Fiscal Year 2021 Advanced Vehicle Technologies Research

FOA # DE-FOA-0002420

Applicant	Location city, state	Project Description	Federal Share
AOI 1a: Nex	t-generation Liquid E	lectrolytes for Lithium-ion Cells under Extreme Condition	S
General Motors LLC	Warren, MI	Novel Organosulfur-Based Electrolytes for Safe Operation of High Voltage Lithium-ion Batteries Over a Wide Operating Temperature	\$2,500,000
SUNY University @ Stony Brook	Stony Brook, NY	Fluorinated Ester Local High Concentration Electrolytes For Operation of Lithium-ion Batteries Under Extreme Conditions	\$2,285,813
Mexichem Fluor Inc.	Waltham, MA	Extending the operating range and safety of Lithium- ion batteries with new fluorinated electrolytes	\$2,499,842
	AOI 1b: Liquid I	Electrolytes for Lithium-Sulfur (Li-S) Cells	
Navitas Advanced Solutions Group, LLC	Ann Arbor, MI	Fluorinated Glyme Electrolytes to Extend Li-S Battery Life	\$1,671,604
Penn State University Park	University Park, PA	Development of Functional Electrolytes for Li-S Battery Cells	\$1,666,667
Giner, Inc.	Newton, MA	Liquid Electrolytes for Lithium-Sulfur Batteries with Enhanced Cycle Life and Energy Density Performance	\$2,500,000
AOI 2: D	evelopment of State	of-the-art Lithium Sulfur and Lithium Air Battery Cells	
Penn State University Park	University Park, PA	Development of Li-S Battery Cells with High Energy Density and Long Cycling Life	\$1,250,000
University of California, San Diego	La Jolla, CA	Strategies to Enable Lean Electrolytes for High Loading and Stable Li-S Pouch Cells	\$1,250,000
University of Illinois at Chicago	Chicago, IL	Development of a High-Rate Lithium-Air Battery using a Gaseous CO2 Reactant	\$1,200,000
University of Pittsburgh	Pittsburgh, PA	New Engineering Concepts to High Energy Density Li-S Batteries	\$1,250,000
	AOI 3	: High Power Density Inverters	
Cummins, Inc.	Columbus, IN	Cummins High Power Density Inverter	\$4,998,714
BorgWarner Inc	Kokomo, IN	Scalable Ultra Power-Dense Extended Range (SUPER) Inverter	\$4,997,064
AOI 4: Integrated Simu	lation of Combustion	and Aftertreatment - Optimizing for Near-Zero Emissions	(ISCA-ONE)
West Virginia University Research Corporation	Morgantown, WV	Fast Simulation of Real Driving Emissions from Heavy- duty Diesel Vehicle Integrated with Advanced Aftertreatment System	\$2,500,000
University of Wisconsin- Madison	Madison, WI	Comprehensive Integrated Simulation Methodology for Enabling Near-Zero Emission HD Vehicles	\$2,604,870
	AOI 5: Demonstratio	n of Lightweight Multi-Material Glider System	
Clemson University	Greenville, SC	Manufacturing Demonstration of a Large-scale, Multi- material Vehicle Sub-system	\$5,750,000
AOI 6: L	ow-cost Infrastructur	e-based Enablers for Cooperative Driving Automation	

Applicant	Location city, state	Project Description	Federal Share
University of South Florida	Tampa, FL	Visual-Enhanced Cooperative Traffic Operations (VECTOR) System	\$3,500,000
Western Michigan University	Kalamazoo, MI	Development and Validation of Infrastructure- Enabled High-Quality Perception Data to Achieve Energy Efficient Autonomous Vehicle Operation through Computation Reductions and Offloading	\$1,999,994
AOI 7 Implementatio	on of Energy Efficient	Mobility Systems Technologies into Real-World System A	pplications
University of California: Irvine	Irvine, CA	AI-Based Mobility Monitoring System and Analytics Demonstration Pilot	\$3,000,000
Los Angeles Cleantech Incubator	Los Angeles, CA	Testing and Evaluation of Curb Management and Integrated Strategies to Catalyze Market Adoption of Electric Vehicles	\$3,798,455
Xtelligent	Los Angeles, CA	Cooperative Traffic Signal Network for Freight Energy Efficiency, Safety, Sustainability, and Public Health	\$3,589,506
Optimus Ride Inc.	Boston, MA	Scaling Automated-Connected-Electric-Shared (ACES) Fleets: Advancing Energy Efficiency, Decarbonization, and Social Equity Goals	\$4,333,333
	AOI 8: T	ransportation and Energy Analysis	
ElectroTempo, Inc.	Dover, DE	Scalable Truck Charging Demand Simulation for Cost- Optimized Infrastructure Planning	\$324,000
Rocky Mountain Institute	Snowmass, CO	Projecting and Optimizing Medium and Heavy Truck Charging With Real World Data	\$339,899
Colorado State University	Fort Collins, CO	Agent-Based, Bottom-Up Medium- and Heavy-duty Electric Vehicle Economics, Operation, Charging, and Adoption	\$292,541