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Project Objectives 
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Challenge #1: 
Operations with extreme 

penetrations of 
distributed PV

Challenge #2:
Communicate  

and control with 
millions of DERs

GO-Solar Solution

Manage extreme penetrations of solar and other DERs using only a few 
measurement points through matrix completion and multi-kernel learning-based 
predictive state estimation (PSE) and only a few control nodes dispatched through 
dual timescale online multi-objective optimization (OMOO) using voltage-load 
sensitivities to guide fast feedback response



GO-Solar Key Activities
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GO-Solar Interface with Enterprise Systems 2030 Expected
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GO-Solar Interface with Enterprise Systems With GO-Solar
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GO-Solar Technology

6



Integrated GO-Solar Platform
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Matrix Completion for State Estimation
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vs. Conventional state estimation
– Weighted least squares
– Objective:  Minimize the 

weighted residuals

Requires redundant 
measurements

Concept:
Netflix Recommendation System
+ Power Systems Constraints (linearized) [1]-[3]

Key idea: Estimate unknown 
elements using correlation

[1] Y. Zhang, A. Bernstein, A. Schmitt, and R. Yang, “State Estimation in Low-Observable Distribution Systems Using Matrix Completion,” HICSS-52 conference, 2019.
[2] P. Donti, Y. Liu, A. Schmitt, A. Bernstein, R. Yang, and Y. Zhang, “Matrix Completion for Low-Observability Voltage Estimation,” in IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2520-2530, May 2020.
[3] Y. Liu, A. Sagan, A. Bernstein, R. Yang, X. Zhou, and Y. Zhang, “Matrix Completion Using Alternating Minimization for Distribution System State Estimation,” IEEE International Conference on 
Communications, Control, and Computing Technologies for Smart Grids, Tempe AZ, October 6-9, 2020.

State variables MeasurementsUnknown Partially known

Node

Quantity

Constraints Known elements in        =  Measurements
(2-point Linearized) power flow equations

Objective function min (Rank of matrix      ) New



• Low rank assumption

Why It Works?
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• Theoretical guarantee

• Power flow equations
• Physical constraints satisfied

Data matrix of HECO system

There exists a minimum number of 
entries required to uniquely recover 
the unknown low-rank matrix     [4]

[4] Benjamin Recht, “A simple approach to matrix completion,” Journal of Machine Learning Research, 12, 2001. 



Theoretical Bound on Sample Complexity
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Theorem[1]: Let 𝑀 be an 𝑛!×𝑛" (𝑛! ≥ 𝑛") matrix of rank 𝑟 such that the 
following ℎ linear equality constraints are satisfied: 𝐴($), 𝑀 = 𝑏($) for all 
𝑙 = 1⋯ℎ. Suppose that 𝑚 entries of 𝑀 are sampled uniformly at random. 
Then there exists a function 𝐹 𝑛!, 𝑛", 𝑟, 𝐴 $ , M, β < ∞ such  that if 𝑚 ≥
max{𝐹, 2𝛽𝑛! log 𝑛!} for some 𝛽 ≥ 1, then the solution to the constrained 
matrix completion problem is unique and equal to 𝑀 with probability at 
least 1 − 6𝑛!&'.

• For specific form of 𝐹, please refer to [1]: J. Comden et al., “Sample Complexity of 
Power System State Estimation using Matrix Completion”, 2019 IEEE SmartGridComm.



• Challenges
• Formulated as a semidefinite 

program
• Computationally intensive

Distributed Matrix Completion
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• Solution [5]

• Distributed algorithm
• Communication
• Guaranteed convergence

[5] A. Sagan, Y. Liu, and A. Bernstein, “Decentralized low-rank state estimation for power distribution systems,” IEEE Transactions on Smart Grid, 2021.
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Multi-Kernel Learning for State Forecasting
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Kernel Learning Concept
• Use kernel functions to map the input 

space to a higher-dimension feature space
• Learn the relationship in the feature space

Source: R. G. Esfahani and A. A. Mohammad, “Towards an anomaly detection technique for 
web services based on kernel methods,” IEEE Innovations in Information Technology, 2009.

Goal: Learn the spatiotemporal correlation between measurements and system states
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• Proactively dispatch controllable resources
• Better coordinate control efforts
• Prioritize the control needs

Importance of PSE

Voltage Violation
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Slow-Scale OMOO: VLSM-based Optimization

• Voltage-Load Sensitivity Matrix (VLSM) based mixed-integer linear problem [6]

• Can handle integer constraints for taps/caps

[6] X. Zhu and Y. Zhang, “Coordinative Voltage Control Strategy with Multiple-Resource for Distribution Systems of High PV Penetration,” World 
Conference on Photovoltaic Energy Conversion (WCPEC-7), Waikoloa, Hawaii, June 10-15, 2018.
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Output: Dispatch/set points for DERs and utility legacy devices
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[7] A. Bernstein and E. Dall’Anese, “Bi-Level Dynamic Optimization with Feedback,” the 5th IEEE Global Conference on Signal and Information 
Processing (GlobalSIP), Montreal, Quebec, Canada, Nov. 2017.

• Goal: Follow OPF trajectory

• Key ideas [7]:
• Hierarchical control
• Lots of math with 

provable bounds
• Single-step gradient

• Rather than converging at each 
timestep, loosely converge 
across fast time steps

Fast-Scale OMOO: Online Optimization
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• Different sensors
• Substation SCADA: P, Q, |V|, θ
• Grid 2020: P, Q, |V|
• AMI: P, |V|

• Realistic scenarios

Voltage Estimation
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Voltage Magnitude

Voltage Angle

Case 1 2 3 4 5 6 7

0 Inj. √ √ √ √ √ √ √

Sub. √ √ √ √ √ √ √

Grid 2020 X 1% 1% 1% 1% 1% 1%

AMI X X 1% 2% 3% 4% 5%

Accurate state estimation with Sub. + 1% Grid 2020 + 1% AMI

HECO Feeders
2576 nodes
535 nodes w/ loads
100% PV penetration



Voltage Forecasting
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Training Testing (1/5 of data)
95% CI: ±0.91% 95% CI: ±1.13%
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• 15-minute-ahead @ 1-minute resolution
• Input: P and Q at load nodes for the past 1 hour
• Training: 1-minute power flow results for 3 days (sliding window)

Magnitude Forecasting Error (%) Magnitude Forecasting Error (%)

93.26% of the absolute errors smaller than 1%



Slow-Scale OMOO
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The voltage is closer to the voltage objective which is 1 p.u. after the slow-scale 
control is performed 

Time series voltage control results Snap-shot voltage control results 



Fast-Scale OMOO
Time series voltage control results PV P set point tracking profile PV Q set point tracking profile 

Voltage PV P set point PV Q set point

Tracking Error (%) 0.06 0.02 2

Tracking Error 
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Objectives
• Manage extreme penetrations of 

solar and other DERs
• Achieve system-wide control targets

Real-world system: Oahu system
• ~1-million electric nodes

Pathway to Real-World Application

Challenges
• Real-time

Needs to be fast enough to operate 
in real time

• Data Aware
Makes best use of time-varying 
asynchronous measurements

• Scalable
Needs to be able to control millions 
of devices

20

Hierarchical control



• Key innovations
• Real-time and predictive 

situational awareness from PSE
• Coordinated control of legacy 

devices and DERs

• Future work
• Incomplete and inaccurate 

system models
• Machine learning with partial 

physical information

Summary

21

GO-Solar Solution



Large-Scale Co-Simulation

22



Electrical Model Development and Setup

• Model conversion from Synergi
• Improved DiTTo

23

• Load profile • PV profile



Scenario Summary

• Focus
• 2030 unity PF
• 2030 with GO-Solar

24

  2020   
(not simulated) 

2030 Baseline 2030 with GO-Solar 

Bulk generation   Closest year Plexos Planning Model (2028) 
Transmission 

Network 
  Closest year Plexos Planning Model (2028) 

Sub-transmission 
& Distribution 

Network 

  Unchanged, in nominal configuration 

138kV connected 
PV 

None None 

46kV PV based on Synergi 
model actual 

locations and size.  

Projected capacity and locations based on 
documents from HECO forecasting group. 

Assumed single-axis tracking at average tilt angle 
of existing systems 

12kV PV based on Synergi 
model 

Projected capacity based on documents from 
HECO forecasting group. New devices Randomly 
sited with sampled orientation and tilt diversity 

Loads   Estimated diversity based on clustering and 
representative AMI data (2018). Assumed 

unchanged. 
Irradiance Profile   Based on nearest substation SCADA data for 2018. 

Same time period as loads 
Storage Not included Storage is a stretch goal that will be considered 

only after PV-only  simulation is done. A key 
challenge is the need to specify realistic dispatch 

patterns, which might vary widely 
Control Scheme   T dispatch from FESTIV. 

DPV per Rule 14H. SubT 
PV controlling to 
voltage output with no 
curtailment. Local 
control for Caps (always 
on at substation, local 
control at SubT) and 
Taps (SubT Caps on/off 
manually 
morning/evening) 

T dispatch from FESTIV. 
SubT/D: GO-Solar stack 
(PSE + OOMO) 1 per 
46kV system and 1 per 
12kV feeder or feeder 
bank. Controlling PV 
and Caps/Taps. Non-
controlled PV operated 
using volt/var, 
volt/watt, etc.  

Simulation Setup   1 week covering peak demand period. 1 week 
including highest PV to load ratio 



• 3 layered co-simulation
• Transmission (MATLAB)
• Subtransmission (OpenDSS)

• 41 Networks
• Distribution (OpenDSS)

• 411 Feeders
• For each OpenDSS network, a GO Solar 

Control Stack is assigned and included in the 
workflow

• Electrical nodes counts: 
• 200 (T) + 373,539 (MV)  + 51,259 devices = 

425,000.

• HELICS Platform

Simulation Overview

25



HPC Setup
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TransmissionSim/…
Subtransmission/…
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run_multi.sh 
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Start

Start

HELICS 
Transmission 

Federate

HELICS 
Subtransmission 

1…

HELICS 
Distribution 1..

HELICS 
Distribution..N

HELICS GO-Solar 
Stack 

HELICS GO-Solar 
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directory and 
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Create HELICS 
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Setup load and pv 
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/projects/gosolar/Data/ 

/scratch project 
directory

Info.xlsx
Substransmission and 

Distribution mapping data

runner.json
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Configuration data and 
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Run federates on multiple 
nodes and HELICS cosim



Results

• Voltage distribution
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Run time = 7 hours Run time = 12 hours



State Estimator
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• Generally, the state estimator MAPE results are good but there are number of feeders with 
very large average MAPE which is driven by tuning of the GO-Solar OMOO. The feeders with 
the most difficulty are Waipahu, Manoa-Piikoi, and Waimanalo which have a correspondingly 
large voltage swing from the OMOO control points.

The rest of the 
feeders MAPE average is 
less than 0.5



Hardware-in-the-Loop
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The GO-Solar Platform HIL Setup

• Test objective: evaluate voltage
regulation performance of the GO-
Solar Platform in a realistic testing
environment
• Accurate modeling of a full-

scale distribution system of
Mikulua 3 and sub-transmission
system

• Software control algorithm
• 90 hardware PV and Battery

inverters
• Standard communication

protocols

30



Schematic Diagram of the HELICS Architecture

SOC SOC

SE
Agent
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Photo of Hardware Setup for Six DER Racks/PCCs
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Capacitor bank controller setup

Analog 
Out

Analog 
Input

Power 
Cable

OPAL-RT
Beckwith Cap Bank 
Controller

OMICRON Amplifier Real-time simulation 
in OPAL-RT

Controller to be tested 
33



List of PHIL DER Inverters of Each PCC
Rack # Devices Physical Devices Total 

capacity
Simulated PV 

capacity
PHIL-1 15 (1) 3 kVA PV, (1) 5 kVS PV, (12) 320 VA 

μPV, (1) 5 kVA / 10 kWh Li-ion Batt
16.84 kVA 23.5 kVA

PHIL-2 15 (1) 3 kVA PV, (1) 5 kVA PV, (12) 320 VA 
μPV, (1) 5 kVA / 10 kWh Li-ion Batt

16.84 kVA 19 kVA

PHIL-3 15 (1) 3 kVA PV, (1) 5 kVA PV, (12) 320 VA 
μPV, (1) 5 kVA / 10 kWh Li-ion Batt

16.84 kVA 93.9 kVA

PHIL-4 15 (1) 3 kVA PV, (1) 5 kVA PV, (12) 320 VA 
μPV, (1) 5 kVA / 10 kWh Li-ion Batt

16.84 kVA 67.6 kVA

PHIL-5 15 (1) 3 kVA PV, (1) 3 kVA PV, (12) 320 VA 
μPV, (1) 5 kVA / 10 kWh Li-ion Batt

14.84 kVA 119.2 kVA

PHIL-6 15 (1) 3 kVA PV, (1) 3 kVA PV, (12) 320 VA 
μPV, (1) 5 kVA / 10 kWh Li-ion Batt

14.84 kVA 54 kVA

Total 90 6 PCCs
34



HIL Testing Results – Scenario #1: Baseline Scenario

Total PV measurements

0.081% of total 
curtailment

35



HIL Testing Results – Scenario #2: Control 100% PVs 

0.4% of total curtailment for OMOO and 0.081% for Volt-Var

36



HIL Testing Results – Scenario #2: Control 100% PVs 
Upper limit

Lower limit

Only respond when the 
upper and lower limits 
are violated

37



HIL Testing Results – Scenario #3: Control 30% PVs 

• The simulated PV inverters have
similar responses in active and
reactive power as the inverters in
Rack #1, #2, #4, and #5.

• Confirm the simulated and hardware
inverters work correctly.

• Higher reactive power outputs than
the 100% PV scenario

38



Summary of HIL Test
• Successful Power-hardware-in-the-loop (PHIL) testing with GO-Solar platform

• 90 hardware DER inverters
• standard communication protocols
• real responses of hardware inverters
• stability and dynamics of the GO-Solar platform

• Evaluated voltage regulation performance of the GO-Solar platform in real-time
simulation (ensures computational time is fast enough)

• HIL captures key real-world aspects and forced us to refine the approaches taken
for GO-Solar that were not seen with the artificially tight data coupling from single
feeder simulation.

• Results: Once tuned, GO-Solar Platform performs better than the smart inverter
volt-var:
• fewer voltage violations
• reduced system voltages and improved energy savings (CVR),
• precise voltage regulation, etc. 39



• GO-solar developed state-of-art centralized 
visibility and controllability for DERs

• Scalable solution for heterogenous measurements 
and controllers

• Large scale co-simulation and large scale HIL for 
extended performance testing

Summary

40



Completing the Picture
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Cybersecurity

42

1. Control signal 
spoofing

2. Control node 
compromise

3. Sensor data 
spoofing

4. Communication 
Denial of Service

X

5. Communication 
Latency Margin

Cybersecurity Scenarios Cyber Vulnerability Exercise

• Focus on state estimation
• Cyber attack scenarios

FDI Attack on |V| 



Achievement Highlights 
• Publications

1. A. Bernstein, C. Wang, and J.-Y. Le Boudec, “Multiphase Optimal and Non-Singular Power Flow by Successive Linear Approximations,” Power Systems Computation Conference 
(PSCC), Dublin, Ireland, June 11-15, 2018. (Partly funded by the ENERGISE Go-Solar project and partly by the GMLC 1.4.10 [Control Theory] project.)
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• Patent
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Questions?
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