Accelerating Irrigation Modernization

Improved Water Management

Thomas Mosier, INL Bo Saulsbury, PNNL James Kershaw, PNNL

Water Power Technologies Office R&D Deep Dive Webinar Series June 2, 2021

Webinar agenda

- WPTO intro: Maxine (5 min)
- National context: Thomas (10 min)
- Supporting Irrigation Planning: Bo (10 min)
- IrrigationViz Demo: James (15 minutes)
- Future direction: Thomas (5 minutes)

What is an irrigation system?

Federal investment in water enabled the West as we know it

Example: Minidoka Dam in SE Idaho enabled agriculture, electricity, commerce, and recreation for the region.

Reclamation projects provide water to one-third of the population of the

American West.

Crops from irrigated land are ~50% of crop market value in U.S. (\$106B in 2012)

Irrigation is 37 percent of all water use in the U.S.

- Irrigation uses 846 million gallons per day. ¹
- Outdated irrigation systems can lose up to 30 percent of their water (mostly from seepage into the ground).³

Irrigation water
use by State
(size proportionate to use)

The existing system can be up to 120 years old

- Operations and maintenance is expensive
 - Modernization reduces these costs
- Loses 30 to 80 percent of water
 Modernization enables more
 water to be left in rivers
- Requires extensive pumping
 Modernization reduces costs
 and diesel consumption
- And the list of benefits goes on...

Questions?

Recap:

- Irrigation systems critical for agriculture across diverse regions of the U.S.
- Much U.S. irrigation infrastructure developed during early 20th century
- Modernization provides the opportunity to provide diverse benefits, helping farmers and rural communities, the environment, and energy system

Our work for WPTO: how can hydropower help enable the many benefits of irrigation modernization?

- Started in FY19: INL and PNNL began working with Farmers Conservation Alliance to answer this question.
- FY19: short-term scoping exercise demonstrated benefits and pathways for irrigation modernization through two case studies in Oregon (Central Oregon ID and East Fork ID).

9 | Water Power Technologies Office eere.energy.go

Learned that modernization can achieve diverse benefits

- Rural economies More revenue for farmers; well-paying, multi-year construction jobs; increased recreation opportunities
- Environment Increased water for fish and other species; pollinator corridors; less chemical use
- Renewable energy Increased opportunity for hydropower and solar PV; local energy ownership and benefits
- Climate Lower carbon agriculture; increased water supply reliability

Annualized average value for two case studies		
	Central Oregon includes hydro	East Fork no hydro
Reduced district OMR	\$70,000	\$248,000
Reduced patron OMR (total)	\$810,000	\$347,000
Increased agricultural income (total)	N/A	\$1,516,000
District energy generation	\$2,378,000	N/A
Environmental benefits	\$6,097,000	\$295,00
Per district subtotal	\$9,600,000	\$2,445,000
Per patron subtotal	\$437	\$1,882

Learned that hydropower's role in irrigation modernization is changing

What are the value propositions that help us accelerate irrigation modernization and co-development of hydropower into the future?

Irrigation Systems of the Future Resilience **Electrified** Conventional Current **Through** Farm **Modernization** Irrigation Microgrids Equipment Improved Water Management

Learned that design stage planning is critical, but also a challenge

- Expensive\$100Ks just to do initial design
- Requires specialized knowledge
 - Irrigation district managers know their systems best, but may want help analyzing modernization options
- Many, diverse stakeholders
 No simple, user-friendly tool to communicate across perspectives

How do we address these challenges?

- FY20: developed prototype visualization tool (<u>IrrigationViz</u>) to assess modernization options (more details on the tool later).
- Implemented functional version based on one case study (Bear River Canal Company, Utah) supporting multiple uses cases.
- BRCC's highest priority modules for tool
 - Piping and lining: how much would it cost to convert?
 - Water conservation: how much water is saved from lining or pipes?
 - Hydropower: how much generation potential is there?
 - Agriculture: How could conserved water be used for planting additional acres?
 - Aquatic weed control: How much money is saved on chemicals and labor by piping?

How do we address these challenges?

- FY21: developing additional <u>IrrigationViz</u> functionality to support development of *pilot* version, including: (1) important modules not core to FY20 BRCC case study (e.g., groundwater recharge, recreational flows) and (2) enhanced dashboard features.
- FY21 development based on two case studies: East Columbia ID, Washington, and Minidoka ID, Idaho.
- Work with IDs to identify <u>their</u> high priority use cases for module development and incorporate ID-specific data (infrastructure, flows, etc.).
- Also, with FCA conduct stakeholder engagement beyond these two IDs to identify stakeholder values, perspectives, and jurisdictional considerations.

IrrigationViz is composed of rigorous decision support model and web-based user interface

Decision Support Model

- Composed of multiple process modules (e.g., hydropower, water loss, ag potential, water purification, etc.)
- Assesses modernization benefits and costs based on design choices

Web-based Dashboard

- User loads current infrastructure and inputs "what-if" upgrade scenarios
- Sees tradeoffs of choices in near realtime
- Can generate output statistics and reports to support next steps

IrrigationViz helps solve challenges

16 | Water Power Technologies Office

Questions?

Recap:

- Innovation in energy systems is enabling diverse opportunities for using clean energy in irrigation contexts
- Master planning reinvestment is expensive and requires specialized knowledge, creating inequities between communities
- IrrigationViz is a planning tool to help irrigation districts design projects and prioritize investments

IrrigationViz

IrrigationViz Demo

DEMO

19 | Water Power Technologies Office eere.energy.gov

Energy I-Corps

Interviews

Viable Market Pathway

https://energyicorps.energy.gov/

Energy I-Corps

Value Proposition

Instant pre-engineering estimates to understand and plan the needs of the district

Improved visibility into area needs in order to invest capital more strategically

IrrigationViz - Future

Continued module development

e.g. Groundwater recharge, recreational benefits

Further customization

e.g. additional user inputs and overrides

Comprehensive Planning

e.g. Master planning, full district analysis

Questions?

Recap:

- IrrigationViz leverages <u>user-inputs</u> and known <u>datasets</u> to produce estimates based on researched-based <u>data models and formulas</u>.
- The IrrigationViz team participated in a DOE program called Energy I-Corps to explore market viability.

Demonstration and Deployment The next step in irrigation modernization

Status quo

- Infrastructure is over 100 years old
- Loses 30% of water to seepage
- Has high O&M costs

Pre-engineering design

IrrigationViz

- Bring together diverse stakeholders
- Design infrastructure packages based on cost and benefits
- Connect investments to funding opportunities

Solution

Physical test sites

Demonstration

Digital platform

- Verification of benefits
- Reduce the cost and time of construction
- Apply lessons to new sites

Opportunity

Irrigation system of the future

- Infrastructure to meet 21st century needs
- Provides diverse benefits to communities, food supply, renewable energy, and environment

Digital integration amplifies reach of physical demonstration

Modernizing irrigation infrastructure achieves diverse benefits

Recap:

- Federal investment in water and irrigation during the early 20th century enabled agriculture and rural communities across much of the U.S.
- Demonstration and deployment programs can help achieve diverse 21st century objectives:

Sustainable water resources

- Secure water resources for agriculture and enhance community and environmental benefit
- Adapt to unavoidable impacts of climate change

Community wellbeing

- Increase agricultural revenue
- Create multi-year well-paying jobs
- Reinvest in rural communities
- Promote environmental justice and sustainability

Decarbonization

- Generate community-owned renewable energy
- Enable precision and lowcarbon agricultural practices
- Reduce fuel consumption
- Increase energy efficiency for farmers and ranchers

Send us a note if you have questions!

Thomas Mosier

Thomas.Mosier@inl.gov

Bo Saulsbury

James.Saulsbury@pnnl.gov

James Kershaw

James.Kershaw@pnnl.gov

