | 4502225 | 1002 | 1005 | ENERGY | SOLAR CELL RECEIVER | | 4502225 | 1983 | 1985 | RCA CORP | MECHANICAL SCRIBER FOR | | 4500600 | 1002 | 1005 | EWYON | SEMICONDUCTOR DEVICES | | 4508609 | 1983 | 1985 | EXXON | METHOD FOR SPUTTERING A PIN | | | | | RESEARCH & | MICROCRYSTALLINE/AMORPHOUS | | | | | ENGINEERING | SILICON SEMICONDUCTOR DEVICE | | | | | CO | WITH THE P AND N-LAYERS | | | | | | SPUTTERED FROM BORON AND | | | | | | PHOSPHOROUS HEAVILY DOPED | | | | | | TARGETS | | 4523051 | 1983 | 1985 | BOEING CO | THIN FILMS OF MIXED METAL | | | | | | COMPOUNDS | | 4525375 | 1983 | 1985 | RCA CORP | METHOD OF CONTROLLONG THE | | | | | | DEPOSITION OF HYDROGENATED | | | | | | AMORPHOUS SILICON AND | | | | | | APPARATUS THEREFOR | | 4526809 | 1983 | 1985 | UNIVERSITY | PROCESS AND APPARATUS FOR | | | | | OF DELAWARE | FORMATION OF PHOTOVOLTAIC | | | | | | COMPOUNDS | | 4528082 | 1983 | 1985 | EXXON | METHOD FOR SPUTTERING A PIN | | | | | RESEARCH & | AMORPHOUS SILICON SEMI- | | | | | ENGINEERING | CONDUCTOR DEVICE HAVING | | | | | CO | PARTIALLY CRYSTALLIZED P AND | | | | | | N-LAYERS | | 4528503 | 1981 | 1985 | US DEPT OF | METHOD AND APPARATUS FOR I-V | | | | | ENERGY | DATA ACQUISITION FROM SOLAR | | | | | | CELLS | | 4529576 | 1982 | 1985 | SRI | PROCESS AND APPARATUS FOR | | | | | INTERNATION | OBTAINING SILICON FROM | | | | | AL | FLUOSILICIC ACID | | 4547622 | 1984 | 1985 | MASSACHUSET | SOLAR CELLS AND | | | | | TS INSTITUTE | PHOTODETECTORS | | | | | OF | | | | | | | | | 4556500 | 1002 | 1007 | TECHNOLOGY | AMORRIGON GELL ARRAY | |--------------|------|------|--------------------|--| | 4556788 | 1983 | 1985 | RCA CORP | AMORPHOUS SILICON CELL ARRAY | | | | | | POWERED SOLAR TRACKING | | 4559924 | 1984 | 1985 | US DEPT OF | APPARATUS THIN FILM ABSORBER FOR A SOLAR | | 4339924 | 1984 | 1983 | ENERGY | COLLECTOR | | EP0129555 | 1983 | 1985 | SRI | PROCESS AND APPARATUS FOR | | EP0129555 | 1983 | 1983 | INTERNATION | OBTAINING SILICON. | | | | | AL | OBTAINING SILICON. | | EP0130996 | 1983 | 1985 | SRI | PROCESS AND APPARATUS FOR | | EF 0130990 | 1903 | 1965 | INTERNATION | OBTAINING SILICON FROM | | | | | AL | FLUOSILICIC ACID. | | EP0131586 | 1983 | 1985 | SRI | PROCESS AND APPARATUS FOR | | EI 0131300 | 1905 | 1905 | INTERNATION | OBTAINING SILICON FROM | | | | | AL | FLUOSILICIC ACID. | | EP0139487 | 1984 | 1985 | EXXON | A METHOD FOR SPUTTERING A PIN | | EI 0139407 | 1904 | 1905 | RESEARCH & | OR NIP AMORPHOUS SILICON SEMI- | | | | | ENGINEERING | CONDUCTOR DEVICE HAVING | | | | | CO | PARTIALLY CRYSTALLISED P AND | | | | | CO | N-LAYERS. | | EP0139488 | 1984 | 1985 | EXXON | A METHOD FOR SPUTTERING A PIN | | LI 0137400 | 1704 | 1703 | RESEARCH & | OR NIP AMORPHOUS SILICON | | | | | ENGINEERING | SEMICONDUCTOR DEVICE WITH | | | | | CO | THE P AND N-LAYERS SPUTTERED | | | | | CO | FROM BORON AND PHOSPHORUS | | | | | | HEAVILY DOPED TARGETS. | | EP0151569 | 1983 | 1985 | SRI | PROCESS AND APPARATUS FOR | | LI 013130) | 1703 | 1703 | INTERNATION | OBTAINING SILICON FROM | | | | | AL | FLUOSILICIC ACID. | | RE031968 | 1984 | 1985 | BOEING CO | METHODS FOR FORMING THIN-FILM | | | | | | HETEROJUNCTION SOLAR CELLS | | | | | | FROM I-III-VI2 CHALCOPYRITE | | | | | | COMPOUNDS, AND SOLAR CELLS | | | | | | PRODUCED THEREBY | | WO1985005221 | 1985 | 1985 | ADVANCED | SILICON-GAAS EPITAXIAL | | | | | ENERGY FUND | COMPOSITIONS AND PROCESS OF | | | | | LP | MAKING SAME | | WO1985005226 | 1985 | 1985 | MASSACHUSET | SOLAR CELLS AND | | | | | TS INSTITUTE | PHOTODETECTORS | | | | | OF | | | | | | TECHNOLOGY | | | 4564720 | 1983 | 1986 | US DEPT OF | PURE SILVER OHMIC CONTACTS TO | | | | | ENERGY | N- AND P- TYPE GALLIUM ARSENIDE | | | | | | MATERIALS | | 4575576 | 1984 | 1986 | US DEPT OF | THREE-JUNCTION SOLAR CELL | | | | | ENERGY | | | 4584181 | 1982 | 1986 | SRI | PROCESS AND APPARATUS FOR | | | | | INTERNATION | OBTAINING SILICON FROM | | | | | AL | FLUOSILICIC ACID | | 4585581 | 1984 | 1986 | US DEPT OF | POLYMER BLENDS FOR USE IN | | | | | ENERGY | PHOTOELECTROCHEMICAL CELLS | | | | | | FOR CONVERSION OF SOLAR | | | | | | ENERGY TO ELECTRICITY | | 4588451 | 1984 | 1986 | ADVANCED | METAL ORGANIC CHEMICAL VAPOR | | | | | ENERGY FUND | DEPOSITION OF 111-V COMPOUNDS | | | | | LP | ON SILICON | | 4590043 | 1982 | 1986 | SRI
INTERNATION
AL | APPARATUS FOR OBTAINING
SILICON FROM FLUOSILICIC ACID | |-----------|------|------|---|---| | 4594229 | 1981 | 1986 | US DEPT OF
ENERGY | APPARATUS FOR MELT GROWTH OF
CRYSTALLINE SEMICONDUCTOR
SHEETS | | 4597948 | 1984 | 1986 | SRI
INTERNATION
AL | APPARATUS FOR OBTAINING
SILICON FROM FLUOSILICIC ACID | | 4616246 | 1982 | 1986 | CHRONAR
CORP | ENHANCEMENT OF PHOTOCONDUCTIVITY IN PYROLYTICALLY PREPARED SEMICONDUCTORS | | EP0179138 | 1985 | 1986 | ADVANCED
ENERGY FUND
LP | A METHOD OF FORMING A COMPOSITE SEMICONDUCTOR STRUCTURE. | | EP0179896 | 1985 | 1986 | MASSACHUSET
TS INSTITUTE
OF
TECHNOLOGY | SOLAR CELLS AND PHOTODETECTORS. | | 4640002 | 1985 | 1987 | UNIVERSITY
OF DELAWARE | METHOD AND APPARATUS FOR
INCREASING THE DURABILITY AND
YIELD OF THIN FILM
PHOTOVOLTAIC DEVICES | | 4676845 | 1986 | 1987 | SPIRE CORP | PASSIVATED DEEP P/N JUNCTION | | 4684761 | 1986 | 1987 | BOEING CO | METHOD FOR MAKING GRADED I-
III-VI2 SEMICONDUCTORS AND
SOLAR CELL OBTAINED THEREBY | | 4688068 | 1986 | 1987 | US DEPT OF
ENERGY | QUANTUM WELL MULTIJUNCTION PHOTOVOLTAIC CELL | | 4696702 | 1986 | 1987 | CHRONAR
CORP | METHOD OF DEPOSITING WIDE
BANDGAP AMORPHOUS
SEMICONDUCTOR MATERIALS | | 4718947 | 1986 | 1988 | SOLAREX
CORP | SUPERLATTICE DOPED LAYERS FOR
AMORPHOUS SILICON
PHOTOVOLTAIC CELLS | | 4748014 | 1985 | 1988 | SRI
INTERNATION
AL | PROCESS AND APPARATUS FOR
OBTAINING SILICON FROM
FLUOSILICIC ACID | | 4753783 | 1985 | 1988 | SRI
INTERNATION
AL | PROCESS AND APPARATUS FOR
OBTAINING SILICON FROM
FLUOSILICIC ACID | | 4762808 | 1987 | 1988 | DOW CORNING
CORP | METHOD OF FORMING SEMICONDUCTING AMORPHOUS SILICON FILMS FROM THE THERMAL DECOMPOSITION OF FLUOROHYDRIDODISILANES | | 4775425 | 1987 | 1988 | ENERGY
CONVERSION
DEVICES INC | P AND N-TYPE MICROCRYSTALLINE
SEMICONDUCTOR ALLOY
MATERIAL INCLUDING BAND GAP
WIDENING ELEMENTS, DEVICES
UTILIZING SAME | | 4779980 | 1987 | 1988 | MIDWEST
RESEARCH
INSTITUTE | ATMOSPHERIC OPTICAL
CALIBRATION SYSTEM | | 4781565 | 1986 | 1988 | SRI | APPARATUS FOR OBTAINING | | | | | | | | | | | INTERNATION
AL | SILICON FROM FLUOSILICIC ACID | |--------------|------|------|--
--| | 4783421 | 1987 | 1988 | SOLAREX
CORP | METHOD FOR MANUFACTURING
ELECTRICAL CONTACTS FOR A
THIN-FILM SEMICONDUCTOR
DEVICE | | EP0296702 | 1988 | 1988 | DOW CORNING
CORP | METHOD OF FORMING SEMICONDUCTING AMORPHOUS SILICON FILMS FROM THE THERMAL DECOMPOSITON OF FLUOROHYDRIDODISILANES. | | WO1988006718 | 1988 | 1988 | MIDWEST
RESEARCH
INSTITUTE | ATMOSPHERIC OPTICAL
CALIBRATION SYSTEM | | 4816082 | 1987 | 1989 | ENERGY
CONVERSION
DEVICES INC | THIN FILM SOLAR CELL INCLUDING
A SPATIALLY MODULATED
INTRINSIC LAYER | | 4845043 | 1987 | 1989 | AMOCO CORP | METHOD FOR FABRICATING PHOTOVOLTAIC DEVICE HAVING IMPROVED SHORT WAVELENGTH PHOTORESPONSE | | 4854974 | 1988 | 1989 | SOLAREX
CORP | ELECTRICAL CONTACTS FOR A THIN-FILM SEMICONDUCTOR DEVICE | | 4873201 | 1987 | 1989 | 3M CORP | METHOD FOR FABRICATING AN INTERCONNECTED ARRAY OF SEMICONDUCTOR DEVICES | | EP0301686 | 1988 | 1989 | ENERGY
CONVERSION
DEVICES INC | METHODS OF FABRICATING N-TYPE
AND-P-TYPE MICROCRYSTALLINE
SEMICONDUCTOR ALLOY
MATERIALS. | | EP0304145 | 1988 | 1989 | ENERGY
CONVERSION
DEVICES INC | THIN FILM SOLAR CELL INCLUDING
A SPATIALLY MODULATED
INTRINSIC LAYER. | | EP0320089 | 1988 | 1989 | 3M CORP | INTERCONNECTED SEMICONDUCTOR DEVICES. | | 4891330 | 1988 | 1990 | ENERGY
CONVERSION
DEVICES INC | METHOD OF FABRICATING N-TYPE
AND P-TYPE MICROCRYSTALLINE
SEMICONDUCTOR ALLOY
MATERIAL INCLUDING BAND GAP
WIDENING ELEMENTS | | 4909863 | 1988 | 1990 | UNIVERSITY
OF DELAWARE | PROCESS FOR LEVELLING FILM
SURFACES AND PRODUCTS
THEREOF | | 4940495 | 1988 | 1990 | 3M CORP | PHOTOVOLTAIC DEVICE HAVING
LIGHT TRANSMITTING
ELECTRICALLY CONDUCTIVE
STACKED FILMS | | 4950615 | 1989 | 1990 | INTERNATION AL SOLAR ELECTRIC TECHNOLOGY INC | METHOD AND MAKING GROUP IIB
METAL - TELLURIDE FILMS AND
SOLAR CELLS | | 4965655 | 1989 | 1990 | 3M CORP | INTERCONNECTED SEMICONDUCTOR DEVICES | | 4968355 | 1989 | 1990 | UNASSIGNED | TWO-AXIS TRACKING SOLAR | | | | | | 2011 7 2 2 2 1 1 2 2 1 1 1 2 2 1 | |--------------|------|------|--|--| | 4071622 | 1000 | 1000 | LIC DEDE OF | COLLECTOR MECHANISM | | 4971633 | 1989 | 1990 | US DEPT OF
ENERGY | PHOTOVOLTAIC CELL ASSEMBLY | | EP0372929 | 1989 | 1990 | 3M CORP | LIGHT TRANSMITTING
ELECTRICALLY CONDUCTIVE
STACKED FILM. | | EP0372930 | 1989 | 1990 | 3M CORP | ELECTROLYTIC ETCH FOR PREVENTING ELECTRICAL SHORTS IN SOLAR CELLS ON POLYMER SURFACES. | | WO1990011247 | 1990 | 1990 | HARVARD
COLLEGE | ZINC OXYFLUORIDE TRANSPARENT CONDUCTOR | | WO1990013147 | 1990 | 1990 | UNASSIGNED | TWO-AXIS TRACKING SOLAR
COLLECTOR MECHANISM | | WO1990015445 | 1990 | 1990 | INTERNATION AL SOLAR ELECTRIC TECHNOLOGY INC | IMPROVED GROUP I-III-VI2
SEMICONDUCTOR FILMS FOR
SOLAR CELL APPLICATION | | 4990286 | 1989 | 1991 | HARVARD
COLLEGE | ZINC OXYFLUORIDE TRANSPARENT CONDUCTOR | | 5022930 | 1989 | 1991 | PHOTON
ENERGY INC | THIN FILM PHOTOVOLTAIC PANEL AND METHOD | | 5028274 | 1989 | 1991 | INTERNATION AL SOLAR ELECTRIC TECHNOLOGY INC | GROUP I-III-VI.SUB.2
SEMICONDUCTOR FILMS FOR
SOLAR CELL APPLICATION | | 5055416 | 1988 | 1991 | 3M CORP | ELECTROLYTIC ETCH FOR PREVENTING ELECTRICAL SHORTS IN SOLAR CELLS ON POLYMER SURFACES | | EP0424981 | 1983 | 1991 | SRI
INTERNATION
AL | PARALLELEPIPED SHAPED
CRUCIBLE FOR SINGLE OR QUASI-
SINGLE CRYSTAL SILICON INGOTS. | | 5078804 | 1990 | 1992 | BOEING CO | I-III-VI.SUB.2 BASED SOLAR CELL
UTILIZING THE STRUCTURE
CUINGASE.SUB.2 CDZNS/ZNO | | 5085939 | 1990 | 1992 | 3M CORP | THIN FILM-COATED POLYMER WEBS | | 5110531 | 1982 | 1992 | SRI
INTERNATION
AL | PROCESS AND APPARATUS FOR
CASTING MULTIPLE SILICON
WAFER ARTICLES | | 5112410 | 1990 | 1992 | BOEING CO | CADMIUM ZINC SULFIDE BY SOLUTION GROWTH | | 5141564 | 1991 | 1992 | BOEING CO | MIXED TERNARY HETEROJUNCTION SOLAR CELL | | 5153780 | 1991 | 1992 | US DEPT OF
ENERGY | METHOD AND APPARATUS FOR
UNIFORMLY CONCENTRATING
SOLAR FLUX FOR PHOTOVOLTAIC
APPLICATIONS | | 5167724 | 1991 | 1992 | US DEPT OF
ENERGY | PLANAR PHOTOVOLTAIC SOLAR
CONCENTRATOR MODULE | | EP0463079 | 1990 | 1992 | HARVARD
COLLEGE | ZINC OXYFLUORIDE TRANSPARENT CONDUCTOR. | | 5221854 | 1991 | 1993 | UNITED SOLAR | PROTECTIVE LAYER FOR THE BACK | | | | | SYSTEMS CORP | REFLECTOR OF A PHOTOVOLTAIC DEVICE | |--------------|------|------|---|---| | 5228926 | 1991 | 1993 | UNITED SOLAR
SYSTEMS CORP | PHOTOVOLTAIC DEVICE WITH
INCREASED LIGHT ABSORPTION
AND METHOD FOR ITS
MANUFACTURE | | 5230746 | 1992 | 1993 | AMOCO CORP | PHOTOVOLTAIC DEVICE HAVING
ENHANCED REAR REFLECTING
CONTACT | | 5246506 | 1991 | 1993 | SOLAREX
CORP | MULTIJUNCTION PHOTOVOLTAIC
DEVICE AND FABRICATION
METHOD | | 5248349 | 1992 | 1993 | SOLAR CELLS
INC | PROCESS FOR MAKING PHOTOVOLTAIC DEVICES AND RESULTANT PRODUCT | | 5256887 | 1991 | 1993 | SOLAREX
CORP | PHOTOVOLTAIC DEVICE INCLUDING
A BORON DOPING PROFILE IN AN I-
TYPE LAYER | | EP0523919 | 1992 | 1993 | AMOCO CORP | MULTIJUNCTION PHOTOVOLTAIC DEVICE AND FABRICATION METHOD. | | WO1993008605 | 1992 | 1993 | UNITED SOLAR
SYSTEMS CORP | PHOTOVOLTAIC DEVICE WITH
INCREASED LIGHT ABSORPTION
AND METHOD FOR ITS
MANUFACTURE | | WO1993010562 | 1992 | 1993 | UNITED SOLAR
SYSTEMS CORP | PROTECTIVE LAYER FOR THE BACK
REFLECTOR OF A PHOTOVOLTAIC
DEVICE | | WO1993014523 | 1993 | 1993 | PHOTON
ENERGY INC | PHOTOVOLTAIC CELL WITH THIN CDS LAYER | | WO1993023881 | 1993 | 1993 | SOLAR CELLS
INC | PROCESS AND APPARATUS FOR
MAKING PHOTOVOLTAIC DEVICES
AND RESULTANT PRODUCT | | 5279678 | 1992 | 1994 | PHOTON
ENERGY INC | PHOTOVOLTAIC CELL WITH THIN CS
LAYER | | 5306646 | 1992 | 1994 | MARTIN
MARIETTA
ENERGY
SYSTEMS INC | METHOD FOR PRODUCING
TEXTURED SUBSTRATES FOR THIN-
FILM PHOTOVOLTAIC CELLS | | 5358755 | 1993 | 1994 | AMOCO CORP | AMORPHOUS HYDROGENATED SILICON-CARBON ALLOYS AND SOLAR CELLS AND OTHER SEMICONDUCTOR DEVICES PRODUCED THEREFROM | | 5360491 | 1993 | 1994 | US DEPT OF
ENERGY | BETASILICON CARBIDE PROTECTIVE COATING AND METHOD FOR FABRICATING SAME | | 5372646 | 1993 | 1994 | SOLAR CELLS
INC | APPARATUS FOR MAKING
PHOTOVOLTAIC DEVICES | | EP0608282 | 1992 | 1994 | UNITED SOLAR
SYSTEMS CORP | PHOTOVOLTAIC DEVICE WITH INCREASED LIGHT ABSORPTION AND METHOD FOR ITS MANUFACTURE. | | EP0613584 | 1992 | 1994 | UNITED SOLAR
SYSTEMS CORP | PROTECTIVE LAYER FOR THE BACK
REFLECTOR OF A PHOTOVOLTAIC
DEVICE. | | EP0623246 | 1993 | 1994 | PHOTON
ENERGY INC | PHOTOVOLTAIC CELL WITH THIN CDS LAYER. | |------------------|-------|-------|----------------------|--| | WO1994027327 | 1994 | 1994 | PHOTON | SERIES INTERCONNECTED | | W 01774021321 | 1//7 | 1774 | ENERGY INC | PHOTOVOLTAIC CELLS AND | | | | | LIVEROT IIVE | METHOD FOR MAKING SAME | | 5385614 | 1993 | 1995 | PHOTON | SERIES INTERCONNECTED | | 3303011 | 1775 | 1775 | ENERGY INC | PHOTOVOLTAIC CELLS AND | | | | | ENERGY INC | METHOD FOR MAKING SAME | | 5393675 | 1993 | 1995 | UNIVERSITY | PROCESS FOR RF SPUTTERING OF | | 20,00,0 | 1,,,, | 1,,,, | OF TOLEDO | CADMIUM TELLURIDE | | | | | 01 10222 0 | PHOTOVOLTAIC CELL | | 5403404 | 1993 | 1995 | AMOCO CORP | MULTIJUNCTION PHOTOVOLTAIC | | | | | | DEVICE AND METHOD OF | | | | | | MANUFACTURE | | 5425860 | 1993 | 1995 | UNIVERSITY | PULSED ENERGY SYNTHESIS AND | | | | | OF | DOPING OF SILICON CARBIDE | | | | | CALIFORNIA | | | 5456763 | 1994 | 1995 | UNIVERSITY | SOLAR CELLS UTILIZING PULSED- | | | | | OF | ENERGY CRYSTALLIZED | | | | | CALIFORNIA | MICROCRYSTALLINE/POLYCRYSTA | | | | | | LLINE SILICON | | 5460660 | 1993 | 1995 | PHOTON | APPARATUS FOR ENCAPSULATING | | | | | ENERGY INC | A PHOTOVOLTAIC MODULE | | 5466301 | 1994 | 1995 | TEXAS | SOLAR CELL HAVING AN OUTPUT- | | | | | INSTRUMENTS | INCREASING, PROTECTIVE COVER | | | | | INC | , | | 5466302 | 1994 | 1995 | UNIVERSITY | SOLAR CELL ARRAY | | | | | OF | INTERCONNECTS | | | | | CALIFORNIA | | | 5468304 | 1994 | 1995 | TEXAS | OUTPUT-INCREASING, PROTECTIVE | | | | | INSTRUMENTS | COVER FOR A SOLAR CELL | | | | | INC | | | 5468652 | 1994 | 1995 | SANDIA CORP | METHOD OF MAKING A BACK | | | | | | CONTACTED SOLAR CELL | | 5470397 | 1994 | 1995 | SOLAR CELLS | PROCESS FOR MAKING | | | | | INC | PHOTOVOLTAIC DEVICES AND | | | | | | RESULTANT PRODUCT | | 5474621 | 1994 | 1995 | ENERGY | CURRENT COLLECTION SYSTEM | | | | | CONVERSION | FOR PHOTOVOLTAIC CELLS | | | | | DEVICES INC | | | 5477088 | 1993 | 1995 | UNIVERSITY | MULTI-PHASE BACK CONTACTS FOR | | | | | OF ILLINOIS | CIS SOLAR CELLS | | EP0640247 | 1993 | 1995 | SOLAR CELLS | PROCESS AND APPARATUS FOR | | | | | INC | MAKING PHOTOVOLTAIC DEVICES | | | | | | AND RESULTANT PRODUCT. | | WO1995003631 | 1994 | 1995 | PHOTON | APPARATUS FOR ENCAPSULATING | | | | | ENERGY INC | A PHOTOVOLTAIC MODULE | | WO1995026571 | 1995 | 1995 | AMOCO ENRON | STABILIZED AMORPHOUS SILICON | | | | | SOLAR | AND DEVICES CONTAINING SAME | | 5498297 | 1994 | 1996 | ENTECH INC | PHOTOVOLTAIC RECEIVER | | 5501744 | 1994 | 1996 | PHOTON | PHOTOVOLTAIC CELL HAVING A P- | | | | | ENERGY INC | TYPE POLYCRYSTALLINE LAYER | | | | | | WITH LARGE CRYSTALS | | 5503684 | 1994 | 1996 | SILICON | TERMINATION SYSTEM FOR SOLAR | | ##0 2 000 | 100 | 1000 | ENERGY CORP | PANELS | | 5503898 | 1994 | 1996 | MARTIN | METHOD FOR PRODUCING | | | | | MARIETTA
ENERGY
SYSTEMS INC | TEXTURED SUBSTRATES FOR THIN-
FILM PHOTOVOLTAIC CELLS | |--------------
------|------|-------------------------------------|--| | 5510271 | 1994 | 1996 | GEORGIA TECH
RESEARCH
CORP | PROCESSES FOR PRODUCING LOW
COST, HIGH EFFICIENCY SILICON
SOLAR CELLS | | 5536333 | 1995 | 1996 | SOLAR CELLS
INC | PROCESS FOR MAKING
PHOTOVOLTAIC DEVICES AND
RESULTANT PRODUCT | | 5538564 | 1994 | 1996 | UNIVERSITY
OF
CALIFORNIA | THREE DIMENSIONAL AMORPHOUS
SILICON/MICROCRYSTALLINE
SILICON SOLAR CELLS | | 5551977 | 1994 | 1996 | ASE AMERICAS
INC | SUSCEPTOR FOR EFG CRYSTAL
GROWTH APPARATUS | | 5556791 | 1995 | 1996 | TEXAS
INSTRUMENTS
INC | METHOD OF MAKING OPTICALLY
FUSED SEMICONDUCTOR POWDER
FOR SOLAR CELLS | | 5558712 | 1994 | 1996 | ASE AMERICAS
INC | CONTOURED INNER AFTER-HEATER
SHIELD FOR REDUCING STRESS IN
GROWING CRYSTALLINE BODIES | | 5578502 | 1995 | 1996 | PHOTON
ENERGY INC | PHOTOVOLTAIC CELL
MANUFACTURING PROCESS | | WO1996008043 | 1995 | 1996 | GEORGIA TECH
RESEARCH
CORP | PROCESSES FOR PRODUCING LOW
COST, HIGH EFFICIENCY SILICON
SOLAR CELLS | | WO1996009650 | 1995 | 1996 | ENERGY
CONVERSION
DEVICES INC | CURRENT COLLECTION SYSTEM FOR PHOTOVOLTAIC CELLS | | WO1996021054 | 1996 | 1996 | ONTARIO
HYDRO | OPTICALLY FUSED SEMICONDUCTOR POWDER FOR SOLAR CELLS | | 5604162 | 1996 | 1997 | UNIVERSITY
OF CHICAGO | PROCESS OF PREPARING TRITIATED POROUS SILICON | | 5605171 | 1995 | 1997 | UNIVERSITY
OF CHICAGO | POROUS SILICON WITH EMBEDDED
TRITIUM AS A STAND-ALONE PRIME
POWER SOURCE FOR
OPTOELECTRONIC APPLICATIONS | | 5614020 | 1996 | 1997 | TEXAS
INSTRUMENTS
INC | APPARATUS FOR MAKING OPTICALLY FUSED SEMICONDUCTOR POWDER FOR SOLAR CELLS | | 5626687 | 1995 | 1997 | US DEPT OF
ENERGY | THERMOPHOTOVOLTAIC IN-SITU
MIRROR CELL | | 5646050 | 1996 | 1997 | AMOCO ENRON
SOLAR | INCREASING STABILIZED PERFORMANCE OF AMORPHOUS SILICON BASED DEVICES PRODUCED BY HIGHLY HYDROGEN DILUTED LOWER TEMPERATURE PLASMA DEPOSITION | | 5674325 | 1995 | 1997 | PHOTON
ENERGY INC | THIN FILM PHOTOVOLTAIC DEVICE AND PROCESS OF MANUFACTURE | | 5674555 | 1995 | 1997 | UNIVERSITY
OF DELAWARE | PROCESS FOR PREPARING GROUP
IB-IIIA-VIA SEMICONDUCTING
FILMS | | 5679963 | 1995 | 1997 | SANDIA CORP | SEMICONDUCTOR TUNNEL JUNCTION WITH ENHANCEMENT | | E (0 0 2 2 E | 1005 | 1007 | TOTAL A C | LAYER | |---------------|------|------|---|---| | 5688337 | 1995 | 1997 | TEXAS
INSTRUMENTS
INC | TEMPERATURE COMPENSATED PHOTOVOLTAIC ARRAY | | 5700332 | 1996 | 1997 | US DEPT OF
ENERGY | SEGREGATED TANDEM FILTER FOR
ENHANCED CONVERSION
EFFICIENCY IN A
THERMOPHOTOVOLTAIC ENERGY
CONVERSION SYSTEM | | WO1997022152 | 1996 | 1997 | DAVIS JOSEPH
& NEGLEY | PREPARATION OF CUXINYGAZSEN (X=0-2, Y=0-2, Z=0-2, N=0-3) PRECURSOR FILMS BY ELECTRODEPOSITION FOR FABRICATING HIGH EFFICIENCY SOLAR CELLS | | WO1997050130 | 1997 | 1997 | EVERGREEN
SOLAR INC | SOLAR CELL MODULES WITH
IMPROVED BACKSKIN AND
METHODS FOR FORMING SAME | | WO1997050131 | 1997 | 1997 | EVERGREEN
SOLAR INC | SOLAR MODULES WITH INTEGRAL
MOUNTING STRUCTURE AND
METHODS FOR FORMING SAME | | 5714404 | 1993 | 1998 | UNIVERSITY
OF
CALIFORNIA | FABRICATION OF
POLYCRYSTALLINE THIN FILMS BY
PULSED LASER PROCESSING | | 5720827 | 1996 | 1998 | UNIVERSITY
OF FLORIDA | DESIGN FOR THE FABRICATION OF HIGH EFFICIENCY SOLAR CELLS | | 5730808 | 1996 | 1998 | AMOCO ENRON
SOLAR | PRODUCING SOLAR CELLS BY SURFACE PREPARATION FOR ACCELERATED NUCLEATION OF MICROCRYSTALLINE SILICON ON HETEROGENEOUS SUBSTRATES | | 5730852 | 1995 | 1998 | DAVIS JOSEPH
& NEGLEY | PREPARATION OF CUXINYGAZSEN (X=0-2, Y=0-2, Z=0-2, N=0-3) PRECURSOR FILMS BY ELECTRODEPOSITION FOR FABRICATING HIGH EFFICIENCY SOLAR CELLS | | 5741370 | 1996 | 1998 | EVERGREEN
SOLAR INC | SOLAR CELL MODULES WITH
IMPROVED BACKSKIN AND
METHODS FOR FORMING SAME | | 5762720 | 1996 | 1998 | EVERGREEN
SOLAR INC | SOLAR CELL MODULES WITH
INTEGRAL MOUNTING STRUCTURE
AND METHODS FOR FORMING SAME | | 5763320 | 1995 | 1998 | MATRIX
SOLAR
TECHNOLOGIE
S INC | BORON DOPING A SEMICONDUCTOR PARTICLE | | 5765680 | 1996 | 1998 | UNIVERSITY
OF CHICAGO | POROUS SILICON WITH EMBEDDED
TRITIUM AS A STAND-ALONE PRIME
POWER SOURCE FOR
OPTOELECTRONIC APPLICATIONS | | 5766964 | 1995 | 1998 | GEORGIA TECH
RESEARCH
CORP | PROCESSES FOR PRODUCING LOW
COST, HIGH EFFICIENCY SILICON
SOLAR CELLS | | 5804054 | 1997 | 1998 | DAVIS JOSEPH
& NEGLEY | PREPARATION OF COPPER INDIUM GALLIUM DISELENIDE FILMS FOR | |] | EP0830465 | 1996 | 1998 | ONTARIO
HYDRO | SOLAR CELLS OPTICALLY FUSED SEMICONDUCTOR POWDER FOR SOLAR CELLS | |---|-------------|------|------|--|--| |] | EP0881695 | 1998 | 1998 | INTERNATION AL SOLAR ELECTRIC TECHNOLOGY INC | A METHOD OF MAKING GROUP IB-
IIIA-VIA COMPUND
SEMICONDUCTOR FILMS AND
METHOD OF FABRICATING A
PHOTOVOLTAIC DEVICE | | W | D1998004006 | 1997 | 1998 | UNIVERSITY
OF FLORIDA | HIGH EFFICIENCY SOLAR CELLS
AND THEIR FABRICATION | | W | O1998026459 | 1997 | 1998 | ENERGY
CONVERSION
DEVICES INC | SEMICONDUCTOR HAVING LARGE
VOLUME FRACTION OF
INTERMEDIATE RANGE ORDER
MATERIAL | | | 5868869 | 1997 | 1999 | PHOTON
ENERGY INC | THIN FILM PHOTOVOLTAIC DEVICE
AND PROCESS OF MANUFACTURE | | | 5871630 | 1997 | 1999 | DAVIS JOSEPH
& NEGLEY | PREPARATION OF COPPER-INDIUM-GALLIUM-DISELENIDE PRECURSOR FILMS BY ELECTRODEPOSITION FOR FABRICATING HIGH EFFICIENCY SOLAR CELLS | | | 5926727 | 1995 | 1999 | MATRIX
SOLAR
TECHNOLOGIE
S INC | PHOSPHOROUS DOPING A SEMICONDUCTOR PARTICLE | | | 5942049 | 1997 | 1999 | AMOCO ENRON
SOLAR | INCREASING STABILIZED PERFORMANCE OF AMORPHOUS SILICON BASED DEVICES PRODUCED BY HIGHLY HYDROGEN DILUTED LOWER TEMPERATURE PLASMA DEPOSITION | | | 5944913 | 1997 | 1999 | SANDIA CORP | HIGH-EFFICIENCY SOLAR CELL AND METHOD FOR FABRICATION | | | 5972784 | 1997 | 1999 | GEORGIA TECH
RESEARCH
CORP | ARRANGEMENT, DOPANT SOURCE,
AND METHOD FOR MAKING SOLAR
CELLS | | | 5977476 | 1996 | 1999 | UNITED SOLAR
SYSTEMS CORP | HIGH EFFICIENCY PHOTOVOLTAIC DEVICE | | | 5985691 | 1997 | 1999 | INTERNATION AL SOLAR ELECTRIC TECHNOLOGY INC | METHOD OF MAKING COMPOUND
SEMICONDUCTOR FILMS AND
MAKING RELATED ELECTRONIC
DEVICES | | | 5986203 | 1997 | 1999 | EVERGREEN
SOLAR INC | SOLAR CELL ROOF TILE AND
METHOD OF FORMING SAME | | | 5994641 | 1998 | 1999 | ASE AMERICAS
INC | SOLAR MODULE HAVING
REFLECTOR BETWEEN CELLS | |] | EP0909463 | 1997 | 1999 | EVERGREEN
SOLAR INC | SOLAR MODULES WITH INTEGRAL
MOUNTING STRUCTURE AND
METHODS FOR FORMING SAME | | | EP0953214 | 1997 | 1999 | ENERGY
CONVERSION
DEVICES INC | SEMICONDUCTOR HAVING LARGE
VOLUME FRACTION OF
INTERMEDIATE RANGE ORDER
MATERIAL | |] | EP0956600 | 1996 | 1999 | DAVIS JOSEPH | PREPARATION OF CU X-IN Y-GA Z- | | | | | & NEGLEY | SE N- (X=0-2, Y=0-2, Z=0-2, N=0-3)
PRECURSOR FILMS BY
ELECTRODEPOSITION FOR
FABRICATING HIGH EFFICIENCY
SOLAR CELLS | |--------------|------|------|--|---| | EP0957523 | 1998 | 1999 | MATRIX
SOLAR
TECHNOLOGIE
S INC | BORON DOPING A SEMICONDUCTOR PARTICLE | | EP0958616 | 1997 | 1999 | EVERGREEN
SOLAR INC | SOLAR CELL MODULES WITH
IMPROVED BACKSKIN AND
METHOD FOR FORMING SAME | | WO1999017889 | 1998 | 1999 | NANOSOLAR
INC | METHOD FOR FORMING SOLAR
CELL MATERIALS FROM
PARTICULATES | | WO1999023706 | 1998 | 1999 | EVERGREEN
SOLAR INC | SOLAR CELL ROOF TILE AND
METHOD OF FORMING SAME | | WO1999027587 | 1998 | 1999 | SANDIA CORP | HIGH-EFFICIENCY SOLAR CELL AND METHOD FOR FABRICATION | | WO1999027588 | 1998 | 1999 | MIDWEST
RESEARCH
INSTITUTE | COMPOSITION AND METHOD FOR
ENCAPSULATING PHOTOVOLTAIC
DEVICES | | WO1999056317 | 1999 | 1999 | ASE AMERICAS
INC | SOLAR MODULE HAVING
REFLECTOR BETWEEN CELLS | | WO1999059734 | 1999 | 1999 | UNIVERSITY
OF
CALIFORNIA | GENERATION OF LOW WORK
FUNCTION, STABLE COMPOUND
THIN FILMS BY LASER ABLATION | | 6020554 | 1999 | 2000 | PHOTOVOLTAI
CS
INTERNATION
AL LLC | TRACKING SOLAR ENERGY
CONVERSION UNIT ADAPTED FOR
FIELD ASSEMBLY | | 6072116 | 1998 | 2000 | AUBURN
UNIVERSITY | THERMOPHOTOVOLTAIC CONVERSION USING SELECTIVE INFRARED LINE EMITTERS AND LARGE BAND GAP PHOTOVOLTAIC DEVICES | | 6077722 | 1998 | 2000 | BP CORP
NORTH
AMERICA INC | PRODUCING THIN FILM PHOTOVOLTAIC MODULES WITH HIGH INTEGRITY INTERCONNECTS AND DUAL LAYER CONTACTS | | 6087580 | 1996 | 2000 | ENERGY
CONVERSION
DEVICES INC | SEMICONDUCTOR HAVING LARGE
VOLUME FRACTION OF
INTERMEDIATE RANGE ORDER
MATERIAL | | 6093757 | 1997 | 2000 | MIDWEST
RESEARCH
INSTITUTE | COMPOSITION AND METHOD FOR ENCAPSULATING PHOTOVOLTAIC DEVICES | | 6114287 | 1998 | 2000 | UT-BATTELLE
LLC | METHOD OF DEFORMING A BIAXIALLY TEXTURED BUFFER LAYER ON A TEXTURED METALLIC SUBSTRATE AND ARTICLES THEREFROM | | 6118572 | 1999 | 2000 | UNIVERSITY
OF
CALIFORNIA | PHOTOCHROMIC,
ELECTROCHROMIC,
PHOTOELECTROCHROMIC AND
PHOTOVOLTAIC DEVICES | | 6127202 | 1998 | 2000 | INTERNATION AL SOLAR ELECTRIC TECHNOLOGY INC | OXIDE-BASED METHOD OF MAKING
COMPOUND SEMICONDUCTOR
FILMS AND MAKING RELATED
ELECTRONIC DEVICES | |--------------|------|------
--|--| | 6134784 | 1999 | 2000 | PHOTOVOLTAI
CS
INTERNATION
AL LLC | METHOD OF MAKING SOLAR
COLLECTORS BY IN-SITU
ENCAPSULATION OF SOLAR CELLS | | 6162707 | 1998 | 2000 | UNIVERSITY
OF
CALIFORNIA | LOW WORK FUNCTION, STABLE THIN FILMS | | EP0978882 | 1999 | 2000 | INTERNATION AL SOLAR ELECTRIC TECHNOLOGY INC | AN OXIDE-BASED METHOD OF
MAKING COMPOUND
SEMICONDUCTOR FILMS AND
MAKING RELATED ELECTRONIC
DEVICES | | EP1029367 | 1998 | 2000 | EVERGREEN
SOLAR INC | SOLAR CELL ROOF TILE AND
METHOD OF FORMING SAME | | EP1038322 | 1998 | 2000 | SANDIA CORP | HIGH-EFFICIENCY SOLAR CELL AND METHOD FOR FABRICATION | | WO2000038216 | 1999 | 2000 | UNIVERSITY
OF
CALIFORNIA | HIGH VOLTAGE PHOTOVOLTAIC POWER CONVERTER | | WO2000052745 | 2000 | 2000 | ASE AMERICAS
INC | ETCHING OF SEMICONDUCTOR
WAFER EDGES | | WO2000057486 | 2000 | 2000 | PHOTOVOLTAI
CS
INTERNATION
AL LLC | TRACKING SOLAR ENERGY
CONVERSION UNIT ADAPTED FOR
FIELD ASSEMBLY | | 6235615 | 2000 | 2001 | UNIVERSITY
OF
CALIFORNIA | GENERATION OF LOW WORK
FUNCTION, STABLE COMPOUND
THIN FILMS BY LASER ABLATION | | 6251701 | 2000 | 2001 | US DEPT OF
ENERGY | ALL-VAPOR PROCESSING OF P-TYPE
TELLURIUM-CONTAINING II-VI
SEMICONDUCTOR AND OHMIC
CONTACTS THEREOF | | 6252287 | 1999 | 2001 | SANDIA CORP | INGAASN/GAAS HETEROJUNCTION FOR MULTI-JUNCTION SOLAR CELLS | | 6258620 | 1998 | 2001 | UNIVERSITY
OF SOUTH
FLORIDA | METHOD OF MANUFACTURING CIGS PHOTOVOLTAIC DEVICES | | 6265653 | 1999 | 2001 | UNIVERSITY
OF
CALIFORNIA | HIGH VOLTAGE PHOTOVOLTAIC
POWER CONVERTER | | 6268014 | 1997 | 2001 | NANOSOLAR
INC | METHOD FOR FORMING SOLAR
CELL MATERIALS FROM
PARTICULARS | | 6288325 | 2000 | 2001 | BP CORP
NORTH
AMERICA INC | PRODUCING THIN FILM PHOTOVOLTAIC MODULES WITH HIGH INTEGRITY INTERCONNECTS AND DUAL LAYER CONTACTS | | 6300593 | 1999 | 2001 | FIRST SOLAR
INC | APPARATUS AND METHOD FOR
LASER SCRIBING A COATED
SUBSTRATE | | EP1080498 | 1999 | 2001 | ASE AMERICAS | SOLAR MODULE HAVING | | WW 11 (0000 | •004 | | INC | REFLECTOR BETWEEN CELLS | |---|------|--------------|----------------------|---| | EP1160880 | 2001 | 2001 | ABOUND | PROCESS FOR THE MASS | | | | | SOLAR INC | PRODUCTION OF PHOTOVOLTAIC | | WO2001041967 | 2000 | 2001 | FIRST SOLAR | MODULES APPARATUS AND METHOD FOR | | W O 2001041907 | 2000 | 2001 | INC | LASER SCRIBING A COATED | | | | | INC | SUBSTRATE | | WO2001078154 | 2001 | 2001 | DAVIS JOSEPH | PREPARATION OF CIGS-BASED | | *************************************** | 2001 | 2001 | & NEGLEY | SOLAR CELLS USING A BUFFERED | | | | | | ELECTRODEPOSITION BATH | | 6340403 | 1995 | 2002 | UNIVERSITY | SOLAR CELL MODULE LAMINATION | | | | | OF | PROCESS | | | | | CALIFORNIA | | | 6359211 | 2000 | 2002 | CHEMMOTIF | SPECTRAL SENSITIZATION OF | | | | | INC | NANOCRYSTALLINE SOLAR CELLS | | 6402881 | 1995 | 2002 | UNIVERSITY | PROCESS FOR ELECTRICALLY | | | | | OF | INTERCONNECTING ELECTRODES | | 6.40.77.20 | 2000 | 2002 | CALIFORNIA | GOV A D. GEVA G DAGGODDOD A FIDAG | | 6407330 | 2000 | 2002 | NORTH | SOLAR CELLS INCORPORATING | | | | | CAROLINA
STATE | LIGHT HARVESTING ARRAYS | | | | | UNIVERSITY, | | | | | | JOHNS | | | | | | HOPKINS | | | | | | UNIVERSITY | | | 6420648 | 2000 | 2002 | NORTH | LIGHT HARVESTING ARRAYS | | | | | CAROLINA | | | | | | STATE | | | | | | UNIVERSITY | | | 6423565 | 2000 | 2002 | ABOUND | APPARATUS AND PROCESSES FOR | | | | | SOLAR INC | THE MASSPRODUCTION OF | | 6426200 | 2000 | 2002 | I INTERCEDATE | PHOTOVOTAIC MODULES | | 6426399 | 2000 | 2002 | UNIVERSITY | METHODS FOR THE SYNTHESIS AND | | | | | OF TEXAS | POLYMERIZATION OF
.ALPHA.,.ALPHA.'-DIHALO-P- | | | | | | XYLENES | | EP1173884 | 2000 | 2002 | ASE AMERICAS | ETCHING OF SEMICONDUCTOR | | EI 1173001 | 2000 | 2002 | INC | WAFER EDGES | | WO2002005352 | 2001 | 2002 | BP CORP | PARTIALLY TRANSPARENT | | | | - | NORTH | PHOTOVOLTAIC MODULES | | | | | AMERICA INC | | | WO2002009196 | 2001 | 2002 | NORTH | LIGHT HARVESTING ARRAYS | | | | | CAROLINA | | | | | | STATE | | | W.O.O.O.O.O.O.O.O. | 2001 | 2002 | UNIVERSITY | GOLAR CELL CRICOPROPATRIC | | WO2002009197 | 2001 | 2002 | NORTH | SOLAR CELLS INCORPORATING | | | | | CAROLINA | LIGHT HARVESTING ARRAYS | | | | | STATE
UNIVERSITY, | | | | | | JOHNS | | | | | | HOPKINS | | | | | | UNIVERSITY | | | WO2002080280 | 2002 | 2002 | UNIVERSITY | METHODS OF FABRICATING | | | | | OF | NANSTRUCTURES AND NANOWIRES | | | | | CALIFORNIA | AND DEVICES FABRICATED | | | | | | THEREFROM | | WO2002084725 | 2002 | 2002 | CALIFORNIA
INSTITUTE OF
TECHNOLOGY | A METHOD OF USING A GERMANIUM LAYER TRANSFER TO SI FOR PHOTOVOLTAIC APPLICATIONS AND HETEROSTRUCTURE MADE THEREBY | |--------------|------|------|---|--| | 6559374 | 2001 | 2003 | NORTH
CAROLINA
STATE
UNIVERSITY | TRANS BETA SUBSTITUTED CHLORINS AND METHODS OF MAKING AND USING THE SAME | | 6596935 | 2002 | 2003 | NORTH
CAROLINA
STATE
UNIVERSITY | SOLAR CELLS INCORPORATING
LIGHT HARVESTING ARRAYS | | 6603070 | 2001 | 2003 | NORTH
CAROLINA
STATE
UNIVERSITY | CONVERGENT SYNTHESIS OF
MULTIPORPHYRIN LIGHT-
HARVESTING RODS | | 6660643 | 1999 | 2003 | RWE SCHOTT
SOLAR INC | ETCHING OF SEMICONDUCTOR
WAFER EDGES | | EP1303884 | 2001 | 2003 | NORTH
CAROLINA
STATE
UNIVERSITY | SOLAR CELLS INCORPORATING
LIGHT HARVESTING ARRAYS | | EP1319255 | 2001 | 2003 | NORTH
CAROLINA
STATE
UNIVERSITY | LIGHT HARVESTING ARRAYS | | EP1320892 | 2001 | 2003 | BP CORP
NORTH
AMERICA INC | PARTIALLY TRANSPARENT
PHOTOVOLTAIC MODULES | | WO2003019621 | 2002 | 2003 | NORTH
CAROLINA
STATE
UNIVERSITY | CONVERGENT SYNTHESIS OF
MULTIPORPHYRIN LIGHT-
HARVESTING RODS | | WO2003038508 | 2002 | 2003 | COLORADO
STATE UNIV,
UNIVERSITY
OF FERRARA | METAL COMPLEX-BASED
ELECTRON-TRANSFER MEDIATORS
IN DYE-SENSITIZED SOLAR CELLS | | WO2003044840 | 2001 | 2003 | MIDWEST
RESEARCH
INSTITUTE | REACTIVE CODOPING OF GAALINP
COMPOUND SEMICONDUCTORS | | WO2003050082 | 2002 | 2003 | NORTH
CAROLINA
STATE
UNIVERSITY | REGIOISOMERICALLY PURE
OXOCHLORINS AND METHODS OF
SYNTHESIS | | WO2003105237 | 2003 | 2003 | NORTH
CAROLINA
STATE
UNIVERSITY | SYNTHESIS OF PERYLENE-
PORPHYRIN BUILDING BLOCKS AND
POLYMERS THEREOF FOR THE
PRODUCTION OF LIGHT-
HARVESTING ARRAYS | | 6765092 | 2001 | 2004 | NORTH
CAROLINA
STATE
UNIVERSITY | REGIOISOMERICALLY PURE
OXOCHLORINS AND METHODS OF
SYNTHESIS | | 6821559 | 2001 | 2004 | NANOSOLAR | METHOD OF FORMING | | | | | INC | PARTICULATE MATERIALS FOR
THIN-FILM SOLAR CELLS | |--------------|------|------|---|--| | EP1374309 | 2002 | 2004 | UNIVERSITY
OF
CALIFORNIA | METHODS OF FABRICATING NANOSTRUCTURES AND NANOWIRES AND DEVICES FABRICATED THEREFROM | | EP1386349 | 2002 | 2004 | CALIFORNIA
INSTITUTE OF
TECHNOLOGY | A METHOD OF USING A GERMANIUM LAYER TRANSFER TO SI FOR PHOTOVOLTAIC APPLICATIONS AND HETEROSTRUCTURE MADE THEREBY | | WO2004007634 | 2003 | 2004 | MASSACHUSET
TS INSTITUTE
OF
TECHNOLOGY | EMISSIVE, HIGH CHARGE
TRANSPORT POLYMERS | | WO2004027957 | 2003 | 2004 | WISCONSIN
ALUMNI RES
FOUND | CONTROL OF SMALL DISTRIBUTED ENERGY RESOURCES | | WO2004109768 | 2004 | 2004 | NORTH
CAROLINA
STATE
UNIVERSITY | METHODS AND INTERMEDIATES
FOR THE SYNTHESIS OF DIPYRRIN-
SUBSTITUTED PORPHYRINIC
MACROCYCLES | | 6858461 | 2002 | 2005 | BP CORP
NORTH
AMERICA INC | PARTIALLY TRANSPARENT
PHOTOVOLTAIC MODULES | | 6858462 | 2001 | 2005 | GRATINGS INC,
SANDIA CORP | ENHANCED LIGHT ABSORPTION OF
SOLAR CELLS AND
PHOTODETECTORS BY
DIFFRACTION | | 6882051 | 2002 | 2005 | UNIVERSITY
OF
CALIFORNIA | NANOWIRES, NANOSTRUCTURES
AND DEVICES FABRICATED
THEREFROM | | 6911593 | 2002 | 2005 | UNIVERSITY
OF ARKANSAS | TRANSPARENT SELF-CLEANING
DUST SHIELD | | 6916982 | 2002 | 2005 | NORTH
CAROLINA
STATE
UNIVERSITY | SYNTHESIS OF PERYLENE-
PORPHYRIN BUILDING BLOCKS AND
POLYMERS THEREOF FOR THE
PRODUCTION OF LIGHT-
HARVESTING ARRAYS | | EP1540791 | 2003 | 2005 | WISCONSIN
ALUMNI RES
FOUND | CONTROL OF SMALL DISTRIBUTED ENERGY RESOURCES | | WO2005002745 | 2004 | 2005 | PRINCETON
UNIVERISTY | IMPROVED SOLAR CELLS | | WO2005017957 | 2004 | 2005 | UNIVERSITY
OF
CALIFORNIA | NANOWIRE ARRAY AND NANOWIRE
SOLAR CELLS AND METHODS FOR
FORMING THE SAME | | WO2005062440 | 2004 | 2005 | GENERAL
ELECTRIC CO | PHOTOVOLTAIC POWER
CONVERTER CONFIGURED FOR
COMPENSATING LOAD HARMONICS | | WO2005079198 | 2004 | 2005 | CALIFORNIA
INSTITUTE OF
TECHNOLOGY | WAFER BONDED VIRTUAL
SUBSTRATE AND METHOD FOR
FORMING THE SAME | | WO2005101523 | 2005 | 2005 | PRINCETON
UNIVERISTY | HIGH EFFICIENCY ORGANIC
PHOTOVOLTAIC CELLS EMPLOYING | | | | | | HYBRIDIZED MIXED-PLANAR
HETEROJUNCTIONS | |--------------|------|------|---|---| | WO2005104236 | 2005 | 2005 | BOSTON
UNIVERSITY | OPTICAL DEVICES FEATURING
TEXTURED SEMICONDUCTOR
LAYERS | | 6996147 | 2002 | 2006 | UNIVERSITY
OF
CALIFORNIA | METHODS OF FABRICATING NANOSTRUCTURES AND NANOWIRES AND DEVICES FABRICATED THEREFROM
| | 7019138 | 2002 | 2006 | COLORADO
STATE UNIV,
UNIVERSITY
OF FERRARA | METAL COMPLEX-BASED
ELECTRON-TRANSFER MEDIATORS
IN DYE-SENSITIZED SOLAR CELLS | | 7019339 | 2002 | 2006 | CALIFORNIA
INSTITUTE OF
TECHNOLOGY | METHOD OF USING A GERMANIUM
LAYER TRANSFER TO SI FOR
PHOTOVOLTAIC APPLICATIONS
AND HETEROSTRUCTURE MADE
THEREBY | | 7041910 | 2003 | 2006 | MASSACHUSET
TS INSTITUTE
OF
TECHNOLOGY | EMISSIVE, HIGH CHARGE
TRANSPORT POLYMERS | | 7116010 | 2002 | 2006 | WISCONSIN
ALUMNI RES
FOUND | CONTROL OF SMALL DISTRIBUTED ENERGY RESOURCES | | 7141834 | 2005 | 2006 | CALIFORNIA
INSTITUTE OF
TECHNOLOGY | METHOD OF USING A GERMANIUM
LAYER TRANSFER TO SI FOR
PHOTOVOLTAIC APPLICATIONS
AND HETEROSTRUCTURE MADE
THEREBY | | 7141863 | 2003 | 2006 | UNIVERSITY
OF TOLEDO | METHOD OF MAKING DIODE STRUCTURES | | EP1644135 | 2004 | 2006 | PRINCETON
UNIVERISTY | IMPROVED SOLAR CELLS | | EP1735838 | 2005 | 2006 | BOSTON
UNIVERSITY | OPTICAL DEVICES FEATURING
TEXTURED SEMICONDUCTOR
LAYERS | | WO2006007212 | 2005 | 2006 | POWERLIGHT
CORP | FIRE RESISTANT PV SHINGLE
ASSEMBLY | | WO2006015328 | 2005 | 2006 | UT-BATTELLE
LLC | PULSE THERMAL PROCESSING OF
FUNCTIONAL MATERIALS USING
DIRECTED PLASMA ARC | | WO2006017403 | 2005 | 2006 | PRINCETON
UNIVERISTY | STACKED ORGANIC
PHOTOSENSITIVE DEVICES | | WO2006017530 | 2005 | 2006 | PRINCETON
UNIVERISTY | STACKED ORGANIC
PHOTOSENSITIVE DEVICES | | WO2006026070 | 2005 | 2006 | PRINCETON
UNIVERISTY | ORGANIC PHOTOSENSITIVE DEVICES | | WO2006078319 | 2005 | 2006 | MASSACHUSET
TS INSTITUTE
OF
TECHNOLOGY | LIGHT TRAPPING IN THIN FILM
SOLAR CELLS USING TEXTURED
PHOTONIC CRYSTAL | | WO2006086040 | 2005 | 2006 | PRINCETON
UNIVERISTY | ORGANIC PHOTOSENSITIVE OPTOELECTRONIC DEVICE HAVING A PHENANTHROLINE EXCITON BLOCKING LAYER | | WO2006133163 | 2006 | 2006 | UNIVERSITY
OF | INTERNAL GETTERING BY METAL ALLOY CLUSTERS | |--------------|------|------|----------------------------|--| | | | | CALIFORNIA | | | WO2006137870 | 2005 | 2006 | PRINCETON | ORGANIC PHOTOSENSITIVE | | | | | UNIVERISTY | DEVICES | | WO2006137915 | 2005 | 2006 | UNIVERSITY | BIOLOGICALLY INSPIRED | | | | | OF | SYNTHESIS OF THIN FILMS AND | | | | | CALIFORNIA | MATERIALS | | WO2006137940 | 2005 | 2006 | UNIVERSITY | METHODS OF MAKING | | | | | OF | FUNCTIONALIZED NANORODS | | | | | CALIFORNIA | | | WO2006138078 | 2006 | 2006 | PRINCETON | ORGANIC DOUBLE- | | | | | UNIVERSITY, | HETEROSTRUCTURE | | | | | TECHNION RES | PHOTOVOLTAIC CELLS HAVING | | | | | & DEV | RECIPROCAL-CARRIER EXCITON | | 7155070 | 2004 | 2007 | DOWEDI ICHT | BLOCKING LAYER | | 7155870 | 2004 | 2007 | POWERLIGHT | SHINGLE ASSEMBLY WITH SUPPORT | | 7106266 | 2004 | 2007 | CORP | BRACKET
STACKED OBCANIC | | 7196366 | 2004 | 2007 | PRINCETON
UNIVERISTY | STACKED ORGANIC PHOTOSENSITIVE DEVICES | | 7202143 | 2004 | 2007 | UNIVERSITY | LOW TEMPERATURE PRODUCTION | | 7202143 | 2004 | 2007 | OF ARKANSAS | OF LARGE-GRAIN | | | | | OF ARRANSAS | POLYCRYSTALLINE | | | | | | SEMICONDUCTORS | | 7202411 | 2003 | 2007 | US DEPT OF | PHOTOVOLTAIC AND | | 7202411 | 2003 | 2007 | ENERGY | THERMOPHOTOVOLTAIC DEVICES | | | | | LI (LIKO I | WITH QUANTUM BARRIERS | | 7217882 | 2003 | 2007 | CORNELL | BROAD SPECTRUM SOLAR CELL | | | | | RESEARCH | | | | | | FOUND, UNIV | | | | | | CALIFORNIA | | | 7220321 | 2004 | 2007 | ABOUND | APPARATUS AND PROCESSES FOR | | | | | SOLAR INC | THE MASS PRODUCTION OF | | | | | | PHOTOVOLTAIC MODULES | | 7220936 | 2004 | 2007 | UT-BATTELLE | PULSE THERMAL PROCESSING OF | | | | | LLC | FUNCTIONAL MATERIALS USING | | | | | | DIRECTED PLASMA ARC | | 7230269 | 2005 | 2007 | PRINCETON | ORGANIC PHOTOSENSITIVE CELLS | | | | | UNIVERSITY, | HAVING A RECIPROCAL-CARRIER | | | | | TECHNION RES | EXCITON BLOCKING LAYER | | 7038600 | 2004 | 2007 | & DEV | WAFER BONDED VIRTUAL | | 7238622 | 2004 | 2007 | CALIFORNIA
INSTITUTE OF | SUBSTRATE AND METHOD FOR | | | | | TECHNOLOGY | FORMING THE SAME | | 7265037 | 2004 | 2007 | UNIVERSITY | NANOWIRE ARRAY AND NANOWIRE | | 1203031 | 2007 | 2007 | OF | SOLAR CELLS AND METHODS FOR | | | | | CALIFORNIA | FORMING THE SAME | | 7288332 | 2005 | 2007 | LOS ALAMOS | CONDUCTIVE LAYER FOR | | | | | NATIONAL | BIAXIALLY ORIENTED | | | | | SECURITY LLC | SEMICONDUCTOR FILM GROWTH | | 7297865 | 2003 | 2007 | SUNPOWER | COMPACT MICRO-CONCENTRATOR | | | | | CORP | FOR PHOTOVOLTAIC CELLS | | 7297868 | 2003 | 2007 | DAVIS JOSEPH | PREPARATION OF CIGS-BASED | | | | | & NEGLEY | SOLAR CELLS USING A BUFFERED | | | | | | ELECTRODEPOSITION BATH | | EP1756885 | 2005 | 2007 | PRINCETON | HIGH EFFICIENCY ORGANIC | | | | | UNIVERISTY | PHOTOVOLTAIC CELLS EMPLOYING
HYBRIDIZED MIXED-PLANAR
HETEROJUNCTIONS | |--------------|------|------|--|--| | EP1774117 | 2005 | 2007 | POWERLIGHT
CORP | FIRE RESISTANT PV SHINGLE
ASSEMBLY | | EP1774604 | 2005 | 2007 | PRINCETON
UNIVERISTY | STACKED ORGANIC PHOTOSENSITIVE DEVICES | | EP1782470 | 2005 | 2007 | PRINCETON
UNIVERISTY | STACKED ORGANIC PHOTOSENSITIVE DEVICES | | EP1782471 | 2005 | 2007 | PRINCETON
UNIVERISTY | ORGANIC PHOTOSENSITIVE DEVICES | | EP1805824 | 2005 | 2007 | PRINCETON
UNIVERISTY | USE OF ORGANIC PHOTOSENSITIVE DEVICES | | EP1815544 | 2005 | 2007 | PRINCETON
UNIVERISTY | ORGANIC PHOTOSENSITIVE OPTOELECTRONIC DEVICE HAVING A PHENANTHROLINE EXCITON BLOCKING LAYER | | EP1838994 | 2005 | 2007 | UNIVERSITY
OF
CALIFORNIA | METHODS OF MAKING
FUNCTIONALIZED NANORODS | | EP1870943 | 1999 | 2007 | INTERNATION AL SOLAR ELECTRIC TECHNOLOGY INC | AN OXIDE-BASED METHOD OF
MAKING COMPOUND
SEMICONDUCTOR FILMS AND
MAKING RELATED ELECTRONIC
DEVICES | | WO2007044322 | 2006 | 2007 | LOS ALAMOS
NATIONAL
SECURITY LLC | CONDUCTIVE LAYER FOR
BIAXIALLY ORIENTED
SEMICONDUCTOR FILM GROWTH | | WO2007047952 | 2006 | 2007 | UNIVERSITY
OF SOUTH
FLORIDA | CLATHRATE COMPOUNDS AND METHODS OF MANUFACTURING | | WO2007055931 | 2006 | 2007 | PRINCETON
UNIVERISTY | ORGANIC PHOTOVOLTAIC CELLS
UTILIZING ULTRATHIN SENSITIZING
LAYER | | WO2007065039 | 2006 | 2007 | UNIVERSITY
OF
CALIFORNIA | NANOCRYSTAL SOLAR CELLS
PROCESSED FROM SOLUTION | | WO2007073467 | 2006 | 2007 | PRINCETON
UNIVERISTY | INTERMEDIATE-BAND PHOTOSENSITIVE DEVICE WITH QUANTUM DOTS HAVING TUNNELING BARRIER EMBEDDED IN ORGANIC MATRIX | | WO2007079382 | 2006 | 2007 | POWERLIGHT
CORP | SUPPORTED PV MODULE ASSEMBLY | | WO2007089886 | 2007 | 2007 | LOS ALAMOS
NATIONAL
SECURITY LLC | BIAXIALLY ORIENTED FILM ON FLEXIBLE POLYMERIC SUBSTRATE | | WO2007103882 | 2007 | 2007 | POWERLIGHT
CORP | PHOTOVOLTAIC MODULE
MOUNTING CLIP WITH INTEGRAL
GROUNDING | | 7314773 | 2005 | 2008 | PRINCETON
UNIVERISTY | LOW RESISTANCE THIN FILM
ORGANIC SOLAR CELL
ELECTRODES | | 7326955 | 2004 | 2008 | PRINCETON
UNIVERISTY | STACKED ORGANIC
PHOTOSENSITIVE DEVICES | | 7329554 | 2001 | 2008 | MIDWEST | REACTIVE CODOPING OF GAALINP | | | | | RESEARCH
INSTITUTE | COMPOUND SEMICONDUCTORS | |-----------|------|------|---|---| | 7332599 | 2003 | 2008 | NORTH
CAROLINA
STATE
UNIVERSITY | METHODS AND INTERMEDIATES
FOR THE SYNTHESIS OF DIPYRRIN-
SUBSTITUTED PORPHYRINIC
MACROCYCLES | | 7341927 | 2004 | 2008 | CALIFORNIA
INSTITUTE OF
TECHNOLOGY | WAFER BONDED EPITAXIAL
TEMPLATES FOR SILICON
HETEROSTRUCTURES | | 7368658 | 2003 | 2008 | US DEPT OF
ENERGY | HIGH EFFICIENCY DIAMOND SOLAR CELLS | | 7368659 | 2002 | 2008 | GENERAL
ELECTRIC CO | ELECTRODES MITIGATING EFFECTS OF DEFECTS IN ORGANIC ELECTRONIC DEVICES | | 7375370 | 2004 | 2008 | PRINCETON
UNIVERISTY | STACKED ORGANIC
PHOTOSENSITIVE DEVICES | | 7408058 | 2004 | 2008 | NORTH
CAROLINA
STATE
UNIVERSITY | REGIOISOMERICALLY PURE
OXOCHLORINS AND METHODS OF
SYNTHESIS | | 7414294 | 2005 | 2008 | PRINCETON
UNIVERISTY | INTERMEDIATE-BAND PHOTOSENSITIVE DEVICE WITH QUANTUM DOTS HAVING TUNNELING BARRIER EMBEDDED IN ORGANIC MATRIX | | 7419846 | 2004 | 2008 | PRINCETON
UNIVERISTY | METHOD OF FABRICATING AN OPTOELECTRONIC DEVICE HAVING A BULK HETEROJUNCTION | | 7435134 | 2007 | 2008 | SUNPOWER
CORP | PHOTOVOLTAIC MODULE
MOUNTING CLIP WITH INTEGRAL
GROUNDING | | 7435617 | 2004 | 2008 | PRINCETON
UNIVERISTY | METHOD OF FABRICATING AN OPTOELECTRONIC DEVICE HAVING A BULK HETEROJUNCTION | | 7465872 | 2003 | 2008 | GENERAL
ELECTRIC CO | PHOTOVOLTAIC POWER CONVERTER SYSTEM WITH A CONTROLLER CONFIGURED TO ACTIVELY COMPENSATE LOAD HARMONICS | | EP1889300 | 2006 | 2008 | UNIVERSITY
OF
CALIFORNIA | INTERNAL GETTERING BY METAL
ALLOY CLUSTERS | | EP1900007 | 2006 | 2008 | PRINCETON
UNIVERSITY,
TECHNION RES
& DEV | ORGANIC DOUBLE-
HETEROSTRUCTURE
PHOTOVOLTAIC CELLS HAVING
RECIPROCAL-CARRIER EXCITON
BLOCKING LAYER | | EP1903614 | 1993 | 2008 | FIRST SOLAR
INC | METHOD OF MANUFACTURING A PHOTOVOLTAIC DEVICE | | EP1920480 | 2006 | 2008 | PRINCETON
UNIVERISTY | LOW RESISTANCE THIN FILM
ORGANIC SOLAR CELL
ELECTRODES | | EP1928039 | 2005 | 2008 | PRINCETON
UNIVERISTY | ORGANIC PHOTOSENSITIVE DEVICES | | EP1938390 | 2006 | 2008 | UNIVERSITY
OF | NANOCRYSTAL SOLAR CELLS
PROCESSED FROM SOLUTION | | | | | CALIFORNIA | | |--------------|------|------|--|--| | EP1952455 | 2006 | 2008 | PRINCETON
UNIVERISTY | ORGANIC PHOTOVOLTAIC CELLS
UTILIZING ULTRATHIN
SENSITIZING
LAYER | | EP1969640 | 2006 | 2008 | SUNPOWER
CORP | SUPPORTED PV MODULE ASSEMBLY | | EP1969652 | 2006 | 2008 | PRINCETON
UNIVERISTY | INTERMEDIATE-BAND PHOTOSENSITIVE DEVICE WITH QUANTUM DOTS HAVING TUNNELING BARRIER EMBEDDED IN ORGANIC MATRIX | | EP1978561 | 2005 | 2008 | PRINCETON
UNIVERISTY | STACKED ORGANIC PHOTOSENSITIVE DEVICES | | EP1994565 | 2007 | 2008 | LOS ALAMOS
NATIONAL
SECURITY LLC | OPTOELECTRONIC DEVICES UTILIZING MATERIALS HAVING ENHANCED ELECTRONIC TRANSITIONS | | EP2008343 | 2007 | 2008 | POWERLIGHT
CORP | PHOTOVOLTAIC MODULE
MOUNTING CLIP WITH INTEGRAL
GROUNDING | | WO2008005027 | 2006 | 2008 | PRINCETON
UNIVERISTY | LOW RESISTANCE THIN FILM
ORGANIC SOLAR CELL
ELECTRODES | | WO2008014037 | 2007 | 2008 | GENERAL
ELECTRIC CO | ORGANIC IRIDIUM COMPOSITIONS
AND THEIR USE IN ELECTRONIC
DEVICES | | WO2008018982 | 2007 | 2008 | NORTH
CAROLINA
STATE
UNIVERSITY | SELF-ASSEMBLED PHOTOSYNTHESIS-INSPIRED LIGHT HARVESTING MATERIAL AND SOLAR CELLS CONTAINING THE SAME | | WO2008036837 | 2007 | 2008 | UNIVERSITY
OF ILLINOIS | RELEASE STRATEGIES FOR MAKING
TRANSFERABLE SEMICONDUCTOR
STRUCTURES, DEVICES AND DEVICE
COMPONENTS | | WO2008063190 | 2006 | 2008 | MIDWEST
RESEARCH
INSTITUTE | PRECURSORS FOR FORMATION OF
COPPER SELENIDE, INDIUM
SELENIDE, COPPER INDIUM
DISELENIDE, AND/OR COPPER
INDIUM GALLIUM DISELENIDE
FILMS | | WO2008063209 | 2007 | 2008 | LOS ALAMOS
NATIONAL
SECURITY LLC | OPTOELECTRONIC DEVICES UTILIZING MATERIALS HAVING ENHANCED ELECTRONIC TRANSITIONS | | WO2008066933 | 2007 | 2008 | UNIVERSITY
OF
CALIFORNIA | ENHANCING PERFORMANCE CHARACTERISTICS OF ORGANIC SEMICONDUCTING FILMS BY IMPROVED SOLUTION PROCESSING | | WO2008109467 | 2008 | 2008 | ARIZONA
STATE
UNIVERSITY | ELECTRICALLY CONDUCTING PORPHYRIN AND PORPHYRIN- FULLERENE ELECTROPOLYMERS | | WO2008112639 | 2008 | 2008 | WISCONSIN
ALUMNI RES
FOUND | GRAPHITE-BASED PHOTOVOLTAIC
CELLS | | WO2008143635 | 2007 | 2008 | UNIVERSITY | OPTICAL SYSTEMS FABRICATED BY | | W.020001.4200.5 | 2000 | 2000 | OF ILLINOIS | PRINTING-BASED ASSEMBLY | |-------------------------|------|---------|-------------------|--| | WO2008143885 | 2008 | 2008 | SUNPOWER
CORP | PROTECTION LAYER FOR
FABRICATING A SOLAR CELL | | WO2008157637 | 2008 | 2008 | ROSESTREET | SINGLE P-N JUNCTION TANDEM | | W O2000137037 | 2008 | 2006 | LABS ENERGY | PHOTOVOLTAIC DEVICE | | | | | INC | THOTO VOLITAIC DE VICE | | 7482532 | 2005 | 2009 | MASSACHUSET | LIGHT TRAPPING IN THIN FILM | | , .02002 | 2000 | _00/ | TS INSTITUTE | SOLAR CELLS USING TEXTURED | | | | | OF | PHOTONIC CRYSTAL | | | | | TECHNOLOGY | | | 7534414 | 2008 | 2009 | UNIVERSITY | CLATHRATE COMPOUNDS AND | | | | | OF SOUTH | METHOD OF MANUFACTURING | | | | | FLORIDA | | | 7545051 | 2007 | 2009 | UNIVERSITY | NANOWIRE ARRAY AND NANOWIRE | | | | | OF | SOLAR CELLS AND METHODS FOR | | | | | CALIFORNIA | FORMING THE SAME | | 7560641 | 2003 | 2009 | UNASSIGNED | THIN FILM SOLAR CELL | | | | | | CONFIGURATION AND | | | | | | FABRICATION METHOD | | 7569847 | 2005 | 2009 | UNIVERSITY | METHODS OF FABRICATING | | | | | OF | NANOSTRUCTURES AND | | | | | CALIFORNIA | NANOWIRES AND DEVICES | | 7560041 | 2006 | 2000 | I D III IED GIERI | FABRICATED THEREFROM | | 7569941 | 2006 | 2009 | UNIVERSITY | METHODS OF FABRICATING | | | | | OF | NANOSTRUCTURES AND | | | | | CALIFORNIA | NANOWIRES AND DEVICES
FABRICATED THEREFROM | | 7592539 | 2003 | 2009 | PRINCETON | SOLID STATE PHOTOSENSITIVE | | 1392339 | 2003 | 2009 | UNIVERISTY | DEVICES WHICH EMPLOY ISOLATED | | | | | ONIVERISTI | PHOTOSYNTHETIC COMPLEXES | | 7597927 | 2004 | 2009 | PRINCETON | SOLAR CELLS | | | | | UNIVERISTY | | | 7601430 | 2006 | 2009 | LOS ALAMOS | BIAXIALLY ORIENTED FILM ON | | | | | NATIONAL | FLEXIBLE POLYMERIC SUBSTRATE | | | | | SECURITY LLC | | | 7632701 | 2007 | 2009 | UNIVERSITY | THIN FILM SOLAR CELLS BY | | | | | OF CENTRAL | SELENIZATION SULFURIZATION | | | | | FLORIDA | USING DIETHYL SELENIUM AS A | | | | • • • • | | SELENIUM PRECURSOR | | 7633007 | 2007 | 2009 | NORTH | SELF-ASSEMBLED | | | | | CAROLINA | PHOTOSYNTHESIS-INSPIRED LIGHT | | | | | STATE | HARVESTING MATERIAL AND | | | | | UNIVERSITY | SOLAR CELLS CONTAINING THE | | EP2049555 | 2007 | 2009 | GENERAL | SAME ORGANIC IRIDIUM COMPOSITIONS | | Lf 40 4 7333 | 2007 | 2009 | ELECTRIC CO | AND THEIR USE IN ELECTRONIC | | | | | LLLCTRICCO | DEVICES | | EP2064734 | 2007 | 2009 | UNIVERSITY | METHOD OF PRINTING | | 21 200 173 1 | _00, | 2007 | OF ILLINOIS | TRANSFERABLE FUNCTIONAL | | | | | 0.1.2211.010 | STRUCTURES | | EP2087537 | 2007 | 2009 | UNIVERSITY | ENHANCING PERFORMANCE | | | | | OF | CHARACTERISTICS OF ORGANIC | | | | | CALIFORNIA | SEMICONDUCTING FILMS BY | | | | | | IMPROVED SOLUTION PROCESSING | | EP2101931 | 2006 | 2009 | MIDWEST | PRECURSORS FOR FORMATION OF | | | | | RESEARCH | COPPER SELENIDE, INDIUM | | | | | INSTITTUE | SELENIDE, COPPER INDIUM
DISELENIDE, AND/OR COPPER
INDIUM GALLIUM DISELENIDE
FILMS | |--------------|------|------|--|--| | EP2104954 | 2007 | 2009 | UNIVERSITY
OF ILLINOIS,
SEMPRIUS INC | OPTICAL SYSTEMS FABRICATED BY PRINTING-BASED ASSEMBLY | | EP2135301 | 2008 | 2009 | WISCONSIN
ALUMNI RES
FOUND; UNIV
UTAH | GRAPHITE-BASED PHOTOVOLTAIC CELLS | | WO2009012397 | 2008 | 2009 | UNIVERSITY
OF
CALIFORNIA | SURFACE PLASMON-ENHANCED PHOTOVOLTAIC DEVICE | | WO2009012469 | 2008 | 2009 | CALIFORNIA
INSTITUTE OF
TECHNOLOGY | STRUCTURES OF AND METHODS
FOR FORMING VERTICALLY
ALIGNED SI WIRE ARRAYS | | WO2009026097 | 2008 | 2009 | NORTHWESTER
N UNIVERSITY | P-TYPE SEMICONDUCTING NICKEL OXIDE AS AN EFFICIENCY-ENHANCING ANODAL INTERFACIAL LAYER IN BULK HETEROJUNCTION SOLAR CELLS | | WO2009032358 | 2008 | 2009 | NORTHWESTER
N UNIVERSITY | TFB:TPDSI2 INTERFACIAL LAYER
USABLE IN ORGANIC
PHOTOVOLTAIC CELLS | | WO2009064736 | 2008 | 2009 | BATTELLE
ENERGY
ALLIANCE LLC | STRUCTURES, SYSTEMS AND
METHODS FOR HARVESTING
ENERGY FROM ELECTROMAGNETIC
RADIATION | | WO2009148661 | 2009 | 2009 | BATTELLE
ENERGY
ALLIANCE LLC | METHODS FOR FORMING PARTICLES FROM SINGLE SOURCE PRECURSORS, METHODS OF FORMING SEMICONDUCTOR DEVICES, AND DEVICES FORMED USING SUCH METHODS | | 7667133 | 2003 | 2010 | UNIVERSITY
OF TOLEDO | HYBRID WINDOW LAYER FOR PHOTOVOLTAIC CELLS | | 7670638 | 2008 | 2010 | SUNPOWER
CORP | PROTECTION LAYER FOR
FABRICATING A SOLAR CELL | | 7691292 | 2006 | 2010 | GENERAL
ELECTRIC CO | ORGANIC IRIDIUM COMPOSITIONS
AND THEIR USE IN ELECTRONIC
DEVICES | | 7709728 | 2004 | 2010 | UNIVERSITY
OF
CALIFORNIA | MULTIBAND SEMICONDUCTOR
COMPOSITIONS FOR
PHOTOVOLTAIC DEVICES | | 7718087 | 2006 | 2010 | GENERAL
ELECTRIC CO | ORGANIC IRIDIUM COMPOSITIONS
AND THEIR USE IN ELECTRONIC
DEVICES | | 7723513 | 2007 | 2010 | NORTH
CAROLINA
STATE
UNIVERSITY | METHODS AND INTERMEDIATES
FOR THE SYNTHESIS OF DIPYRRIN-
SUBSTITUTED PORPHYRINIC
MACROCYCLES | | 7755109 | 2006 | 2010 | CALIFORNIA
INSTITUTE OF
TECHNOLOGY | BONDED SEMICONDUCTOR
SUBSTRATE | | 7763095 | 2006 | 2010 | UNIVERSITY | INTERNAL GETTERING BY METAL | | | | | OF
CALIFORNIA | ALLOY CLUSTERS | |--------------|------|------|--|--| | 7777241 | 2005 | 2010 | BOSTON
UNIVERSITY | OPTICAL DEVICES FEATURING
TEXTURED SEMICONDUCTOR
LAYERS | | 7777303 | 2003 | 2010 | UNIVERSITY
OF
CALIFORNIA | SEMICONDUCTOR-
NANOCRYSTAL/CONJUGATED
POLYMER THIN FILMS | | 7780472 | 2008 | 2010 | SUNPOWER
CORP | PHOTOVOLTAIC MODULE
MOUNTING CLIP WITH INTEGRAL
GROUNDING | | 7816715 | 2007 | 2010 | PRINCETON
UNIVERISTY | STACKED ORGANIC
PHOTOSENSITIVE DEVICES | | 7834264 | 2006 | 2010 | UNIVERSITY
OF
CALIFORNIA | METHODS OF FABRICATING NANOSTRUCTURES AND NANOWIRES AND DEVICES FABRICATED THEREFROM | | 7856769 | 2006 | 2010 | PVT SOLAR INC | RACK ASSEMBLY FOR MOUNTING SOLAR MODULES | | 7858876 | 2007 | 2010 | WISCONSIN
ALUMNI RES
FOUND; UNIV
UTAH | GRAPHITE-BASED PHOTOVOLTAIC
CELLS | | EP2158610 | 2008 | 2010 | ROSESTREET
LABS ENERGY
INC | SINGLE P-N JUNCTION TANDEM PHOTOVOLTAIC DEVICE | | EP2158613 | 2008 | 2010 | SUNPOWER
CORP | PROTECTION LAYER FOR
FABRICATING A SOLAR CELL | | EP2168175 | 2008 | 2010 | UNIVERSITY
OF
CALIFORNIA | SURFACE PLASMON-ENHANCED PHOTOVOLTAIC DEVICE | | EP2171745 | 2008 | 2010 | CALIFORNIA
INSTITUTE OF
TECHNOLOGY | STRUCTURES OF AND METHODS
FOR FORMING VERTICALLY
ALIGNED SI WIRE ARRAYS | | EP2186148 | 2008 | 2010 | NORTHWESTER
N UNIVERSITY | P-TYPE SEMICONDUCTING NICKEL
OXIDE AS AN EFFICIENCY-
ENHANCING ANODAL INTERFACIAL
LAYER IN BULK HETEROJUNCTION
SOLAR CELLS | | EP2195851 | 2008 | 2010 | NORTHWESTER
N UNIVERSITY | TFB:TPDSI2 INTERFACIAL LAYER
USABLE IN ORGANIC
PHOTOVOLTAIC CELLS | | WO2010017115 | 2009 | 2010 | UNIVERSITY
OF
WASHINGTON | DYE-SENSITIZED SOLAR CELL
EMPLOYING ZINC OXIDE
AGGREGATES GROWN IN THE
PRESENCE OF LITHIUM | | WO2010036807 | 2009 | 2010 | UNIVERSITY
OF ILLINOIS | ARRAYS OF ULTRATHIN SILICON SOLAR MICROCELLS | | WO2010042344 | 2009 | 2010 | UNIVERSITY
OF UTAH | ORGANIC SPINTRONIC DEVICES
AND METHODS FOR MAKING THE
SAME | | WO2010056464 | 2009 | 2010 | SUNPOWER
CORP | FLEXIBLE WIND DEFLECTOR FOR PHOTOVOLTAIC ARRAY PERIMETER ASSEMBLY | | WO2010129277 | 2010 | 2010 | TUFTS
COLLEGE | MICROPLASMA GENERATOR AND METHODS THEREFOR | | WO2010135309 | 2010 | 2010 | INNOVALIGHT | METHODS AND APPARATUS FOR |
--------------|------|---------|-----------------------------|--| | | | | INC | ALIGNING A SET OF PATTERNS ON A SILICON SUBSTRATE | | WO2010141580 | 2010 | 2010 | UNIVERSITY | SOLAR-POWERED LIGHTING | | | | | OF FLORIDA | MODULE | | 7879644 | 2007 | 2011 | UNIVERSITY | HYBRID WINDOW LAYER FOR | | 7888593 | 2008 | 2011 | OF TOLEDO
NORTHWESTER | PHOTOVOLTAIC CELLS TFB:TPDSI2 INTERFACIAL LAYER | | 7000373 | 2000 | 2011 | N UNIVERSITY | USABLE IN ORGANIC | | | | | | PHOTOVOLTAIC CELLS | | 7893352 | 2005 | 2011 | PRINCETON | ORGANIC PHOTOSENSITIVE | | | | | UNIVERSITY,
TECHNION RES | OPTOELECTRONIC DEVICE HAVING A PHENANTHROLINE EXCITON | | | | | & DEV | BLOCKING LAYER | | 7893512 | 2007 | 2011 | LOS ALAMOS | OPTOELECTRONIC DEVICES | | | | | NATIONAL | UTILIZING MATERIALS HAVING | | | | | SECURITY LLC | ENHANCED ELECTRONIC TRANSITIONS | | 7915701 | 2008 | 2011 | PRINCETON | STACKED ORGANIC | | | | | UNIVERISTY | PHOTOSENSITIVE DEVICES | | 7919770 | 2006 | 2011 | NORTH
CAROLINA | SUBSTITUTED PENZAZOL OPORRHANDAZINES FOR | | | | | STATE | BENZAZOLOPORPHYRAZINES FOR POLYMERIZATION AND SURFACE | | | | | UNIVERSITY | ATTACHMENT AND ARTICLES | | | | | | FORMED THEREFROM | | 7932123 | 2007 | 2011 | UNIVERSITY | RELEASE STRATEGIES FOR MAKING | | | | | OF ILLINOIS | TRANSFERABLE SEMICONDUCTOR
STRUCTURES, DEVICES AND DEVICE | | | | | | COMPONENTS | | 7947828 | 2010 | 2011 | NORTH | METHODS AND INTERMEDIATES | | | | | CAROLINA | FOR THE SYNTHESIS OF DIPYRRIN- | | | | | STATE
UNIVERSITY | SUBSTITUTED PORPHYRINIC
MACROCYCLES | | 7947897 | 2005 | 2011 | PRINCETON | ORGANIC PHOTOVOLTAIC CELLS | | | | | UNIVERISTY | UTILIZING ULTRATHIN SENSITIZING | | 705(201 | 2000 | 2011 | CLINDOWED | LAYER | | 7956281 | 2008 | 2011 | SUNPOWER
CORP | FLEXIBLE WIND DEFLECTOR FOR PHOTOVOLTAIC ARRAY PERIMETER | | | | | Colu | ASSEMBLY | | 7972875 | 2007 | 2011 | UNIVERSITY | OPTICAL SYSTEMS FABRICATED BY | | 7004421 | 2000 | 2011 | OF ILLINOIS
VOXTEL INC | PRINTING-BASED ASSEMBLY | | 7994421 | 2008 | 2011 | VOXTELINC | PHOTOVOLTAIC DEVICES HAVING NANOPARTICLE DIPOLES FOR | | | | | | ENHANCED PERFORMANCE AND | | | | | | METHODS FOR MAKING SAME | | 8003070 | 2008 | 2011 | BATTELLE | METHODS FOR FORMING PARTICLES FROM SINGLE SOURCE | | | | | ENERGY
ALLIANCE LLC | PRECURSORS | | 8030120 | 2007 | 2011 | UNIVERSITY | HYBRID WINDOW LAYER FOR | | 0021717 | 2000 | • • • • | OF TOLEDO | PHOTOVOLTAIC CELLS | | 8034745 | 2008 | 2011 | UNASSIGNED | HIGH PERFORMANCE DEVICES
ENABLED BY EPITAXIAL, | | | | | | PREFERENTIALLY ORIENTED, | | | | | | NANODOTS AND/OR NANORODS | | 8035113 | 2006 | 2011 | BOSTON | OPTICAL DEVICES FEATURING | | | | | UNIVERSITY | TEXTURED SEMICONDUCTOR | | 8039740 | 2007 | 2011 | ROSESTREET | LAYERS SINGLE P-N JUNCTION TANDEM | |--------------|------|------|---|---| | 8039740 | 2007 | 2011 | LABS ENERGY
INC | PHOTOVOLTAIC DEVICE | | 8048814 | 2009 | 2011 | INNOVALIGHT
INC | METHODS AND APPARATUS FOR
ALIGNING A SET OF PATTERNS ON A
SILICON SUBSTRATE | | 8071931 | 2007 | 2011 | BATTELLE
ENERGY
ALLIANCE LLC | STRUCTURES, SYSTEMS AND
METHODS FOR HARVESTING
ENERGY FROM ELECTROMAGNETIC
RADIATION | | EP2273552 | 2002 | 2011 | UNIVERSITY
OF
CALIFORNIA | METHODS OF FABRICATING NANSTRUCTURES AND NANOWIRES AND DEVICES FABRICATED THEREFROM | | EP2299508 | 2005 | 2011 | PRINCETON
UNIVERSITY,
TECHNION RES
& DEV | ORGANIC PHOTOSENSITIVE OPTOELECTRONIC DEVICE HAVING A PHENANTHROLINE EXCITON BLOCKING LAYER | | EP2364506 | 2009 | 2011 | SUNPOWER
CORP | FLEXIBLE WIND DEFLECTOR FOR
PHOTOVOLTAIC ARRAY PERIMETER
ASSEMBLY | | WO2011031683 | 2010 | 2011 | ROSESTREET
LABS ENERGY
INC | DILUTE GROUP III-V NITRIDE
INTERMEDIATE BAND SOLAR CELLS
WITH CONTRACT BLOCKING
LAYERS | | WO2011050179 | 2010 | 2011 | STANFORD
UNIVERSITY | OPTOELECTRONIC SEMICONDUCTOR DEVICE AND METHOD OF FABRICATION | | WO2011051292 | 2010 | 2011 | UNIVERSITY
OF
WASHINGTON | COPOLYMER SEMICONDUCTORS COMPRISING THIAZOLOTHIAZOLE OR BENZOBISTHIAZOLE, OR BENZOBISOXAZOLE ELECTRON ACCEPTOR SUBUNITS, AND ELECTRON DONOR SUBUNITS, AND THEIR USES IN TRANSISTORS AND SOLAR CELLS | | WO2011059559 | 2010 | 2011 | SUNPOWER
CORP | WATER-RESISTANT APPARATUSES
FOR PHOTOVOLTAIC MODULES | | WO2011066029 | 2010 | 2011 | UNIVERSITY
OF MICHIGAN | METHODS OF PREPARING FLEXIBLE PHOTOVOLTAIC DEVICES USING EPITAXIAL LIFTOFF, AND PRESERVING THE INTEGRITY OF GROWTH SUBSTRATES USED IN EPITAXIAL GROWTH | | WO2011066529 | 2010 | 2011 | CALIFORNIA
INSTITUTE OF
TECHNOLOGY | THREE-DIMENSIONAL PATTERNING METHODS AND RELATED DEVICES | | WO2011066570 | 2010 | 2011 | CALIFORNIA
INSTITUTE OF
TECHNOLOGY | SEMICONDUCTOR WIRE ARRAY
STRUCTURES, AND SOLAR CELLS
AND PHOTODETECTORS BASED ON
SUCH STRUCTURES | | WO2011087753 | 2010 | 2011 | LOS ALAMOS
NATIONAL
SECURITY LLC | PHOTOVOLTAIC DEVICE
COMPRISING COMPOSITIONALLY
GRADED INTRINSIC PHOTOACTIVE
LAYER | | WO2011127475 | 2011 | 2011 | ARIZONA | ORGANIC PHOTOVOLTAIC DEVICES | |--------------|------|------|---|--| | | | | STATE
UNIVERSITY | COMPRISING SOLUTION-
PROCESSED SUBSTITUTED METAL-
PHTHALOCYANINES AND
EXHIBITING NEAR-IR PHOTO-
SENSITIVITY | | WO2011146115 | 2011 | 2011 | HELIOVOLT
CORP,
ALLIANCE FOR
SUSTAINABLE
ENERGY LLC | LIQUID PRECURSOR FOR
DEPOSITION OF COPPER SELENIDE
AND METHOD OF PREPARING THE
SAME | | 8093494 | 2005 | 2012 | UNIVERSITY
OF
CALIFORNIA | METHODS OF MAKING
FUNCTIONALIZED NANORODS | | 8106393 | 2011 | 2012 | NORTH
CAROLINA
STATE
UNIVERSITY | SUBSTITUTED BENZAZOLOPORPHYRAZINES FOR POLYMERIZATION AND SURFACE ATTACHMENT AND ARTICLES FORMED THEREFROM | | 8119571 | 2006 | 2012 | UNASSIGNED | HIGH PERFORMANCE ELECTRICAL, MAGNETIC, ELECTROMAGNETIC AND ELECTROOPTICAL DEVICES ENABLED BY THREE DIMENSIONALLY ORDERED NANODOTS AND NANORODS | | 8129520 | 2011 | 2012 | NORTH
CAROLINA
STATE
UNIVERSITY | METHODS AND INTERMEDIATES
FOR THE SYNTHESIS OF DIPYRRIN-
SUBSTITUTED PORPHYRINIC
MACROCYCLES | | 8129614 | 2011 | 2012 | ROSESTREET
LABS ENERGY
INC | SINGLE P-N JUNCTION TANDEM PHOTOVOLTAIC DEVICE | | 8129615 | 2008 | 2012 | UNIVERSITY
OF
CALIFORNIA | MULTIBAND SEMICONDUCTOR
COMPOSITIONS FOR
PHOTOVOLTAIC DEVICES | | 8178221 | 2008 | 2012 | UNASSIGNED | {100}<100> OR 45.DEGREEROTATED
{100}<100>, SEMICONDUCTOR-
BASED, LARGE-AREA, FLEXIBLE,
ELECTRONIC DEVICES | | 8211400 | 2009 | 2012 | UNIVERSITY
OF SOUTH
FLORIDA | METHOD OF MANUFACTURING A CLATHRATE COMPOUND | | 8221909 | 2010 | 2012 | UT-BATTELLE
LLC | PHASE-SEPARATED, EPITAXIAL COMPOSITE CAP LAYERS FOR ELECTRONIC DEVICE APPLICATIONS AND METHOD OF MAKING THE SAME | | 8232470 | 2009 | 2012 | ROSESTREET
LABS ENERGY
INC | DILUTE GROUP III-V NITRIDE
INTERMEDIATE BAND SOLAR CELLS
WITH CONTACT BLOCKING LAYERS | | 8237175 | 2011 | 2012 | BOSTON
UNIVERSITY | OPTICAL DEVICES FEATURING
TEXTURED SEMICONDUCTOR
LAYERS | | 8247325 | 2009 | 2012 | UCHICAGO
ARGONNE LLC | DIRECT GROWTH OF METAL
NANOPLATES ON SEMICONDUCTOR
SUBSTRATES | | 8256170 | 2010 | 2012 | PVT SOLAR INC | RACK ASSEMBLY FOR MOUNTING SOLAR MODULES | |-----------|------|------|--|---| | 8258398 | 2007 | 2012 | UCHICAGO
ARGONNE LLC | HETEROJUNCTION PHOTOVOLTAIC
ASSEMBLED WITH ATOMIC LAYER
DEPOSITION | | 8269100 | 2009 | 2012 | UCHICAGO
ARGONNE LLC | HYBRID SOLAR CELLS VIA UV-
POLYMERIZATION OF POLYMER
PRECURSOR | | 8273599 | 2007 | 2012 | UNIVERSITY
OF
CALIFORNIA | ENHANCING PERFORMANCE
CHARACTERISTICS OF ORGANIC
SEMICONDUCTING FILMS BY
IMPROVED SOLUTION PROCESSING | | 8276329 | 2005 | 2012 | SUNPOWER
CORP | FIRE RESISTANT PV SHINGLE
ASSEMBLY | | 8283619 | 2011 | 2012 | BATTELLE
ENERGY
ALLIANCE LLC | ENERGY HARVESTING DEVICES FOR
HARVESTING ENERGY FROM
TERAHERTZ ELECTROMAGNETIC
RADIATION | | 8288176 | 2011 | 2012 | INNOVALIGHT
INC | METHOD FOR MANUFACTURING A PHOTOVOLTAIC CELL | | 8318127 | 2011 | 2012 | STC UNM | METHODS FOR PREPARING HIGH
CRYSTALLINITY AND SURFACE
AREA POROUS METAL OXIDES | | 8318532 | 2007 | 2012 | UNIVERSITY
OF
CALIFORNIA | ENHANCING PERFORMANCE
CHARACTERISTICS OF ORGANIC
SEMICONDUCTING FILMS BY
IMPROVED SOLUTION PROCESSING | | 8329503 | 2010 | 2012 | SANDIA CORP | PHOTOVOLTAIC SOLAR
CONCENTRATOR | | 8338772 | 2011 | 2012 | BATTELLE
ENERGY
ALLIANCE LLC | DEVICES, SYSTEMS, AND METHODS
FOR HARVESTING ENERGY AND
METHODS FOR FORMING SUCH
DEVICES | | EP2425459 | 2010 | 2012 | TUFTS
COLLEGE | MICROPLASMA GENERATOR AND METHODS THEREFOR | | EP2433298 | 2010 | 2012 | INNOVALIGHT
INC | METHODS AND APPARATUS FOR
ALIGNING A SET OF PATTERNS ON A
SILICON SUBSTRATE | | EP2442367 | 2011 | 2012 | ROHM & HAAS
INC, ALLIANCE
FOR
SUSTAINABLE
ENERGY LLC | IMPROVED METHOD FOR FORMING METAL CONTACTS | | EP2462631 | 2010 | 2012 | UNIVERSITY
OF MICHIGAN | METHODS OF PREPARING FLEXIBLE
PHOTOVOLTAIC DEVICES USING
EPITAXIAL LIFTOFF, AND
PRESERVING THE INTEGRITY OF
GROWTH SUBSTRATES USED IN
EPITAXIAL GROWTH | | EP2493960 | 2010 | 2012 | UNIVERSITY
OF
WASHINGTON | COPOLYMER SEMICONDUCTORS COMPRISING THIAZOLOTHIAZOLE OR
BENZOBISTHIAZOLE, OR BENZOBISOXAZOLE ELECTRON ACCEPTOR SUBUNITS, AND ELECTRON DONOR SUBUNITS, AND THEIR USES IN TRANSISTORS AND | | *********** | -010 | | | SOLAR CELLS | |----------------|------|------|--------------------------|--| | EP2507842 | 2010 | 2012 | CALIFORNIA | THREE-DIMENSIONAL PATTERNING | | | | | INSTITUTE OF | METHODS AND RELATED DEVICES | | ED2507942 | 2010 | 2012 | TECHNOLOGY
CALIFORNIA | SEMICONDUCTOR WIRE ARRAY | | EP2507843 | 2010 | 2012 | INSTITUTE OF | STRUCTURES, AND SOLAR CELLS | | | | | TECHNOLOGY | AND PHOTODETECTORS BASED ON | | | | | TECHNOLOGI | SUCH STRUCTURES | | WO2012012117 | 2011 | 2012 | UNIV | FUSING PORPHYRINS WITH | | ,, 0201201211, | | 2012 | SOUTHERN | POLYCYCLIC AROMATIC | | | | | CALIFORNIA | HYDROCARBONS AND | | | | | USC STEVENS | HETEROCYCLES FOR | | | | | INST FOR | OPTOELECTRIC APPLICATIONS | | | | | INNOVATION; | | | | | | UNIV | | | W/02012022072 | 2011 | 2012 | MICHIGAN | LIGHT PREGURAGE FOR | | WO2012023973 | 2011 | 2012 | HELIOVOLT | LIQUID PRECURSOR FOR DEPOSITION OF INDIUM SELENIDE | | | | | CORP,
ALLIANCE FOR | AND METHOD OF PREPARING THE | | | | | SUSTAINABLE | SAME | | | | | ENERGY LLC | SAME | | WO2012024592 | 2011 | 2012 | MASSACHUSET | COMPOSITIONS, METHODS, AND | | | | | TS INSTITUTE | SYSTEMS COMPRISING FLUOROUS- | | | | | OF | SOLUBLE POLYMERS | | | | | TECHNOLOGY | | | WO2012031083 | 2011 | 2012 | IOWA STATE | TEXTURED MICROMETER SCALE | | | | | UNIVERSITY | TEMPLATES AS LIGHT MANAGING | | | | | | FABRICATION PLATFORM FOR | | W02012024066 | 2011 | 2012 | UNIVERSITY | ORGANIC SOLAR CELLS | | WO2012034066 | 2011 | 2012 | OF SOUTHERN | BROADLY ABSORBING
METALLOPORPHYRIN-BASED | | | | | CALIFORNIA | MULTICHROMOPHORIC ARRAYS | | | | | CALII OKIVIA | FOR TRIPLET HARVESTING | | WO2012050616 | 2011 | 2012 | LOS ALAMOS | COMPOSITE MATERIALS WITH | | ., | | | NATIONAL | METAL OXIDE ATTACHED TO LEAD | | | | | SECURITY LLC | CHALCOGENIDE NANOCRYSTAL | | | | | | QUANTUM DOTS WITH LINKERS | | WO2012074853 | 2011 | 2012 | UNIVERSITY | ORGANIC SMALL MOLECULE | | | | | OF | SEMICONDUCTING | | | | | CALIFORNIA | CHROMOPHORES FOR USE IN | | W/02012122227 | 2012 | 2012 | COLUMBIA | ORGANIC ELECTRONIC DEVICES | | WO2012122387 | 2012 | 2012 | COLUMBIA
UNIVERSITY | GRAPHENE ELECTRODES FOR ELECTRONIC DEVICES | | WO2012129511 | 2012 | 2012 | NORTHWESTER | SEMICONDUCTING COMPOUNDS | | 11 O2012127J11 | 2012 | 2012 | N UNIVERSITY | AND DEVICES INCORPORATING | | | | | 1, 01,11 (LIMIT 1 | SAME | | WO2012138480 | 2012 | 2012 | UT-BATTELLE | METHODS FOR PRODUCING | | | | | LLC | COMPLEX FILMS, AND FILMS | | | | | | PRODUCED THEREBY | | WO2012161773 | 2012 | 2012 | UNIVERSITY | ORGANIC PHOTOVOLTAIC CELL | | | | | OF MICHIGAN | INCORPORATING ELECTRON | | | | | | CONDUCTING EXCITON BLOCKING | | 0257040 | 2004 | 2012 | DDINGETON | LAYERS | | 8357849 | 2004 | 2013 | PRINCETON
UNIVERISTY | ORGANIC PHOTOSENSITIVE
DEVICES | | 8378385 | 2010 | 2013 | UNIVERSITY | METHODS OF PREPARING FLEXIBLE | | 03/0303 | 2010 | 2013 | OMIVEKSIII | MILITIODS OF FREFARING FLEAIDLE | | | | | OF MICHIGAN | PHOTOVOLTAIC DEVICES USING EPITAXIAL LIFTOFF, AND PRESERVING THE INTEGRITY OF GROWTH SUBSTRATES USED IN EPITAXIAL GROWTH | |---------|------|------|--|--| | 8389853 | 2010 | 2013 | UNIVERSITY
OF TEXAS;
SANDIA
CORPORATION | ASPHALTENE BASED PHOTOVOLTAIC DEVICES | | 8399761 | 2010 | 2013 | NORTHWESTER
N UNIVERSITY | ORGANIC PHOTOVOLTAIC DEVICE
WITH INTERFACIAL LAYER AND
METHOD OF FABRICATING SAME | | 8415758 | 2011 | 2013 | LOS ALAMOS
NATIONAL
SECURITY LLC | OPTOELECTRONIC DEVICES UTILIZING MATERIALS HAVING ENHANCED ELECTRONIC TRANSITIONS | | 8420928 | 2008 | 2013 | PPG
INDUSTRIES
OHIO INC | USE OF PHOTOVOLTAICS FOR
WASTE HEAT RECOVERY | | 8424255 | 2007 | 2013 | SUNPOWER
CORP | PV MODULE MOUNTING METHOD
AND MOUNTING ASSEMBLY | | 8431815 | 2009 | 2013 | LOS ALAMOS
NATIONAL
SECURITY LLC | PHOTOVOLTAIC DEVICE
COMPRISING COMPOSITIONALLY
GRADED INTRINSIC PHOTOACTIVE
LAYER | | 8440906 | 2006 | 2013 | UNIVERSITY
OF
CALIFORNIA | NANOCRYSTAL SOLAR CELLS
PROCESSED FROM SOLUTION | | 8445388 | 2011 | 2013 | BATTELLE
ENERGY
ALLIANCE LLC | METHODS OF FORMING
SEMICONDUCTOR DEVICES AND
DEVICES FORMED USING SUCH
METHODS | | 8466004 | 2009 | 2013 | PRINCETON
UNIVERISTY | SOLAR CELLS | | 8518526 | 2010 | 2013 | UT-BATTELLE
LLC | STRUCTURES WITH THREE DIMENSIONAL NANOFENCES COMPRISING SINGLE CRYSTAL SEGMENTS | | 8530338 | 2008 | 2013 | CALIFORNIA
INSTITUTE OF
TECHNOLOGY | STRUCTURES OF AND METHODS
FOR FORMING VERTICALLY
ALIGNED SI WIRE ARRAYS | | 8536049 | 2011 | 2013 | ROHM & HAAS
INC, ALLIANCE
FOR
SUSTAINABLE
ENERGY LLC | METHOD FOR FORMING METAL CONTACTS | | 8536098 | 2011 | 2013 | UNASSIGNED | HIGH PERFORMANCE SUPERCONDUCTING DEVICES ENABLED BY THREE DIMENSIONALLY ORDERED NANODOTS AND/OR NANORODS | | 8558101 | 2006 | 2013 | SUNPOWER
CORP | SUPPORTED PV MODULE ASSEMBLY | | 8558107 | 2011 | 2013 | UNIVERSITY
OF
WASHINGTON | DYE-SENSITIZED SOLAR CELL
EMPLOYING ZINC OXIDE
AGGREGATES GROWN IN THE | | 2.50.50.5 | | | | PRESENCE OF LITHIUM | |---------------|------|------|--|--| | 8568686 | 2007 | 2013 | UNIVERSITY | SYNTHESIS OF THIN FILMS AND | | | | | OF | MATERIALS UTILIZING A GASEOUS | | 0.505.006 | 2012 | 2012 | CALIFORNIA | CATALYST | | 8585886 | 2012 | 2013 | UT-BATTELLE | METHOD FOR SYNTHESIS OF | | | | | LLC | TITANIUM DIOXIDE NANOTUBES | | | | | | USING IONIC LIQUIDS | | 8586967 | 2004 | 2013 | PRINCETON | HIGH EFFICIENCY ORGANIC | | | | | UNIVERISTY | PHOTOVOLTAIC CELLS EMPLOYING | | | | | | HYBRIDIZED MIXED-PLANAR | | | | | | HETEROJUNCTIONS | | 8592249 | 2012 | 2013 | SANDIA CORP | PHOTOVOLTAIC SOLAR CELL | | 8592680 | 2004 | 2013 | PRINCETON | ORGANIC PHOTOSENSITIVE | | | | | UNIVERISTY | DEVICES | | 8614395 | 2011 | 2013 | SANDIA CORP | SOLAR CELL WITH BACK SIDE | | | | | | CONTACTS | | EP2590983 | 2011 | 2013 | UNIV | FUSING PORPHYRINS WITH | | | | | SOUTHERN | POLYCYCLIC AROMATIC | | | | | CALIFORNIA; | HYDROCARBONS AND | | | | | UNIV | HETEROCYCLES FOR | | | | | MICHIGAN | OPTOELECTRIC APPLICATIONS | | EP2600216 | 2003 | 2013 | WISCONSIN | CONTROL OF SMALL DISTRIBUTED | | | | | ALUMNI RES | ENERGY RESOURCES | | | | | FOUND | | | EP2614684 | 2011 | 2013 | UNIVERSITY | BROADLY ABSORBING | | | | | OF SOUTHERN | METALLOPORPHYRIN-BASED | | | | | CALIFORNIA | MULTICHROMOPHORIC ARRAYS | | | | | | FOR TRIPLET HARVESTING | | EP2631014 | 2004 | 2013 | PRINCETON | IMPROVED SOLAR CELLS | | ED2 (2522) | 2006 | 2012 | UNIVERISTY | ODG ANG DOUBLE | | EP2637228 | 2006 | 2013 | PRINCETON | ORGANIC DOUBLE- | | | | | UNIVERSITY, | HETEROSTRUCTURE | | | | | TECHNION RES | PHOTOVOLTAIC CELLS HAVING | | | | | & DEV | RECIPROCAL-CARRIER EXCITON | | ED2642065 | 2011 | 2012 | THE STATE OF S | BLOCKING LAYER | | EP2643865 | 2011 | 2013 | UNIVERSITY | ORGANIC SMALL MOLECULE | | | | | OF | SEMICONDUCTING | | | | | CALIFORNIA | CHROMOPHORES FOR USE IN | | ************* | 2012 | 2012 | THE WATER CAME I | ORGANIC ELECTRONIC DEVICES | | WO2013067181 | 2012 | 2013 | UNIVERSITY | METHOD OF PREPARING THE | | | | | OF MICHIGAN | SURFACE OF METAL SUBSTRATES | | | | | | FOR ORGANIC PHOTOSENSITIVE | | W/O2012100040 | 2012 | 2012 | MODELLWEGGER | DEVICES METHODS OF MAKING NON | | WO2013109948 | 2013 | 2013 | NORTHWESTER | METHODS OF MAKING NON- | | | | | N UNIVERSITY | COVALENTLY BONDED CARBON- | | | | | | TITANIA NANOCOMPOSITE THIN | | | | | | FILMS AND APPLICATIONS OF THE | | W/O201212/207 | 2012 | 2012 | MODELLWEGGER | SAME | | WO2013126385 | 2013 | 2013 | NORTHWESTER | PHOTOLUMINESCENT COMPOUNDS | | WO0010106507 | 2012 | 2012 |
N UNIVERSITY | LIQUID ELECTROL VITE ERRE COLT | | WO2013126537 | 2013 | 2013 | NORTHWESTER | LIQUID ELECTROLYTE-FREE, SOLID- | | | | | N UNIVERSITY | STATE SOLAR CELLS WITH | | | | | | INORGANIC HOLE TRANSPORT | | 0647015 | 2010 | 2014 | IIT DATTELLE | MATERIALS HETERO HINCTION PHOTOVOLTAIC | | 8647915 | 2010 | 2014 | UT-BATTELLE | HETERO-JUNCTION PHOTOVOLTAIC | | | | | LLC, | DEVICE AND METHOD OF | | | | | UNIVERSITY
OF TENNESSEE | FABRICATING THE DEVICE | |---------|------|------|----------------------------|--| | 8661753 | 2010 | 2014 | SUNPOWER
CORP | WATER-RESISTANT APPARATUSES
FOR PHOTOVOLTAIC MODULES | | 8664095 | 2011 | 2014 | UNIVERSITY | BLACK GE BASED ON | | | | | OF | CRYSTALLINE/AMORPHOUS | | | | | CALIFORNIA | CORE/SHELL NANONEEDLE ARRAYS | | 8669359 | 2009 | 2014 | ARIZONA | ELECTRICALLY CONDUCTING | | | | | STATE | PORPHYRIN AND PORPHYRIN- | | | | | UNIVERSITY | FULLERENE ELECTROPOLYMERS | | 8679730 | 2011 | 2014 | BROOKHAVEN | AZIDE FUNCTIONALIZED POLY(3- | | | | | SCIENCE | HEXYLTHIOPHENE) AND METHOD | | | | | ASSOCIATES | OF FORMING SAME | | | | | LLC | | | 8679888 | 2009 | 2014 | UNIVERSITY | ARRAYS OF ULTRATHIN SILICON | | 0500004 | 2010 | 2011 | OF ILLINOIS | SOLAR MICROCELLS | | 8709304 | 2010 | 2014 | UNIVERSITY | HYDROTHERMAL SYNTHESIS OF | | | | | OF NEVADA | NANOCUBES OF SILLENITE TYPE | | | | | RENO | COMPOUNDS FOR PHOTOVOLTAIC APPLICATIONS AND SOLAR ENERGY | | | | | | CONVERSION OF CARBON DIOXIDE | | | | | | TO FUELS | | 8722458 | 2011 | 2014 | UNIVERSITY | OPTICAL SYSTEMS FABRICATED BY | | 0722430 | 2011 | 2014 | OF ILLINOIS, | PRINTING-BASED ASSEMBLY | | | | | SEMPRIUS INC | I KINTING-DASED ASSEMBLI | | 8723169 | 2012 | 2014 | UNIVERSITY | ENHANCING PERFORMING | | 0723107 | 2012 | 2011 | OF | CHARACTERISTICS OF ORGANIC | | | | | CALIFORNIA | SEMICONDUCTING FILMS BY | | | | | | IMPROVED SOLUTION PROCESSING | | 8728857 | 2013 | 2014 | SANDIA CORP | PHOTOVOLTAIC SOLAR CELL | | 8736108 | 2011 | 2014 | SANDIA CORP | PHOTOVOLTAIC SYSTEM | | 8745936 | 2012 | 2014 | SUNEDISON | RACK ASSEMBLY FOR MOUNTING | | | | | LLC | SOLAR MODULES | | 8748740 | 2013 | 2014 | UNIVERSITY | ASPHALTENE BASED | | | | | OF TEXAS; | PHOTOVOLTAIC DEVICES | | | | | SANDIA | | | 0752016 | 2005 | 2014 | CORPORATION | CEMICONDUCTOR | | 8753916 | 2005 | 2014 | UNIVERSITY
OF | SEMICONDUCTOR-
NANOCRYSTAL/CONJUGATED | | | | | | POLYMER THIN FILMS | | 8754188 | 2012 | 2014 | CALIFORNIA
NORTHWESTER | SEMICONDUCTING COMPOUNDS | | 0/5+100 | 2012 | 2014 | N UNIVERSITY | AND DEVICES INCORPORATING | | | | | 11 OTH LENGTH I | SAME | | 8778724 | 2010 | 2014 | UT-BATTELLE | HIGH VOLUME METHOD OF MAKING | | 0770721 | 2010 | _011 | LLC | LOW-COST, LIGHTWEIGHT SOLAR | | | | | | MATERIALS | | 8785905 | 2013 | 2014 | SANDIA CORP | AMBER LIGHT-EMITTING DIODE | | | | | | COMPRISING A GROUP III-NITRIDE | | | | | | NANOWIRE ACTIVE REGION | | 8795854 | 2008 | 2014 | UNASSIGNED | SEMICONDUCTOR-BASED, LARGE- | | | | | | AREA, FLEXIBLE, ELECTRONIC | | | | | | DEVICES ON {110}<100> ORIENTED | | | | | | SUBSTRATES | | 8808933 | 2010 | 2014 | CALIFORNIA | SEMICONDUCTOR WIRE ARRAY | | | | | INSTITUTE OF | STRUCTURES, AND SOLAR CELLS | | | | | TECHNOLOGY | AND PHOTODETECTORS BASED ON | | 8809110 | 2010 | 2014 | UT-BATTELLE
LLC | SUCH STRUCTURES HIGH THROUGHPUT PARALLEL BACKSIDE CONTACTING AND PERIODIC TEXTURING FOR HIGH- EFFICIENCY SOLAR CELLS | |---------|------|------|---|---| | 8816332 | 2012 | 2014 | UNIVERSITY
OF MICHIGAN | ORGANIC PHOTOVOLTAIC CELL
INCORPORATING ELECTRON
CONDUCTING EXCITON BLOCKING
LAYERS | | 8829930 | 2011 | 2014 | UT-BATTELLE
LLC | RAPID SCREENING BUFFER LAYERS IN PHOTOVOLTAICS | | 8841549 | 2009 | 2014 | UNIVERSITY
OF UTAH | ORGANIC SPINTRONIC DEVICES
AND METHODS FOR MAKING THE
SAME | | 8853526 | 2008 | 2014 | UNIVERSITY
OF
CALIFORNIA | SURFACE PLASMON-ENHANCED PHOTOVOLTAIC DEVICE | | 8871884 | 2010 | 2014 | UNIVERSITY
OF
WASHINGTON | COPOLYMER SEMICONDUCTORS COMPRISING THIAZOLOTHIAZOLE OR BENZOBISTHIAZOLE, OR BENZOBISOXAZOLE ELECTRON ACCEPTOR SUBUNITS, AND ELECTRON DONOR SUBUNITS, AND THEIR USES IN TRANSISTORS AND SOLAR CELLS | | 8876971 | 2006 | 2014 | ALLIANCE FOR
SUSTAINABLE
ENERGY LLC | PRECURSORS FOR FORMATION OF
COPPER SELENIDE, INDIUM
SELENIDE, COPPER INDIUM
DISELENIDE, AND/OR COPPER
INDIUM GALLIUM DISELENIDE
FILMS | | 8883548 | 2011 | 2014 | LAWRENCE
LIVERMORE
NATIONAL
SECURITY LLC | DEVELOPMENT OF AN ELECTRONIC
DEVICE QUALITY ALUMINUM
ANTIMONIDE (ALSB)
SEMICONDUCTOR FOR SOLAR CELL
APPLICATIONS | | 8889342 | 2014 | 2014 | BROOKHAVEN
SCIENCE
ASSOCIATES
LLC | AZIDE FUNCTIONALIZED POLY(3-
HEXYLTHIOPHENE) AND METHODS
OF FORMING SAME | | 8895337 | 2013 | 2014 | SANDIA CORP | METHOD OF FABRICATING
VERTICALLY ALIGNED GROUP III-V
NANOWIRES | | 8895406 | 2011 | 2014 | UNIVERSITY
OF ILLINOIS | RELEASE STRATEGIES FOR MAKING
TRANSFERABLE SEMICONDUCTOR
STRUCTURES, DEVICES AND DEVICE
COMPONENTS | | 8895416 | 2013 | 2014 | ALLIANCE FOR
SUSTAINABLE
ENERGY LLC | SEMICONDUCTOR DEVICE PN JUNCTION FABRICATION USING OPTICAL PROCESSING OF AMORPHOUS SEMICONDUCTOR MATERIAL | | 8895848 | 2008 | 2014 | NORTHWESTER
N UNIVERSITY | P-TYPE SEMICONDUCTING NICKEL OXIDE AS AN EFFICIENCY-ENHANCING ANODAL INTERFACIAL LAYER IN BULK HETEROJUNCTION | | 8896077 | 2010 | 2014 | STANFORD | SOLAR CELLS
OPTOELECTRONIC | |--------------|------|------|---|---| | 8890077 | 2010 | 2014 | UNIVERSITY | SEMICONDUCTOR DEVICE AND METHOD OF FABRICATION | | 8904717 | 2012 | 2014 | SUNPOWER
CORP | FIRE RESISTANT PV SHINGLE
ASSEMBLY | | 8911887 | 2011 | 2014 | LOS ALAMOS
NATIONAL
SECURITY LLC | COMPOSITE MATERIALS WITH
METAL OXIDE ATTACHED TO LEAD
CHALCOGENIDE NANOCRYSTAL
QUANTUM DOTS WITH LINKERS | | 8912037 | 2011 | 2014 | FIRST SOLAR
INC | METHOD FOR MAKING PHOTOVOLTAIC DEVICES USING OXYGENATED SEMICONDUCTOR THIN FILM LAYERS | | 8920767 | 2011 | 2014 | UT-BATTELLE
LLC | ARRAY OF TITANIUM DIOXIDE
NANOSTRUCTURES FOR SOLAR
ENERGY UTILIZATION | | 8921687 | 2012 | 2014 | MAGNOLIA
SOLAR INC | HIGH EFFICIENCY QUANTUM WELL
WAVEGUIDE SOLAR CELLS AND
METHODS FOR CONSTRUCTING THE
SAME | | EP2678890 | 2012 | 2014 | UNIVERSITY
OF MICHIGAN | ORGANIC PHOTOVOLTAIC CELL
INCORPORATING ELECTRON
CONDUCTING EXCITON BLOCKING
LAYERS | | EP2777084 | 2012 | 2014 | UNIV
MICHIGAN;
UNIV
DANKOOK | METHOD OF PREPARING THE
SURFACE OF METAL SUBSTRATES
FOR ORGANIC PHOTOSENSITIVE
DEVICES | | WO2014004610 | 2013 | 2014 | ARIZONA
STATE
UNIVERSITY | SYSTEM AND METHOD FOR ELECTROREFINING OF SILICON | | WO2014035555 | 2013 | 2014 | BATTELLE
ENERGY
ALLIANCE LLC | ENERGY HARVESTING DEVICES,
SYSTEMS, AND RELATED METHODS | | WO2014036446 | 2013 | 2014 | SANDIA CORP | DYNAMICALLY RECONFIGURABLE PHOTOVOLTAIC SYSTEM | | WO2014052530 | 2013 | 2014 | UNIVERSITY OF SOUTHERN CALIFORNIA, UNIVERSITY OF MICHIGAN | EXCITONIC ENERGY TRANSFER TO
INCREASE INORGANIC SOLAR CELL
EFFICIENCY | | WO2014058918 | 2013 | 2014 | SANDIA CORP | TRANSPARENT CONTACTS FOR
STACKED COMPOUND
PHOTOVOLTAIC CELLS | | WO2014070888 | 2013 | 2014 | MASSACHUSET
TS INSTITUTE
OF
TECHNOLOGY | ORGANIC CONDUCTIVE MATERIALS
AND DEVICES | | WO2014089235 | 2013 | 2014 | NORTHWESTER
N UNIVERSITY,
POLYERA
CORP | CONJUGATED POLYMERS AND
THEIR USE IN OPTOELECTRONIC
DEVICES | | WO2014143895 | 2014 | 2014 | SANDIA CORP | SOLAR TRACKING SYSTEM | | WO2014151383 | 2014 | 2014 | SANDIA CORP | PHOTOELECTROCHEMICALLY
DRIVEN SELF-ASSEMBLY | | WO2014152592 | 2014 | 2014 | SANDIA CORP | PRINTED CRYSTALLINE MICROELECTRONIC DEVICES | |----------------|------|------|---------------------------|---| | WO2014152731 | 2014 | 2014 | SANDIA CORP | CUSTOMIZED COLOR PATTERNING | | W 0201 1132731 | 2011 | 2011 | Si i i Diri Cold | OF PHOTOVOLTAIC CELLS | | WO2014189690 | 2014 | 2014 | PRINCETON | HYPERUNIFORM AND NEARLY | | | | | UNIVERISTY | HYPERUNIFORM RANDOM | | | | | | NETWORK MATERIALS | | 8927319 | 2013 | 2015 | UNIVERSITY | METHODS OF PREPARING FLEXIBLE | | | | | OF MICHIGAN | PHOTOVOLTAIC DEVICES USING | | | | | | EPITAXIAL LIFTOFF, AND | | | | | | PRESERVING THE INTEGRITY OF | | | | | | GROWTH SUBSTRATES USED IN | | 0050006 | 2010 | 2015 | TO HE POINT | EPITAXIAL GROWTH | | 8950886 | 2010 | 2015 | UNIVERSITY | SOLAR-POWERED LIGHTING | | 9062002 | 2012 | 2015 | OF FLORIDA | MODULE | | 8962992 | 2012 | 2015 | ROSESTREET
LABS ENERGY | DILUTE GROUP III-V NITRIDE
INTERMEDIATE BAND SOLAR CELLS | | | | | INC | WITH CONTACT BLOCKING LAYERS | | 8969831 | 2013 | 2015 | MASSACHUSET | EXCITATION ENHANCEMENT AND | | 0707031 | 2013 | 2013 | TS INSTITUTE | EXTRACTION ENHANCEMENT WITH | | | | | OF | PHOTONIC CRYSTALS | | | | | TECHNOLOGY | 11101011110 | | 8987736 | 2008 | 2015 | UNASSIGNED | [100] OR [110] ALIGNED, | | | | | | SEMICONDUCTOR-BASED, LARGE- | | | | | | AREA, FLEXIBLE, ELECTRONIC | | | | | | DEVICES | | 9006972 | 2010 | 2015 | TUFTS | MICROPLASMA GENERATOR AND | | | | | COLLEGE | METHODS THEREFOR | | 9012770 | 2012 | 2015 | BROOKHAVEN | CONDUCTIVE | | | | | SCIENCE | POLYMER/FULLERENE BLEND THIN | | | | | ASSOCIATES
LLC | FILMS WITH HONEYCOMB
FRAMEWORK FOR TRANSPARENT | | | | | LLC | PHOTOVOLTAIC APPLICATION | | 9024367 | 2013 | 2015 | UNIVERSITY | FIELD-EFFECT P-N JUNCTION | | 7021307 | 2013 | 2013 | OF | TIEBS ETTECT TOTAL | | | | | CALIFORNIA | | | 9029239 | 2013 |
2015 | SANDIA CORP | SEPARATING SEMICONDUCTOR | | | | | | DEVICES FROM SUBSTRATE BY | | | | | | ETCHING GRADED COMPOSITION | | | | | | RELEASE LAYER DISPOSED | | | | | | BETWEEN SEMICONDUCTOR | | | | | | DEVICES AND SUBSTRATE | | | | | | INCLUDING FORMING | | | | | | PROTUBERANCES THAT REDUCE | | 9029681 | 2010 | 2015 | CANDIA CODD | STICTION
MICROSYSTEM ENABLED | | 7047001 | 2010 | 2013 | SANDIA CORP | PHOTOVOLTAIC MODULES AND | | | | | | SYSTEMS | | 9040113 | 2010 | 2015 | UCHICAGO | ATOMIC LAYER DEPOSITION OF | | ,010113 | 2010 | 2015 | ARGONNE LLC | METAL SULFIDE THIN FILMS USING | | | | | | NON-HALOGENATED PRECURSORS | | 9076972 | 2013 | 2015 | ARIZONA | SOLUBLE PORPHYRIN POLYMERS | | | | | STATE | | | | | | UNIVERSITY | | | 9093586 | 2012 | 2015 | SANDIA CORP | PHOTOVOLTAIC POWER | | | | | | GENERATION SYSTEM FREE OF | | 0105700 | 2014 | 2015 | I D III IED CIETI | BYPASS DIODES | |-------------------------------|----------------------|----------------------|--|--| | 9105782 | 2014 | 2015 | UNIVERSITY | ARRAYS OF ULTRATHIN SILICON | | 0105707 | 2012 | 2015 | OF ILLINOIS | SOLAR MICROCELLS | | 9105797 | 2012 | 2015 | ALLIANCE FOR | LIQUID PRECURSOR INKS FOR | | | | | SUSTAINABLE | DEPOSITION OF IN—SE, GA—SE AND | | 0112100 | 2014 | 2015 | ENERGY LLC | IN—GA—SE | | 9112100 | 2014 | 2015 | SANDIA CORP | METHOD FOR FABRICATING | | 0112164 | 2012 | 2015 | DDINCETON | PIXELATED SILICON DEVICE CELLS | | 9112164 | 2013 | 2015 | PRINCETON | HIGH EFFICIENCY ORGANIC | | | | | UNIVERISTY | PHOTOVOLTAIC CELLS EMPLOYING | | | | | | HYBRIDIZED MIXED-PLANAR | | 0112525 | 2011 | 2015 | LIMINEDCITY | HETEROJUNCTIONS | | 9113535 | 2011 | 2015 | UNIVERSITY | FUSING PORPHYRINS WITH | | | | | OF SOUTHERN | POLYCYCLIC AROMATIC | | | | | CALIFORNIA, | HYDROCARBONS AND | | | | | UNIVERSITY | HETEROCYCLES FOR | | 0117040 | 2014 | 2015 | OF MICHIGAN | OPTOELECTRONIC APPLICATIONS | | 9117940 | 2014 | 2015 | UNIVERSITY | OPTICAL SYSTEMS FABRICATED BY | | | | | OF ILLINOIS, | PRINTING-BASED ASSEMBLY | | 0.10.000 | 2011 | 2015 | SEMPRIUS INC | DIVOTOLIOI TILIGGOL I D | | 9126392 | 2011 | 2015 | SANDIA CORP | PHOTOVOLTAIC SOLAR | | 0120004 | 2012 | 2015 | ALLIANCE FOR | CONCENTRATOR | | 9130084 | 2013 | 2015 | ALLIANCE FOR | LIQUID PRECURSOR FOR | | | | | SUSTAINABLE | DEPOSITION OF COPPER SELENIDE | | | | | ENERGY LLC | AND METHOD OF PREPARING THE | | 0.4.0.4.00 | | -0 | | SAME | | 9130170 | 2012 | 2015 | UNIVERSITY | INVERTED ORGANIC | | 0126402 | 2015 | 2015 | OF MICHIGAN | PHOTOSENSITIVE DEVICE | | 9136483 | 2015 | 2015 | UNIVERSITY | THIOPHENE FUSED | | | | | OF | AZACORONENES: REGIOSELECTIVE | | | | | CALIFORNIA | SYNTHESIS, SELF ORGANIZATION, | | | | | | CHARGE TRANSPORT, AND ITS | | | | | | INCORPORATION IN CONJUGATED | | 0141412 | 2012 | 2017 | CANDIA CODD | POLYMERS | | 9141413 | 2012 | 2015 | SANDIA CORP | OPTIMIZED MICROSYSTEMS- | | 01.42.400 | 2011 | 2015 | ALLIANCE FOR | ENABLED PHOTOVOLTAICS | | 9142408 | 2011 | 2015 | ALLIANCE FOR | LIQUID PRECURSOR FOR | | | | | SUSTAINABLE | DEPOSITION OF INDIUM SELENIDE | | | | | ENERGY LLC | AND METHOD OF PREPARING THE | | | | | | CART | | 0142052 | 2012 | 2015 | CANDIA CODD | SAME
MICROINVERTERS FOR | | 9143053 | 2013 | 2015 | SANDIA CORP, | MICROINVERTERS FOR | | 9143053 | 2013 | 2015 | UNIVERSITY | MICROINVERTERS FOR
EMPLOYMENT IN CONNECTION | | | | | UNIVERSITY
OF ILLINOIS | MICROINVERTERS FOR
EMPLOYMENT IN CONNECTION
WITH PHOTOVOLTAIC MODULES | | 9143053
9156938 | 2013 | 2015 | UNIVERSITY
OF ILLINOIS
MASSACHUSET | MICROINVERTERS FOR EMPLOYMENT IN CONNECTION WITH PHOTOVOLTAIC MODULES COMPOSITIONS, METHODS, AND | | | | | UNIVERSITY OF ILLINOIS MASSACHUSET TS INSTITUTE | MICROINVERTERS FOR EMPLOYMENT IN CONNECTION WITH PHOTOVOLTAIC MODULES COMPOSITIONS, METHODS, AND SYSTEMS COMPRISING FLUOROUS- | | | | | UNIVERSITY OF ILLINOIS MASSACHUSET TS INSTITUTE OF | MICROINVERTERS FOR EMPLOYMENT IN CONNECTION WITH PHOTOVOLTAIC MODULES COMPOSITIONS, METHODS, AND | | 9156938 | 2011 | 2015 | UNIVERSITY OF ILLINOIS MASSACHUSET TS INSTITUTE OF TECHNOLOGY | MICROINVERTERS FOR EMPLOYMENT IN CONNECTION WITH PHOTOVOLTAIC MODULES COMPOSITIONS, METHODS, AND SYSTEMS COMPRISING FLUOROUS- SOLUBLE POLYMERS | | | | | UNIVERSITY OF ILLINOIS MASSACHUSET TS INSTITUTE OF TECHNOLOGY UNIVERSITY | MICROINVERTERS FOR EMPLOYMENT IN CONNECTION WITH PHOTOVOLTAIC MODULES COMPOSITIONS, METHODS, AND SYSTEMS COMPRISING FLUOROUS- SOLUBLE POLYMERS INTERBAND CASCADE (IC) | | 9156938 | 2011 | 2015 | UNIVERSITY OF ILLINOIS MASSACHUSET TS INSTITUTE OF TECHNOLOGY | MICROINVERTERS FOR EMPLOYMENT IN CONNECTION WITH PHOTOVOLTAIC MODULES COMPOSITIONS, METHODS, AND SYSTEMS COMPRISING FLUOROUS- SOLUBLE POLYMERS INTERBAND CASCADE (IC) PHOTOVOLTAIC (PV) | | 9156938
9166084 | 2011 | 2015 | UNIVERSITY OF ILLINOIS MASSACHUSET TS INSTITUTE OF TECHNOLOGY UNIVERSITY OF OKLAHOMA | MICROINVERTERS FOR EMPLOYMENT IN CONNECTION WITH PHOTOVOLTAIC MODULES COMPOSITIONS, METHODS, AND SYSTEMS COMPRISING FLUOROUS- SOLUBLE POLYMERS INTERBAND CASCADE (IC) PHOTOVOLTAIC (PV) ARCHITECTURE FOR PV DEVICES | | 9156938 | 2011 | 2015 | UNIVERSITY OF ILLINOIS MASSACHUSET TS INSTITUTE OF TECHNOLOGY UNIVERSITY OF OKLAHOMA NORTHWESTER | MICROINVERTERS FOR EMPLOYMENT IN CONNECTION WITH PHOTOVOLTAIC MODULES COMPOSITIONS, METHODS, AND SYSTEMS COMPRISING FLUOROUS- SOLUBLE POLYMERS INTERBAND CASCADE (IC) PHOTOVOLTAIC (PV) ARCHITECTURE FOR PV DEVICES FUSED THIOPHENE-BASED | | 9156938
9166084 | 2011 | 2015 | UNIVERSITY OF ILLINOIS MASSACHUSET TS INSTITUTE OF TECHNOLOGY UNIVERSITY OF OKLAHOMA NORTHWESTER N UNIVERSITY, | MICROINVERTERS FOR EMPLOYMENT IN CONNECTION WITH PHOTOVOLTAIC MODULES COMPOSITIONS, METHODS, AND SYSTEMS COMPRISING FLUOROUS- SOLUBLE POLYMERS INTERBAND CASCADE (IC) PHOTOVOLTAIC (PV) ARCHITECTURE FOR PV DEVICES FUSED THIOPHENE-BASED CONJUGATED POLYMERS AND | | 9156938
9166084 | 2011 | 2015 | UNIVERSITY OF ILLINOIS MASSACHUSET TS INSTITUTE OF TECHNOLOGY UNIVERSITY OF OKLAHOMA NORTHWESTER N UNIVERSITY, POLYERA | MICROINVERTERS FOR EMPLOYMENT IN CONNECTION WITH PHOTOVOLTAIC MODULES COMPOSITIONS, METHODS, AND SYSTEMS COMPRISING FLUOROUS- SOLUBLE POLYMERS INTERBAND CASCADE (IC) PHOTOVOLTAIC (PV) ARCHITECTURE FOR PV DEVICES FUSED THIOPHENE-BASED CONJUGATED POLYMERS AND THEIR USE IN OPTOELECTRONIC | | 9156938
9166084
9178160 | 2011
2011
2014 | 2015
2015
2015 | UNIVERSITY OF ILLINOIS MASSACHUSET TS INSTITUTE OF TECHNOLOGY UNIVERSITY OF OKLAHOMA NORTHWESTER N UNIVERSITY, POLYERA CORP | MICROINVERTERS FOR EMPLOYMENT IN CONNECTION WITH PHOTOVOLTAIC MODULES COMPOSITIONS, METHODS, AND SYSTEMS COMPRISING FLUOROUS- SOLUBLE POLYMERS INTERBAND CASCADE (IC) PHOTOVOLTAIC (PV) ARCHITECTURE FOR PV DEVICES FUSED THIOPHENE-BASED CONJUGATED POLYMERS AND THEIR USE IN OPTOELECTRONIC DEVICES | | 9156938
9166084 | 2011 | 2015 | UNIVERSITY OF ILLINOIS MASSACHUSET TS INSTITUTE OF TECHNOLOGY UNIVERSITY OF OKLAHOMA NORTHWESTER N UNIVERSITY, POLYERA | MICROINVERTERS FOR EMPLOYMENT IN CONNECTION WITH PHOTOVOLTAIC MODULES COMPOSITIONS, METHODS, AND SYSTEMS COMPRISING FLUOROUS- SOLUBLE POLYMERS INTERBAND CASCADE (IC) PHOTOVOLTAIC (PV) ARCHITECTURE FOR PV DEVICES FUSED THIOPHENE-BASED CONJUGATED POLYMERS AND THEIR USE IN OPTOELECTRONIC | | 9190542 | 2014 | 2015 | SANDIA CORP | PHOTOVOLTAIC CELL WITH LIGHT
TRAPPING FOR ENHANCED
EFFICIENCY | |--------------|------|------|--|--| | 9190546 | 2010 | 2015 | SANDIA CORP | SOLAR PHOTOVOLTAIC
REFLECTIVE TROUGH COLLECTION
STRUCTURE | | 9196760 | 2012 | 2015 | UT-BATTELLE
LLC | METHODS FOR PRODUCING
COMPLEX FILMS, AND FILMS
PRODUCED THEREBY | | 9203030 | 2014 | 2015 | GEORGIA TECH
RESEARCH
CORP, PURDUE
RES FOUND, US
DEPT
AGRICULTURE | RECYCLABLE ORGANIC SOLAR
CELLS ON SUBSTRATES
COMPRISING CELLULOSE
NANOCRYSTALS (CNC) | | EP2891004 | 2013 | 2015 | BATTELLE
ENERGY
ALLIANCE LLC | ENERGY HARVESTING DEVICES,
SYSTEMS, AND RELATED METHODS | | EP2891187 | 2013 | 2015 | SANDIA CORP | DYNAMICALLY RECONFIGURABLE PHOTOVOLTAIC SYSTEM | | EP2901494 | 2013 | 2015 | UNIVERSITY OF SOUTHERN CALIFORNIA, UNIVERSITY OF MICHIGAN | EXCITONIC ENERGY TRANSFER TO
INCREASE INORGANIC SOLAR CELL
EFFICIENCY | | EP2944383 | 2006 | 2015 | ALLIANCE FOR
SUSTAINABLE
ENERGY LLC | PRECURSORS FOR FORMATION OF
COPPER SELENIDE, INDIUM
SELENIDE, COPPER INDIUM
DISELENIDE, AND/OR COPPER
INDIUM GALLIUM DISELENIDE
FILMS | | WO2015035127 | 2014 | 2015 | MASSACHUSET
TS INSTITUTE
OF
TECHNOLOGY | METALLIC DIELECTRIC PHOTONIC
CRYSTALS AND METHODS OF
FABRICATION | | WO2015038671 | 2014 | 2015 | UNIVERSITY
OF
WASHINGTON | NON-FULLERENE ELECTRON
ACCEPTORS FOR ORGANIC
PHOTOVOLTAIC DEVICES | | WO2015058105 | 2014 | 2015 | STC UNM | METHODS TO INTRODUCE SUB-
MICROMETER, SYMMETRY-
BREAKING SURFACE CORRUGATION
TO SILICON SUBSTRATES TO
INCREASE LIGHT TRAPPING | | WO2015061360 | 2014 | 2015 | STC UNM | SYSTEMS AND METHODS FOR
DISTRIBUTING POWER USING
PHOTOVOLTAIC RESOURCES AND A
SHIFTING BATTERY SYSTEM | | WO2015061770 | 2014 | 2015 | UNIVERSITY
OF MICHICAN,
DANKOOK
UNIVERSITY | PHOTOVOLTAIC CELLS WITH A
GRADED ACTIVE REGION ACHIVED
USING STAMP TRANSFER PRINTING | | WO2015073714 | 2014 | 2015 | STANFORD
UNIVERSITY | ILLUMINATION AND RADIATIVE COOLING | | WO2015160410 | 2015 |
2015 | UNIVERSITY
OF
PENNSYLVANI | HIGH-PERFORMING BULK
PHOTOVOLTAICS | | WO2015164731 | 2015 | 2015 | A
NORTHWESTER
N UNIVERSITY | SOLAR CELLS WITH PEROVSKITE-
BASED LIGHT SENSITIZATION
LAYERS | |--------------|------|------|---------------------------------------|--| | WO2015171689 | 2015 | 2015 | UNIVERSITY
OF
MASSACHUSET
TS | FUNCTIONAL INTERLAYERS OF
FULLERENE DERIVATIVES AND
APPLICATIONS IN ORGANIC SOLAR
CELLS | | WO2015178678 | 2015 | 2015 | ORION CO LTD | GLASS MATERIAL FOR SEALING
LARGE-AREA DYE-SENSITIZED
SOLAR CELL | | 9236194 | 2013 | 2016 | NORTHWESTER
N UNIVERSITY | METAL OXIDE-ENCAPSULATED
DYE-SENSITIZED PHOTOANODES
FOR DYE-SENSITIZED SOLAR CELLS | | 9240556 | 2014 | 2016 | NORTHWESTER
N UNIVERSITY | SEMICONDUCTING COMPOUNDS
AND DEVICES INCORPORATING
SAME | | 9293266 | 2014 | 2016 | UNIVERSITY
OF TEXAS | ASPHALTENE BASED PHOTOVOLTAIC DEVICES | | 9293553 | 2012 | 2016 | COLUMBIA
UNIVERSITY | GRAPHENE ELECTRODES FOR ELECTRONIC DEVICES | | 9336919 | 2013 | 2016 | UNIVERSITY
OF
PENNSYLVANI
A | METHODS FOR PREPARING
COLLOIDAL NANOCRYSTAL-BASED
THIN FILMS | | 9349900 | 2014 | 2016 | UNIVERSITY
OF ILLINOIS | RELEASE STRATEGIES FOR MAKING
TRANSFERABLE SEMICONDUCTOR
STRUCTURES, DEVICES AND DEVICE
COMPONENTS | | 9356173 | 2013 | 2016 | SANDIA CORP | DYNAMICALLY RECONFIGURABLE PHOTOVOLTAIC SYSTEM | | 9356241 | 2012 | 2016 | UNIVERSITY
OF
CALIFORNIA | END-GROUP-DIRECTED SELF-
ASSEMBLY OF ORGANIC
COMPOUNDS USEFUL FOR
PHOTOVOLTAIC APPLICATIONS | | 9368677 | 2014 | 2016 | SANDIA CORP | SELECTIVE LAYER DISORDERING IN
III-NITRIDES WITH A CAPPING
LAYER | | 9371226 | 2011 | 2016 | BATTELLE
ENERGY
ALLIANCE LLC | METHODS FOR FORMING
PARTICLES | | 9388499 | 2014 | 2016 | UCHICAGO
ARGONNE LLC | ATOMIC LAYER EPITAXY OF
HEMATITE ON INDIUM TIN OXIDE
FOR APPLICATION IN SOLAR
ENERGY CONVERSION | | 9391557 | 2013 | 2016 | SANDIA CORP | SOLAR TRACKING SYSTEM | | 9393550 | 2013 | 2016 | NORTHWESTER
N UNIVERSITY | METHODS OF MAKING NON-
COVALENTLY BONDED CARBON-
TITANIA NANOCOMPOSITE THIN
FILMS AND APPLICATIONS OF THE
SAME | | 9401442 | 2011 | 2016 | IOWA STATE
UNIVERSITY | TEXTURED MICROMETER SCALE
TEMPLATES AS LIGHT MANAGING
FABRICATION PLATFORM FOR
ORGANIC SOLAR CELLS | | 9425413 | 2015 | 2016 | ARIZONA | CONJUGATED SIDE-STRAPPED | | | | | STATE
UNIVERSITY | PHTHALOCYANINES AND METHODS
FOR PRODUCING AND USING THE
SAME | |--------------|------|------|---|--| | 9447107 | 2011 | 2016 | UNIVERSITY
OF SOUTHERN
CALIFORNIA | BROADLY ABSORBING METALLOPORPHYRIN-BASED MULTICHROMOPHORIC ARRAYS FOR TRIPLET HARVESTING | | 9472699 | 2012 | 2016 | BATTELLE
ENERGY
ALLIANCE LLC | ENERGY HARVESTING DEVICES,
SYSTEMS, AND RELATED METHODS | | 9472702 | 2012 | 2016 | SANDIA CORP,
UNIVERSITY
OF TEXAS | PHOTOVOLTAIC CELL WITH NANO-
PATTERNED SUBSTRATE | | 9472764 | 2013 | 2016 | NORTHWESTER
N UNIVERSITY,
POLYERA
CORP | CONJUGATED POLYMERS AND
THEIR USE IN OPTOELECTRONIC
DEVICES | | 9484475 | 2012 | 2016 | UNIVERSITY OF PENNSYLVANI A, DREXEL UNIVERSITY | SEMICONDUCTOR FERROELECTRIC
COMPOSITIONS AND THEIR USE IN
PHOTOVOLTAIC DEVICES | | 9496448 | 2013 | 2016 | SANDIA CORP | CUSTOMIZED COLOR PATTERNING OF PHOTOVOLTAIC CELLS | | 9505770 | 2011 | 2016 | ARIZONA
STATE
UNIVERSITY | ORGANIC PHOTOVOLTAIC DEVICES
COMPRISING SOLUTION-PROCESSED
SUBSTITUTED METAL-
PHTHALOCYANINES AND
EXHIBITING NEAR-IR PHOTO-
SENSITIVITY | | 9508881 | 2012 | 2016 | SANDIA CORP | TRANSPARENT CONTACTS FOR
STACKED COMPOUND
PHOTOVOLTAIC CELLS | | 9509250 | 2014 | 2016 | SINTON
CONSULTING
INC | RAPID MEASUREMENT OF
CURRENT-VOLTAGE
CHARACTERISTICS OF SOLAR
CELLS AND MODULES | | 9523152 | 2014 | 2016 | MASSACHUSET
TS INSTITUTE
OF
TECHNOLOGY | METALLIC DIELECTRIC PHOTONIC
CRYSTALS AND METHODS OF
FABRICATION | | 9530906 | 2014 | 2016 | STC UNM | METHODS TO INTRODUCE SUB-
MICROMETER, SYMMETRY-
BREAKING SURFACE CORRUGATION
TO SILICON SUBSTRATES TO
INCREASE LIGHT TRAPPING | | 9530912 | 2010 | 2016 | CALIFORNIA
INSTITUTE OF
TECHNOLOGY | THREE-DIMENSIONAL PATTERNING METHODS AND RELATED DEVICES | | 9531322 | 2016 | 2016 | SANDIA CORP | DYNAMICALLY RECONFIGURABLE PHOTOVOLTAIC SYSTEM | | WO2016051783 | 2015 | 2016 | SHARP KK | HYBRID TROUGH SOLAR POWER SYSTEM USING PHOTOVOLTAIC TWO-STAGE LIGHT CONCENTRATION | | WO2016187265 | 2016 | 2016 | NORTHWESTER | DOPANT-FREE POLYMERIC HOLE- | | | | | N UNIVERSITY | TRANSPORTING FOR PEROVSKITE SOLAR CELL | |--------------|------|------|---|--| | WO2016209333 | 2016 | 2016 | MASSACHUSET
TS INSTITUTE
OF
TECHNOLOGY | ELIMINATING EMISSIVE SUB-
BANDGAP STATES IN
NANOCRYSTALS | | 9548411 | 2013 | 2017 | SANDIA CORP | PHOTOELECTROCHEMICALLY
DRIVEN SELF-ASSEMBLY METHOD | | 9559219 | 2015 | 2017 | SANDIA CORP | FAST PROCESS FLOW, ON-WAFER
INTERCONNECTION AND
SINGULATION FOR MEPV | | 9559222 | 2014 | 2017 | ARIZONA
STATE
UNIVERSITY | METHOD AND TOOL TO REVERSE
THE CHARGES IN ANTI-REFLECTION
FILMS USED FOR SOLAR CELL
APPLICATIONS | | 9588058 | 2015 | 2017 | LAWRENCE
LIVERMORE
NATIONAL
SECURITY LLC | NON-DESTRUCTIVE EVALUATION
OF WATER INGRESS IN
PHOTOVOLTAIC MODULES | | 9589792 | 2013 | 2017 | SORAA INC | HIGH QUALITY GROUP-III METAL
NITRIDE CRYSTALS, METHODS OF
MAKING, AND METHODS OF USE | | 9595682 | 2013 | 2017 | MASSACHUSET
TS INSTITUTE
OF
TECHNOLOGY | ORGANIC CONDUCTIVE MATERIALS AND DEVICES | | 9601671 | 2015 | 2017 | UNIVERSITY
OF ILLINOIS,
SEMPRIUS INC | OPTICAL SYSTEMS FABRICATED BY PRINTING-BASED ASSEMBLY | | 9685580 | 2016 | 2017 | NATL TECH &
ENG
SOLUTIONS OF
SANDIA LLC | METHOD OF MAKING
PHOTOVOLTAIC CELL | | 9692234 | 2014 | 2017 | STC UNM | SYSTEMS AND METHODS FOR
DISTRIBUTING POWER USING
PHOTOVOLTAIC RESOURCES AND A
SHIFTING BATTERY SYSTEM | | 9711728 | 2015 | 2017 | NORTHWESTER
N UNIVERSITY,
FLEXTERRA
INC | FUSED THIOPHENE-BASED
CONJUGATED POLYMERS AND
THEIR USE IN OPTOELECTRONIC
DEVICES | | 9722113 | 2015 | 2017 | UNIVERSITY
OF MICHIGAN | TETRADYMITE LAYER ASSISTED
HETEROEPITAXIAL GROWTH AND
APPLICATIONS | | 9735306 | 2013 | 2017 | PRINCETON
UNIVERSITY,
TECHNION RES
& DEV | WUSTITE-BASED PHOTOELECTRODES WITH LITHIUM, HYDROGEN, SODIUM, MAGNESIUM, MANGANESE, ZINC AND NICKEL ADDITIVES | | 9748415 | 2016 | 2017 | SANDIA CORP | FAST PROCESS FLOW, ON-WAFER
INTERCONNECTION AND
SINGULATION FOR MEPV | | 9761748 | 2015 | 2017 | NATL TECH &
ENG
SOLUTIONS OF
SANDIA LLC | MICROSYSTEM ENABLED
PHOTOVOLTAIC MODULES AND
SYSTEMS | | 9763370 | 2013 | 2017 | SANDIA CORP | APPARATUS FOR ASSEMBLY OF
MICROELECTRONIC DEVICES | |--------------|------|------|---|--| | 9773934 | 2014 | 2017 | SHARP KK | HYBRID TROUGH SOLAR POWER
SYSTEM USING PHOTOVOLTAIC
TWO-STAGE LIGHT
CONCENTRATION | | 9773991 | 2015 | 2017 | UCHICAGO
ARGONNE LLC | NON-HYDROLYTIC METAL OXIDE
FILMS FOR PEROVSKITE HALIDE
OVERCOATING AND STABILIZATION | | 9799779 | 2014 | 2017 | UNIVERSITY
OF ILLINOIS | SYSTEMS AND METHODS FOR PHOTOVOLTAIC STRING PROTECTION | | 9803136 | 2013 | 2017 | NORTHWESTER
N UNIVERSITY | LIQUID ELECTROLYTE-FREE, SOLID-
STATE SOLAR CELLS WITH
INORGANIC HOLE TRANSPORT
MATERIALS | | 9809594 | 2014 | 2017 | UNIVERSITY
OF
WASHINGTON | NON-FULLERENE ELECTRON ACCEPTORS FOR ORGANIC PHOTOVOLTAIC DEVICES | | 9831369 | 2013 | 2017 | NATL TECH &
ENG
SOLUTIONS OF
SANDIA LLC | PHOTOVOLTAIC POWER GENERATION SYSTEM WITH PHOTOVOLTAIC CELLS AS BYPASS DIODES | | 9837953 | 2016 | 2017 | MASSACHUSET
TS INSTITUTE
OF
TECHNOLOGY | METALLIC DIELECTRIC PHOTONIC
CRYSTALS AND METHODS OF
FABRICATION | | 9852927 | 2016 | 2017 | UNIVERSITY
OF
CALIFORNIA | NEAR-UNITY
PHOTOLUMINESCENCE QUANTUM
YIELD IN MOS(SUB)2 | | EP3202030 | 2015 | 2017 | SHARP KK | HYBRID TROUGH SOLAR POWER
SYSTEM USING PHOTOVOLTAIC
TWO-STAGE LIGHT
CONCENTRATION | | WO2017117471 | 2016 | 2017 | LAWRENCE
LIVERMORE
NATIONAL
SECURITY LLC | NON-DESTRUCTIVE EVALUATION
OF WATER INGRESS IN
PHOTOVOLTAIC MODULES | | 9881999 | 2009 | 2018 | UNIVERSITY
OF
CALIFORNIA | METHODS OF FABRICATING NANOSTRUCTURES AND NANOWIRES AND DEVICES FABRICATED THEREFROM | | 9893294 | 2011 | 2018 | UNIVERSITY
OF
CALIFORNIA | ORGANIC SMALL MOLECULE
SEMICONDUCTING
CHROMOPHORES FOR USE IN
ORGANIC ELECTRONIC DEVICES | | 9911871 | 2015 | 2018 | NATL TECH &
ENG
SOLUTIONS OF
SANDIA LLC | REFLECTIVE PHOTOVOLTAICS | | 9923111 | 2014 | 2018 | STANFORD
UNIVERSITY | ILLUMINATION AND RADIATIVE COOLING | | 9941426 | 2016 | 2018 | STC UNM | METHODS TO INTRODUCE SUB-
MICROMETER, SYMMETRY-
BREAKING SURFACE CORRUGATION
TO SILICON SUBSTRATES TO | | 9966198 | 2015 | 2018 | NORTHWESTER
N UNIVERSITY | INCREASE LIGHT TRAPPING
SOLAR CELLS WITH PEROVSKITE-
BASED LIGHT SENSITIZATION | |----------|------|------|---|---| | 9978895 | 2013 | 2018 | NATL TECH &
ENG
SOLUTIONS OF | LAYERS FLEXIBLE PACKAGING FOR MICROELECTRONIC DEVICES | |
9978968 | 2014 | 2018 | SANDIA LLC
UNIVERSITY
OF MICHICAN,
DANKOOK | PHOTOVOLTAIC CELLS WITH A
GRADED ACTIVE REGION
ACHIEVED USING STAMP TRANSFER | | 9991443 | 2016 | 2018 | UNIVERSITY
UNIVERSITY
OF
MASSACHUSET | PRINTING CONJUGATED POLYMER ZWITTERIONS AND SOLAR CELLS COMPRISING CONJUGATED | | 9994766 | 2015 | 2018 | TS
NORTHWESTER
N UNIVERSITY | POLYMER ZWITTERIONS PHOTOLUMINESCENT COMPOUNDS | | 10002983 | 2017 | 2018 | NATL TECH &
ENG
SOLUTIONS OF
SANDIA LLC | NANOCOMPOSITE BARRIER FILMS
FOR PHOTOVOLTAIC APPLICATIONS | | 10038113 | 2015 | 2018 | NATL TECH &
ENG
SOLUTIONS OF
SANDIA LLC | MOLDABLE PHOTOVOLTAIC SOLAR
CELL MODULE | | 10056554 | 2015 | 2018 | UNIVERSITY
OF
MASSACHUSET
TS | FUNCTIONAL INTERLAYERS OF
FULLERENE DERIVATIVES AND
APPLICATIONS IN ORGANIC SOLAR
CELLS | | 10059596 | 2014 | 2018 | PRINCETON
UNIVERISTY | HYPERUNIFORM AND NEARLY
HYPERUNIFORM RANDOM
NETWORK MATERIALS | | 10062793 | 2014 | 2018 | MAGNOLIA
SOLAR INC | HIGH EFFICIENCY QUANTUM WELL
WAVEGUIDE SOLAR CELLS AND
METHODS FOR CONSTRUCTING THE
SAME | | 10068712 | 2015 | 2018 | ORION CO LTD | GLASS MATERIAL FOR SEALING
LARGE-AREA DYE-SENSITIZED
SOLAR CELL | | 10072345 | 2014 | 2018 | ARIZONA
STATE
UNIVERSITY | SYSTEM AND METHOD FOR ELECTROREFINING OF SILICON | | 10074751 | 2015 | 2018 | HANYANG
UNIVERSITY | SOLAR CELL AND METHOD OF FABRICATING THE SAME | | 10074820 | 2013 | 2018 | UNIVERSITY OF SOUTHERN CALIFORNIA, UNIVERSITY OF MICHIGAN | EXCITONIC ENERGY TRANSFER TO
INCREASE INORGANIC SOLAR CELL
EFFICIENCY | | 10096729 | 2015 | 2018 | UNIVERSITY
OF
PENNSYLVANI
A | HIGH-PERFORMING BULK PHOTOVOLTAICS | | 10096733 | 2016 | 2018 | UNIVERSITY
OF | METHODS FOR THE PREPARATION
OF COLLOIDAL NANOCRYSTAL | | | | | PENNSYLVANI
A | DISPERSION | |----------|------|------|---|---| | 10096734 | 2016 | 2018 | UNIVERSITY
OF
PENNSYLVANI
A | METHODS OF FORMING COLLOIDAL
NANOCRYSTAL-BASED THIN FILM
DEVICES | | 10109760 | 2016 | 2018 | MASSACHUSET
TS INSTITUTE
OF
TECHNOLOGY | ELIMINATING EMISSIVE SUB-
BANDGAP STATES IN
NANOCRYSTALS | | 10115917 | 2016 | 2018 | NORTHWESTER
N UNIVERSITY | DOPANT-FREE POLYMERIC HOLE-
TRANSPORTING MATERIALS FOR
PEROVSKITE SOLAR CELL | | 10147553 | 2017 | 2018 | UNIVERSITY
OF
MASSACHUSET
TS | HYDROPHILIC CONJUGATED
POLYMERS, AND METHODS OF
PREPARATION AND USE THEREOF | | 10243095 | 2018 | 2019 | NATL TECH &
ENG
SOLUTIONS OF
SANDIA LLC | MOLDABLE PHOTOVOLTAIC SOLAR
CELL MODULE | | 10361180 | 2017 | 2019 | UNIV ILLINOIS;
SEMPRIUS INC;
X CELEPRINT
LTD | OPTICAL SYSTEMS FABRICATED BY PRINTING-BASED ASSEMBLY | | 10424572 | 2017 | 2019 | UNIV ILLINOIS;
SEMPRIUS INC;
X CELEPRINT
LTD | OPTICAL SYSTEMS FABRICATED BY PRINTING-BASED ASSEMBLY | | 10483415 | 2018 | 2019 | STC UNM | METHODS TO INTRODUCE SUB-
MICROMETER, SYMMETRY-
BREAKING SURFACE CORRUGATION
TO SILICON SUBSTRATES TO
INCREASE LIGHT TRAPPING | | 10504882 | 2017 | 2019 | UNIV ILLINOIS;
SEMPRIUS INC;
X CELEPRINT
LTD | OPTICAL SYSTEMS FABRICATED BY PRINTING-BASED ASSEMBLY | | An Analysis of the Influence of SETO-funded Photovoltaics Patents | | | | | | | |---|---------------------------------|--|--|--|--|--| Report prepared by 1790 Analytics LLC | DOE/EE Publication Number: 2368 | | | | | |