

ENERGISE Webinar:

Solar to the Max: Innovations in Distribution Grid Planning and Operations

Robust Distributed State Estimator for Interconnected Transmission and Distribution Networks Northeastern University DE-EE0008005 June 25, 2021

Principal Investigator: Ali Abur (NEU); Sub-contractor: Jianzhong Tong (PJM) Other Contributors: Andre Langner, David Kelle, Ramtin Khalili (PhD students @NEU) The goal: develop a state estimator for monitoring transmission and distribution systems simultaneously.

energy.gov/solar-office

TRANSMISSION SYSTEMS

Established real-time monitoring

and control practices

SCADA measurements

Monitored by SE introduced by

Schweppe in 1970

Balanced operation, + seq. model

Transmission Systems (230 – 750 kV)

DISTRIBUTION SYSTEMS

Radial / Meshed networks

Lack of real-time measurements

Distribution Management Systems (DMS)

Smart Grids

Distributed Generation (DG)

Advanced Measurement Infrastructure (AMI)

Advanced DMS

Distribution Systems (13 - 33 kV)

partment Of Energy

Challenges / Innovations:

- 3-Phase SE formulation / Choice of a reference
- Unbalanced operation / Mixed-phase SE
- System size / Scalable solution
- Uneven areas / Optimal system partitioning
- Bad measurements / Robust estimator

DEFAULT PRACTICE: Approach I

Assume a balanced voltage bus exists

Set the phase angles to 0, 120,-120

energy.gov/solar-office

Approach II

Fix only one phase angle Estimate the rest of the phases

Approach III: USE OF 3-PHASE BALANCED VIRTUAL BUS

Andre L. Langner and A. Abur, "Formulation of Three-Phase State Estimation Problem Using a Virtual Reference," *IEEE Transactions on Power Systems*, vol. 36, no. 1, pp. 214-223, Jan. 2021.

8500 NODE DISTRIBUTION SYSTEM

SOLAR ENERGY **TECHNOLOGIES OFFICE** U.S. Department Of Energy

Challenges / Innovations:

- 3-Phase SE formulation / Choice of a reference
- Unbalanced operation / Mixed-phase SE
- System size / Scalable solution
- Uneven areas / Optimal system partitioning
- Bad measurements / Robust estimator

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

energy.gov/solar-office

8500 Node System

- GridPV was used to insert solar PVs in the feeder
- Many different scenarios are simulated
- Validation for accuracy and bad data detection

Example Scenario Solar PVs : 15 MW

State Estimation Results

MSE Values - Scenario 1

Case	V	θ	Combined
Perfect Meas.	2.84×10^{-29}	6.99×10^{-20}	3.49×10^{-20}
Gaussian Noise	2.71×10^{-11}	3.34×10^{-5}	1.67×10^{-5}

J-index, Convergence, and mean of diag. of G inverse - Scenario 1

Case	J	Iterations	$mean(diag(G^{-1}))$
Perfect Meas.	5.83×10^{-13}	4	0.0018
Gaussian Noise	37.98	5	0.0018

Challenges / Innovations:

- 3-Phase SE formulation / Choice of a reference
- Unbalanced operation / Mixed-phase SE
- System size / Scalable solution
- Uneven areas / Optimal system partitioning
- Bad measurements / Robust estimator

energy.gov/solar-office

Multi-area State Estimation

Zhao and Abur (2005) Multiarea State Estimation Using Synchronized Phasor Measurements

Partition the network into non-overlapping areas

Identification of buses:

- Internal
- Boundary
- External

Two-Level Computation Framework

Ren and Abur (2018) Obtaining Partial Solutions for Divergent State Estimation Problems in Large Power Systems

Illustration on a Distribution System

- Multi-phase Solution
- Scalable to large networks
- Parallel processing

IEEE 13-node test feeder

Use of a Virtual Bus

Two-stage Solution

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

energy.gov/solar-office

System Overview

Generation and Loads

Component	Number
buses:	14207
loads:	7598
on	7598
off	0
fixed	7594
dispatchable	4
generators:	2574
on	1001
off	1573
shunt elements:	1238
branches:	19248
areas:	2

Туре	Active (MW)	Reactive (MVAr)
total dispatched loads:	217431.8	36528.6
fixed	217405.7	36600.6
dispatchable	26.1	-72.0
total curtailed loads:	0	292.0
total nominal loads:	217431.8	36820.6
on	217431.8	36820.6
off	0	0
fixed	217405.7	36600.6
dispatchable	26.1	220.0
on	26.1	220.0
off	0	0
total dispatched generation:	222850.5	17898.2

PJM Transmission System: ~16K substations

Distribution System

8500 node feeder

GridPV was used to insert solar PVs in the feeder

Large-scale Testing Configuration

Results

Table 22: Level 1 MAT SE MSE Values (Error-Free)

Only the first three
areas are shown

SE	V	heta	Combined
Area 1	2.659×10^{-12}	1.256×10^{-12}	2.084×10^{-12}
Area 2	2.055×10^{-10}	1.553×10^{-10}	1.823×10^{-10}
Area 3	6.525×10^{-11}	7.189×10^{-11}	6.860×10^{-11}

Table 23: Level 2 SE Convergence (Error-Free)

SE	J	Iterations
Area 1	1.351×10^{-12}	15
Area 2	1.559×10^{-8}	4
Area 3	2.065×10^{-9}	5

Results

Table 25: Level 2 SE MSE Values (Error-Free)

SE	V	θ	Combined
MAT Coordinator	2.634×10^{-10}	2.479×10^{-10}	2.558×10^{-10}
MDF (Feeder I)	1.211×10^{-7}	1.865×10^{-6}	9.929×10^{-7}
MDF (Feeder II)	5.77×10^{-8}	4.762×10^{-7}	2.67×10^{-7}
MDF (Feeder III)	2.964×10^{-6}	8.653×10^{-5}	4.475×10^{-5}
MDF (Feeder IV)	6.912×10^{-9}	2.622×10^{-7}	1.311×10^{-7}

Table 26: Level 2 SE Convergence (Error-Free)

SE	J	Iterations
MAT Coordinator	7.735×10^{-15}	15
MDF (Feeder I)	1.804×10^{-4}	4
MDF (Feeder II)	7.062×10^{-8}	5
MDF (Feeder III)	1.402×10^{-4}	4
MDF (Feeder IV)	1.676×10^{-5}	4

Challenges / Innovations:

- 3-Phase SE formulation / Choice of a reference
- Unbalanced operation / Mixed-phase SE
- System size / Scalable solution
- Uneven areas / Optimal system partitioning
- Bad measurements / Robust estimator

Partitioning Results

3750

Timing Results David Kelle and A. Abur, "Improving performance of multi-area state estimation using spectral clustering," *Proceedings of the 51st North American Power Symposium*, 2019.

		Partition	Results	Con	Computation Time		
Case	k	$\sum r_j$	ϕ	T_1	T_2	$T_{\rm total}$	
Case 1	51	_	7.5465	0.2767	1.0841	1.3608	
Case 2	51	12.0575	2.2864	0.1277	0.8658	0.9936	
Case 3	8	1.6261	_	0.3876	0.2754	0.6630	

Challenges / Innovations:

- 3-Phase SE formulation / Choice of a reference
- Unbalanced operation / Mixed-phase SE
- System size / Scalable solution
- Uneven areas / Optimal system partitioning
- Bad measurements / Robust estimator

Detailed 3-Phase Model Using ATP

Boundary Configuration

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

Bad Data Testing

- Gross errors placed in the following locations:
 - Case 1: Interior of the transmission system (P_{23})
 - Case 2: Inner boundary of the transmission system (P_{24})
 - Case 3: Interior of the distribution system (P_{70})
 - Case 4: Inner boundary of the distribution system (P₇₂)

Case 1:

Table 13: Bad Data Analysis Results: Case 1 – Area $\mathcal{G}_{(1,1)}$

Bad Data Results

Table 14: Bad Data Analysis Results: Case 2 – MAT SE, Area $\mathcal{G}_{(1,1)}$

Case 2:

Table 15: Bad Data Analysis Results: Case 2 – Level 3 Coordinator

	Origin	al	Iterat	ion 1		
Meas.	z_i	r_i^N	z_i	r_i^N		BD Detected !
P_{24}	-0.02708	20.03	-0.06711	0.01259	-	
P_{72}	-0.1205	20.03	_	0.01259		
$P_{23,24}$	0.08246	20.03	_	0.01259		
$P_{71,72}$	0.1061	20.03	_	0.01259		
$Q_{23,24}$	0.1089	11.95	_	0.007204		SOLAR ENERGY

U.S. Department Of Energy

Case 3:

Table 16: Bad Data Analysis Results: Case 3 – MDF SE, Area \mathcal{G}_2

Measurement	z_i	r_i^N	BD Detected !
P_{70}^{a}	-0.7579	22.595	
$P^{a}_{70,71}$	0.1739	9.241	
$P^{a}_{71,70}$	-0.1735	9.132	
$P^{a}_{69,70}$	1.0888	6.102	
P^{a}_{74}	-0.6796	5.703	

Bad Data Results

Table 17: Bad Data Analysis Results: Case 4 – MDF SE, Area \mathcal{G}_2

Case 4:

Table 18: Bad Data Analysis Results: Case 4 - Level 3 Coordinator

	Original		Iteration 1		
Meas.	z_i	r_i^N	z_{i}	r_i^N	BD Detected !
P_{72}	-0.08047	23.12	-0.1205	0.01215	
P_{24}	-0.06708	23.12	_	0.01215	
$P_{24,23}$	0.1061	8.777	_	0.006597	
$P_{23,24}$	0.08246	8.755	_	0.004615	
$P_{71,72}$	-0.08214	8.725	_	0.004595	

Large System: Gross error on the boundary

First Workshop at NEU – May 7, 2019 / NEU Campus

7 external speakers

- PNNL (2)
- NREL (2)
- U. California-R (1)
- ANL (1)
- ISO-NE (1)

3 NEU speakers 24 attendees All presentations are posted on workshop web page: <u>http://www1.ece.neu.edu/~abur/</u> NEU workshop/wkshop1.html

Final Workshop at PJM – Changed to Virtual

- Date: October 30, 2020
- Location: virtual
- NEU speakers (3)
- External speakers (4):
 - National Renewable Energy Laboratory, Colorado (2)
 - Pacific Northwest National Laboratory, Washington (1)
 - University of California-Riverside (1)
- All presentations are posted on workshop web page: http://www1.ece.neu.edu/~abur/NEU_workshop/wkshop2.html

Contributions

- A combined transmission and distribution system state estimator is developed. The estimator is scalable to very large-scale grids and can detect, identify and remove bad data.
- Some of the useful byproducts of the project include a novel formulation of <u>multiphase state estimation using virtual reference</u> buses, a <u>decoupled modal domain state estimation</u>, and an <u>efficient partitioning</u> <u>algorithm</u> for large scale power grids for improved multiarea state estimation.
- The developed combined state estimator is successfully implemented and tested using the large 16Kbus PJM transmission system and four copies of the IEEE 8500-node test feeders.

