

Final Project Presentation

Scalable/Secure Cooperative Algorithms and Framework for Extremely-high Penetration Solar Integration (SolarExPert)

Award # DE-EE0007998 SETO/DOE ENERGISE webinars

June 25, 2021

Team: UCF, NREL, HNEI, Duke, GE, Siemens, OPAL-RT Principal Investigator: Dr. Zhihua Qu

Executive Summary

Outcomes:

- A scalable, distributed grid architecture: local communication and clustering, P/Q/f controls, stochastic OPF, state estimation, and restoration.
- Software and hardware tests: 1 million-node distribution system, 100,000node system HIL simulation, and PHIL implementation with 100 physical devices;
- A feeder from Maui Meadows in Hawaii is studied for control-enable host capacity analysis
- Multi-Agent OpenDSS (MA-OpenDSS) platform
- Technology transfer with Siemens on Microgrid Management System and integration of DMS functions with MA-OpenDSS

System Architecture of Distributed Control and Optimization

 An advanced grid architecture with hierarchical and distributed communication and control, combined with the OpenFMB standard and implemented on the Multi-Agent OpenDSS (MA-OpenDSS) platform

1-million-node Test System

- 10 different 100k-node systems: NREL's test systems (3), and San Francisco bay area feeders (7) systems
- Two-stage greedy search for worst-case scenarios of 100% PV penetration:
 - Stage 1: primary nodes
 - Stage 2: secondary nodes

Over-voltage-severity index (OVSI)

$$OVSI = \sum_{V_i \notin [0.95, \ 1.05]} |1 - V_i|$$

 PVs distributed in the secondary nodes are assumed to not exceed twice the amount of the total load in the secondary nodes

Test System	No. feeders	No. buses	Total load (MW)
1st- 100k	12	53,011	124
2 nd -100k	8	47,280	105.20
3 rd -100k	21	46,453	290.32
4 th -100k	13	53.599	98.92
5 th -100k	6	53,820	88.363
6 th -100k	9	50,122	108,365
7 th -100k	14	52,174	109,51
8 th -100k	14	49,893	145,289
9 th -100k	12	51,163	114,26
10 th -100k	6	53,276	109,224

Eighth 100k-node System

• 14 feeders, 49,893 buses, 145.29 MW total load

Circuit plot

Voltage profile: 100% PV

- 20682 primary, 81856 secondary for 102538 total nodes
- After greedy search, PVs are employed in 19504 primary, 59898 secondary, totaling 79402

Summary – All Systems

	No. Prima	ry Nodes	No. Secon	dary Nodes	No. N	lodes		OVSI		
100k No.	Total Nodes	PV Nodes	Total Nodes	PV Nodes	Total Nodes	PV Nodes	Base Case	100% PV	Control	
1 st	13074	12572	95572	84504	108648	97076	0	15.316	2.4076	
2 nd	17818	16961	79866	55901	97684	72862	72862 3.042		1.1835	
3 rd	19740	19031	80248	52624	99988	71655	4.132	919.109	1.6377	
4 th	15194	14910	91385	77170	106579	92080	0	96.845	0	
5 th	17160	16857	90077	75551	107237	92408	0	0.418	0	
6 th	13439	13073	86482	68369	99921	81442	0.503	262.819	0	
7 th	12280	11502	91015	65921	103295	77423	2.552	1634.99	3.6332	
8 th	20682	19504	81856	59898	102538	79402	2.880	813.428	0.1522	
9 th	12976	12391	89061	72533	102037	84924	0	8.416	0	
10 th	12582	12429	93412	77124	105994	89616	0	0	0	

Distributed Optimal Power Flow (DOPF)

- An online distributed stochastic OPF based on a reverse-forward engineering procedure and dynamic, real-time, distributed feedback control;
- The multi-level implementation further improves the convergence speed without losing any information or compromising any accuracy

A chance-constrained OPF formulation:

$$\min_{p,q} \sum_{i \in \mathbb{N}} C_i(p_i, q_i) + C_0(p, q),$$

s. t. Power flow equations, Prob(0.95 p. u. $\leq v \leq 1.05$ p. u. $) \geq 99\%$, $(p_i, q_i) \in \Omega_i$, for all $i \in N$.

Performance of DOPF

- 1,000,000 nodes system with 100% renewable energy penetration
- All voltages are strictly within the bounds of 0.95-1.05 p.u., running time is less than 5 min, and 100% optimality is same as the centralized solver.
- (The designed OPF solver is applicable to general situation; the following example is to illustrate that OPF works even under extreme situations.)

Distributed Distribution System State Estimation (DDSSE)

- An online distributed system state estimation algorithm based on prediction-correction methods for time-varying convex optimization
- The joint real-time SE-OPF solver to calculate OPF based on the estimated voltage for more practical implementation

DSSE is formulated as overdetermined systems of non-linear equations and solved as weighted least-squares problems

- 1. Observability
 - pseudo-measurements
- 2. Accuracy
 - Gauss-Newton vs. Gradient-based
- 3. Efficiency

Standard OPF:

Update OPF iterations based on real voltage values is **unrealistic: lack of network-wide monitoring devices**

Joint SE-OPF:

Update OPF iterations based on estimated voltage values is **Realistic with verified performance.**

Performance of DDSSE

- 1,000,000 nodes system
- 10% of nodes with voltage measurement
- 1% standard deviation for voltage measurement error
- 50% standard deviation for pseudo measurement error

Area	Average Error	Maximum Error
8 th 100k System of UCF (P1U + 4 feeders)	0.39%	2.21%
P2U	0.16%	0.90%
P3U	0.23%	1.29%
P6U	0.24%	3.45%
P27U	0.31%	1.42%
P29U	0.23%	2.83%
P34U	0.37%	2.02%
All Areas	0.24%	3.45%

✓ Node number: > 1,000,000
✓ Maximum error of all nodes: 3.45%
✓ Average error per node: 0.24%
✓ Running time for each feeder: <10s

Distributed Cooperative Control (DCC) of Voltage and Frequency

 Distributed and coordinated Volt/VAR, Watt, frequency controls are designed using the subgradient-based cooperative control/optimization framework, and they optimally dispatch the real and reactive power of multiple DERs and minimize curtailment, with the robust performance.

DCC is formulated as distributed optimization:(1) Minimizing local voltage deviations:

$$\min_{Q_i \in [\underline{Q}_i, \overline{Q}_i]} \sum_{j \in \mathcal{N}_i} (V_i - V_j)^2$$

(2) Minimizing curtailment, frequency drift, and overall voltage profile

$$\min_{P_i \in [\underline{P}_i, \overline{P}_i]} \left[\beta_1 \left(P_i - P_i^{ref} \right)^2 + \beta_2 (\omega_i - \omega_0)^2 + \beta_3 (V_{max} - V_{min}) \right]$$
Also, robust w.r.t. topology change, time delay, etc.

Performance of Distributed Voltage and Frequency Control

- Worst-case from the Greedy Search: 174,284 PVs among 12 feeders, 158MW total (130% penetration)
- A total 68MVar of inductive reactive power is generated by PV inverters
- The capacity of inverters are set to be 120%, voltage threshold is 0.045%.

Performance of Distributed Voltage and Frequency Control

- NREL synthetic 100k system simulation with 100% PV penetration:
- At t=2s, the output of PVs increase from 0 to 100%
- Cooperative control on, voltage threshold is 0.03 pu

- Delay between clusters : 1.0 s
- Delay between nodes : 0.1 s

Distributed Distribution System Restoration (DDSR)

- The DDSR strategy to optimally determine the PV generation, network configuration, switching status, and load pickup, in order to restore the entire system or energize unfaulted out-of-service areas, as well as to coordinate the restorative actions between T&D networks
- DSR is formulated as a multiobjective mixed-integer convex optimization problem
- Max. Total restored loads and optimal operation of switches
- s.t.
- Security constraints
- Power flow constraints
- Connectivity & radiality constraints

Performance of DDSR

- There is a major outage with 3 restoration steps following transmission restoration
- One faulted line occurred during restoration, and faulted area is being isolated by sectionalizing switches
- Tie-switch is closed to energize unfaulted out-of-service area while all other tieswitches remain open to prevent any loop during operation
- DDSR coordinates PVs with transmission capacity to restore more loads

Fig. The network is divided into 10 clusters.

Fig. DDSR operation in first time step with distributed PVs and faulted lines.

Fig. DDSR operation in second time step with distributed PVs and faulted lines.

Fig. DDSR operation in third time step with distributed PVs and faulted lines.

out-of

Project Innovations – 6: 1M-node T&D Co-Simulation

- 1M Node Test System:
 - Transmission System: modified IEEE 30-Bus System
 - Distribution Systems: 10 synthetic systems of 100k nodes with large PV penetration
- Time series full day simulation: 7am-8pm with 15min time step.
- Load profile and solar irradiance fluctuates with each time step
- All distribution systems utilize cooperative control to minimize voltage violations

Iteration: ite = 0	Total Iterat	ions:
		C1: 5
		C2: 2
Total Iterations: 40		C3: 2
Iotal Iterations: 40	Solve	C4: 2
Solve	distribution	CS: 2
transmission	power flow	C6: 2
power flow		C7: 2
		C8: 2
		C9: 2
		C10: 2
Iteration: ite = ite+1	$P_{C1,C2,,C10'}^{ite} Q_{C1,C2,,C10}^{ite}$	V ^{ite+1} C1,C2,,C1
Iteration: ite = ite+2	P ^{ite+1} C1.C2,C10' Q ^{ite+1} C1.C2,C10'	V ^{ite+2} C1.C2,,C1
Iteration: ite = ite+n	$P^{ite+n-1}_{C1,C2,,C10'} Q^{ite+n-1}_{C1,C2,,C10}$, V ^{ite+n} C1,C2,,C1
Convergence: ite = ite+r Solutions: P ^{ite+n}	ite+n Vite+n	

T&D Co-Simulation Results

Project Innovations – 6: PHIL Implementation (100 Devices)

Project Innovations – 6: Hosting Capacity of Maui Meadows Feeder

acceptable.	A1: Regardless of PV location, all penetrations in this region are acceptable.	A2: Depending on PV deployment, some penetrations in this region are acceptable.	A3: Regardless of PV location, no penetrations in this region
-------------	--	--	--

150% 200% 250% 300% 350% 400% 450% 500% 550% 600% 650% PV Inceasing Penetration [%]

Without Control

With Moderate VVWC

150% 200% 250% 300% 350% 400% 450% 500% 550% 600% PV Inceasing Penetration [%]

With Aggressive VVWC

150% 200% 250% 300% 350% 400% 450% 500% 550% 600% PV Inceasing Penetration [%]

The Design of MA-OpenDSS

The developed system architecture includes dynamic grouping of both physical and communication topology, distributed control and optimization based cooperative principles, self-organizing according to feeder capacity and local communication options, which provide the theoretical foundation for this project.

Multi-Agent OpenDSS Platform

- Basic version through EPRI OpenDSS: https://sourceforge.net/
- projects/electricdss/ Latest version: https://www.cs.ucf.edu/ ~qu/MA-OpenDSS.php

MA-OpenDSS-G

- OpenDSS-G: OpenDSS Graphic Interface.
 - Generic5 and distributed control modules were added to the platform

DG model 5					8	Free Pres	nitor comm	unication model	22 - 23	- 635		155			-		
DG Name		al				PMor	sitor name	[fme	on_0					
Control	Nominal Rated kV (2 and 3 Ph LL)	Reference Voltage (kV)	Control gain on reactive power	P reference Value (kW)		er	Cluster number	Clus	ter's virtual leader	1.	'erminal number	Maximum local memory	A	ctivate P	Curtailme	nt F	Delay time to upper level
3 phase DG Seq	4.16	2.4	2	1650					List of nodes wi	thin the cluste	н 		1	Commun	nication	Co	mmunication
Network level control	Number of Phases	Total power output (kVA)	Control gain on real power	Q reference Value (kvar)	1189		Node#	Bus Name 76	Monitored Obj Line.173	Terminal 2	Voltage Base 2.402000	e Control Gain * 1.000000	C	1	1 A		0.05
	3	2100	0.2			+	2	83	Line,184	2	2,402000	1.000000		1	0	0.05	0
Reference mode	Threshold for voltage control	Shaft Power (kW) Output limit DG		RSITY OF									E	0	0		0
Q V	0.01	1750	UCF CENT	RAL FLORIDA	Additional OpenDSS Definitions							7	•	è			
			s	ave Cancel		moden v_sens basefre	0 residual=1 or=0 p_sen id=60 enabl	Additional Ope NO vipolar=YES Isor=0 node_num led=true	mDSS Definitions ppolar=YES p_trans_ =1 total_clusters=1 no	ef=0 ides=2		UNIVERSIT	Y O	F RIDA		Delete Save	Cancel

 Distribution circuit's clusters defined for the cooperative control

Project Outcomes and Products

- Project website: <u>https://www.ece.ucf.edu/~qu/doe-energise-project/</u>
 - Summary, publications, etc.

- Software: <u>https://www.ece.ucf.edu/~qu/ma-opendss/</u>
 - Documents with descriptions and open-source code files
 - Data files with test systems definitions
 - Simulation results with input files
 - HIL testing procedures and results

The Open-source MA-OpenDSS Platform	Autonomous clustering	Cooperative T&D co- control simulation				Island ma syncł	d microgrid with y PVs and one ronous machine	
Distributed Algorithms for ADMS Integration	On-line state estimation	Stochastic OPF	Coc P/C	operative Control	De res	mand ponse	Restoration & reconfiguration	
Control-enabled Dynamic Solar Hosting Allowance (DSHA)	P and Q contro capacity & impa	ol ict	Gric Situa Awa	d-edge ational ireness	l		Enhanced observability by oltage inference	
Dynamic Defense and Attack-Resilient Control	Dynamic encodi & virtual ancho	ng A rs Inv	uto verte	nomous er Contro	bl	Ve	ctor control design for grid forming	

Thanks to DOE SETO

Questions?

