# gti.

# Next Generation Natural Gas Vehicle Drive Information Systems

AMR Project ID: TI107 DOE Project Award #DE-EE0008802

PI: Devin Halliday

Gas Technology Institute June 23, 2021

This presentation does not contain any proprietary, confidential, or otherwise restricted information

## **Overview**

#### Timeline

Project start date: October 2019 Project end date: June 2023 Percent complete: 20%

#### Budget

Total project budget: \$2M Total recipient budget: \$600k Total federal share: \$1M Total DOE funds spent\*: \$270k \*As of 04/30/2021

#### **Barriers**

High cost of ownership due to oversized fuel system or frequent fueling

Poor user experience due to mistrust in fuel level information

#### **Partners**

Argonne National Laboratory Ozinga Brothers Concrete Chicago Area Clean Cities



### **Project Objectives**

- Develop and demonstrate improved Driver Information System for NGV
  - Miles-to-empty prediction within 5% or 25 miles
  - Incorporate traffic, weather and projected route
  - System will allow optimization of fleet fuel management

#### Technology Integration Goals National Security

- Domestic Fuel Sources Economic Growth
- Growing Alt Fuels Industry Affordability to Business and Consumers
- Lower Vehicle Cost of Ownership *Reliability/Resiliency*
- Improved Vehicle Range Prediction

#### Barrier Impact

- Smaller, lower-cost fuel systems due to higher utilization of capacity
- Optimized fleet operations to minimize refueling
- Better user experience leads to improved reputation and increased adoption

# Approach

| Budget Period 1 (2019): Preliminary Expander Design                                                     |    |  |  |
|---------------------------------------------------------------------------------------------------------|----|--|--|
| 1.1 Completed design of data acquisition system                                                         |    |  |  |
| 1.2 Completed installation of 10 data acquisitions systems                                              |    |  |  |
| 1.3 Completed parametric modeling                                                                       |    |  |  |
| 1.4 Parametric model validated with laboratory data                                                     |    |  |  |
| Go/No-Go: Usable fuel calculation capable of achieving project targets (accuracy within 5% or 25 miles) |    |  |  |
| Budget Period 2 (2020): Detailed Expander Design and Build                                              |    |  |  |
| 1.1 Beta test version of application completed                                                          | 0% |  |  |
| 1.2 Application functionality validated                                                                 |    |  |  |
| 1.3 Validate usable fuel model with fleet data                                                          |    |  |  |
| 1.4 Usable fuel model accurate                                                                          |    |  |  |
| Go/No-Go: Useable fuel model predictions within 5% of true fleet vehicle operation                      |    |  |  |
| Budget Period 3 (2021): Operation                                                                       |    |  |  |
| 3.1 Complete functionality testing                                                                      | 0% |  |  |
| 3.2 Validate 'miles-to-empty' prediction                                                                | 0% |  |  |
| 3.3 Quantify changes in driver behavior                                                                 |    |  |  |
| 3.4 Commercialization Plan Complete                                                                     |    |  |  |



#### **Progress: Data Acquisition Systems Designed**

- Data acquisition system designed for heavy-duty CNG vehicles
  - Utilizes HEM devices to collect and export CAN bus data
  - Data exported to cloud server and mobile device in cab
  - Pressure and temperature sensors also installed



## **Progress: Data Acquisition Systems Installed**

- One data acquisition system installed in December 2020
  - Over 500 hrs of operating data collected
  - Remaining systems will be installed in late May
  - Team developing automated data processing to filter out select information from 1,000s of hours of operation



# **Progress: Application Development**

- Developed android application which transforms conventional phone to a low-cost data acquisition platform
  - Utilizes phone's WiFi and cellular service for data acquisition and transmission
  - Combines CAN bus data and phone-specific data prior to upload to cloud
  - Capable of real-time data monitoring
- Path forward
  - Leverage data to help develop 'miles-to-empty' model
  - Display 'miles-to-empty' once ready, then evaluate refueling behavior



# **Progress: Data Acquisition**

- Android application successfully installed on Ozinga truck in Chicago
- Currently analyzing data to understand
  - Duty cycle
  - Factors impacting fuel consumption







## **Progress: Parametric Modeling**

- Challenges to accuracy
  - Temperature
  - Composition
- Model developed that achieves target accuracy
  - Extreme compositions used
  - Error remains below 5%





## **Progress: Validation of Model with Lab and Operating Data**

- De-fueling tests under controlled scenarios show error of <2%</li>
- Initial truck data used to compare 'usable fuel' model with simple pressure gauge
  - Initial cooling results in steep pressure decline
  - Pressure increases when truck stopped



## **Collaboration and Coordination**

| Organization                 | Project Roles                                                                                                              | Importance to Project                                                                          |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| GTI                          | Project lead, management and<br>coordination; de-fueling testing, design<br>and installation of data acquisition<br>system | Integral to the organization and direction of the project                                      |
| Argonne National Lab         | Application and interface design lead,<br>support data acquisition through<br>mobile device                                | Key experience in programming data systems for fleet                                           |
| Ozinga Bothers<br>Concrete   | Providing fleet of heavy duty vehicles<br>for data acquisition installation and<br>monitoring                              | Large fleet of CNG vehicles.<br>Experience with CNG stations and<br>advocate for CNG industry. |
| Chicago Area Clean<br>Cities | Conduct industry surveys to inform project team and commercialization plan                                                 | Connection with industry; potential commercialization partner; source of real-world experience |

## **Overall Market Impact**

Achievements in the first year:

- Validated remaining usable fuel model is within 5% accurate with extreme compositions
- Designed, assembled, and installed data acquisition unit
- Developed android application for data acquisition and driver interface

Remaining challenges and next steps (next 12 months)

- Installing remaining data acquisition systems is key to project progress
- Validate usable fuel model with fleet data
- Deploy Driver Information System onboard fleet vehicles



## Summary

Objective: Develop and demonstrate Driver Information System to improve trust in vehicle fuel system status and improve fuel system capacity utilization

Approach: Developing usable fuel model to accurately determine fuel status and predict fuel that will be stranded in the system

Developing application to determine miles-to-empty from the usable fuel, traffic, speed, and weather on the expected route

Progress: Successfully deployed data acquisition system on a heavy duty vehicle

Developed android application for data acquisition and future Driver Information System user interface

Developed usable fuel model and validated with laboratory testing

- Nest Steps:Deploy data acquisition systems in at least 10 vehiclesValidate models with fleet data
  - **Deploy Driver Information System in 10 vehicles**



# **Questions?**

