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Abstract 
This article examines how the color sample set, color space, and other calculation elements influence the 
quantification of gamut area. The IES TM-30-18 Gamut Index (Rg) serves as a baseline, with comparisons 
made to several other measures documented in scientific literature and 12 new measures formulated for this 
analysis using various components of existing measures. The results demonstrate that changes in the color 
sample set, color space, and calculation procedure can all lead to substantial differences in light source 
performance characterizations.  

It is impossible to determine the relative “accuracy” of any given measure outright, because gamut area is not 
directly correlated with any subjective quality of an illuminated environment. However, the utility of different 
approaches was considered based on the merits of individual components of the gamut area calculation and 
based on the ability of a measure to provide useful information within a complete system for evaluating color 
rendition. For gamut area measures, it is important to have a reasonably uniform distribution of color samples 
(or averaged coordinates) across hue angle—avoiding exclusive use of high-chroma samples—with sufficient 
quantity to ensure robustness but enough difference to avoid incidents of the hue-angle order of the samples 
varying between the test and reference conditions. It is also important to use a modern, uniform color space 
that is suitable for the quantification of color appearance and color difference. 

  



 

 

1 Introduction 
Over the past half century, gamut area has been the main alternative or counterpart to average color fidelity, 
which historically has been the primary method for quantifying color rendition. Average color fidelity 
measures are based on the average magnitude of difference in color appearance for a set of spectral reflectance 
functions (“color samples”) as rendered by a test light source and reference illuminant. In contrast, gamut area 
measures are based on the polygonal area enclosed by a set of coordinates in a chromaticity diagram or color 
space (and also typically compared to a reference illuminant).  

Both average color fidelity and gamut area are frequently believed to represent subjective experiences. 
Average color fidelity is often thought of as a characterization of how normal or natural a scene may appear. 
Gamut area measures have traditionally been intended to address color saturation or vividness, which 
subsequently has tied them to the concepts of color discrimination and color preference. It has been suggested 
that this dichotomy makes average color fidelity and gamut area important complements [Houser and others 
2013; Rea and Freyssinier-Nova 2008; Rea and Freyssinier 2010; 2013], and in fact the two types of measures 
cannot be simultaneously maximized. Today, these associations between objective characterizations of color 
differences and subjective evaluations of illuminated environments are being challenged as new methods for 
characterizing color rendition are developed and new experimental evidence emerges [Esposito and Houser 
2018; Royer and others 2017a; Royer and others 2017b; Royer and others 2016; Wei and others 2018; Zhang 
and others 2017].  

Despite many efforts to introduce measures of gamut area—which are reviewed in Section 2—there has been 
little published literature exploring the functional elements of gamut area calculations. That is, there has been 
no formal discussion of how color samples, color spaces, averaging methods, or calculation procedures affect 
the quantification, although there has been some comparisons of existing measures having varying focus and 
depth [Houser and others 2013; Khanh and others 2016c; Smet and others 2011; Windisch and others 2017]. 
Further, unlike average color fidelity, there has been little discussion of the inherent limitations of measures of 
gamut area. This article focuses on comparing past and present measures of gamut area, as well as other 
closely related measures, such as gamut volume and average chroma shift. It covers the benefits and 
limitations of gamut area measures, when used alone or in combination with a measure of average color 
fidelity. Discussion of the association between gamut area and subjective evaluations is also included. A 
similar analysis of color fidelity measures was recently published [Royer 2017]. 

The Gamut Index (Rg) of the American National Standards Institute (ANSI) and Illuminating Engineering 
Society (IES) TM-30 method [IES 2015; 2018] is the only measure of gamut area formalized by a lighting 
organization responsible for standards, and as such it serves as a baseline for this analysis. The recently revised 
2018 version of TM-30 is used, although there is no material difference for Rg in the 2015 and 2018 versions. 
The 2018 revision unifies the calculation framework of TM-30 with that of CIE 224 [CIE 2017]. IES Rg is 
compared to a variety of previously proposed measures of gamut area, as well as new formulations created 
specifically for this analysis that combine various elements of existing measures, such as the color samples, 
color space, or reference illuminant scheme. By mixing and matching, it is possible to investigate the key 
elements of gamut area measures and how they influence the resulting characterization. Undoubtedly, there are 
innumerable ways to construct a gamut area measure, and not all possible ways can be covered in one article. 

2 Gamut Area Measures 
At least 12 measures related to gamut area have been proposed and documented in scientific literature over the 
past 45 years, as documented in Table 1. The additional measures created specifically for this analysis are 
listed in Table 2. 



COMPARING MEASURES OF GAMUT AREA 

3 

2.1 Gamut Area Measures Based on the Color Samples of the CIE Test Color Method 
One key family of existing gamut area measures is the five that rely on the eight test color samples (TCS) used 
to calculate the Commission Internationale de l’Eclairage (CIE) General Color Rendering Index Ra 
(colloquially, CRI) [CIE 1995]. They differ from each other by employing different color spaces and reference 
illuminants.  

The first of the TCS-based measures, the Color Discrimination Index (CDI), was proposed by Thornton in the 
early 1970s [1972; 1973]. It uses the CIE U*V*W* color space and CIE Illuminant C (a daylight simulator) is 
the reference illuminant for all test light sources, regardless of correlated color temperature (CCT). (Note: 

Table 1. Previously-documented measures related to gamut area, gamut volume, or chroma shift. Citations provided in text. 

Year Measure and Abbreviation Color Samples 

Color Space/ 
Chromaticity  
Diagram Reference Illuminant 

2015, 2018 Gamut Index (Rg) 99/16 CES [IES TM-30-18] CAM02-UCS Relative Planckian/Mixed/CIE D Series 

2017 Gamut Volume Index (GVI) 14  CIE LAB None 

2016 Relative Gamut Area Index (RGAI) 8 TCS [CIE 13.3-1995] CAM02-UCS Relative Planckian/CIE D Series 

2016 Relative Gamut Area Index (Ga) 8 TCS [CIE 13.3-1995] CIE 1964 U*V*W* Relative Planckian/CIE D Series 

2016 ΔC* Varies CIE LAB Relative Planckian/CIE D Series 

2010 Gamut Area Scale (Qg) 15 VS CIE LAB Relative Planckian/CIE D Series 

2009 Color Saturation Index (CSI) 1269 Munsell None/MacAdam Relative Planckian/CIE D Series 

2008 Gamut Area Index (GAI) 8 TCS [CIE 13.3-1995] CIE 1976 UCS Fixed CIE Illuminant E 

1993, 2007 Feelings of Contrast Index (FCI) 4 CIE LAB or CIE CAM02 Fixed CIE D65 

1997 Cone Surface Area (CSA) 8 TCS [CIE 13.3-1995], w' CIE 1976 UCS None 

1984, 1993 Color Rendering Capacity (CRC) Theoretical All Colors CIE LUV None 

1972 Color Discrimination Index (CDI) 8 TCS [CIE 13.3-1995] CIE 1960 UCS Fixed CIE Illuminant C 

 

Table 2. Newly derived measures of gamut area or gamut volume. 

Type Abbreviation Color Samples 
Color Space/ 
Chromaticity Diagram Reference Illuminant 

Gamut Area Rg4 4 of FCI CAM02-UCS Relative Planckian/Mixed/CIE D Series 

Gamut Area Rg8 8 TCS [CIE 13.13-1995] CAM02-UCS Relative Planckian/Mixed/CIE D Series 

Gamut Area Rg14 14 of GVI CAM02-UCS Relative Planckian/Mixed/CIE D Series 

Gamut Area Rg15 15 of CQS CAM02-UCS Relative Planckian/Mixed/CIE D Series 

Gamut Area GLAB 8 TCS [CIE 13.13-1995] CIE LAB Relative Planckian/CIE D Series 

Gamut Area GAIrel 8 TCS [CIE 13.13-1995] CIE 1976 UCS Relative Planckian/CIE D Series 

Gamut Area Rg99A 99 CES [IES TM-30-18] CAM02-UCS Relative Planckian/Mixed/CIE D Series 

Gamut Area Rg99B 99 CES [IES TM-30-18] CAM02-UCS Relative Planckian/Mixed/CIE D Series 

Gamut Area Rg99C 99 CES [IES TM-30-18] CAM02-UCS Relative Planckian/Mixed/CIE D Series 

Gamut Area Rg4880 4880/16 TM-30 Reference Set CAM02-UCS Relative Planckian/Mixed/CIE D Series 

Gamut Volume RgV 99 CES [IES TM-30-18] CAM02-UCS Relative Planckian/Mixed/CIE D Series 

Gamut Volume Rg14V 14 of GVI CAM02-UCS Relative Planckian/Mixed/CIE D Series 

Chroma Change ΔC99A 99 CES [IES TM-30-18] CAM02-UCS Relative Planckian/Mixed/CIE D Series 

Chroma Change ΔC99B 99 CES [IES TM-30-18] CAM02-UCS Relative Planckian/Mixed/CIE D Series 

Chroma Change ΔC16 99/16 CES [IES TM-30-18] CAM02-UCS Relative Planckian/Mixed/CIE D Series 
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Color spaces and standard illuminants are specified in [CIE 2004].) CDI received some attention in the 
research community [Boyce 1977], but perhaps due to a relative lack of variety of CDI values for then-
available light sources, it did not become a mainstay of the broader lighting community.  

The concept was revisited in 2008, when Rea and Freyssinier-Nova [2008] proposed the Gamut Area Index 
(GAI). GAI is very similar to CDI, but it is calculated in the CIE 1976 u'v' chromaticity diagram and uses CIE 
Illuminant E (the equal energy illuminant) as the reference for all test sources. Importantly, Rea and 
Freyssinier-Nova envisioned GAI as a complement to CIE Ra, suggesting the pair was capable of 
distinguishing preferred light sources, whereas Thornton identified CDI as a distinct measure characterizing 
color discrimination. 

As expressed by Houser and colleagues [2013], CDI and GAI are differentiated by scale differences due to 
variation in the color space and reference illuminant, but they are perfectly correlated with one another. Given 
the use of a fixed reference illuminant and the specified color space, both measures have an inherent 
correlation with CCT, as shown in Figure 1. Low-CCT sources (e.g., 2700 K, 3000 K) have substantially 
lower CDI/GAI scores than sources with a CCT closer to the respective reference illuminant.  

In 2016, Teunissen and colleagues proposed the Relative Gamut Area Index (Ga), which is the same as CDI 
other than using the relative-reference scheme of CIE Ra—a combination of Planckian radiation or a D Series 
illuminant depending on the CCT of the test source. This eliminates the CCT-dependence, while retaining the 
use of CIE U*V*W* and 8 TCS.  

Another measure called Relative Gamut Area Index, but denoted RGAI, was also considered by Teunissen and 
colleagues [2016]. RGAI uses CAM02-UCS [Luo and others 2006] instead of CIE U*V*W*, but is otherwise 
equivalent to Ga. This concept has been modified for this article as the measure Rg8, which uses the IES TM-
30-18 and CIE 224 reference scheme [CIE 2017; IES 2018; Royer 2016] instead of the CIE Ra reference 
scheme. This allows for a comparison to IES Rg that isolates the effect of the color samples.  

One other measure based on the eight TCS took a different approach. Cone Surface Area (CSA) [Fotios and 
Levermore 1998], is determined by calculating the area of a cone, with the coordinates of the eight TCS in the 
1976 u'v' chromaticity diagram comprising the base and the chromaticity of the light source (w') forming the 

Figure 1. Comparison of the gamut area of Planckian radiator or a CIE D Series illuminant at the specified CCT, relative to the area of CIE D50, 
for four different gamut area measures based on the 8 TCS and reference illuminant scheme of CIE 13.3-1995. 
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point. This makes CSA a three dimensional calculation, although it is not a volume. No reference illuminant is 
used. CSA has been discussed in past reviews [Guo and Houser 2004; Houser and others 2013], and is not 
considered further here. 

2.2 Other Gamut Area Measures  
While gamut area measures based on the eight TCS used to calculate CIE Ra have proliferated, other gamut 
area measures have also been introduced. Perhaps the first was Color Rendering Capacity (CRC), which was 
introduced in 1984 [Xu 1984]. It is based on the theoretical volume of a color solid, originally in the CIE 1960 
uvY color space. In 1993, it was updated to use the CIE LUV color space and normalized so that CIE 
Illuminant E had a value of 1.0 [Xu 1993]. CRC does not rely on color samples, but instead of the range of 
possible tristimulus values. It is not included in later comparisons. 

The Feelings of Contrast Index (FCI) was first proposed in 1994 as a measure of visual clarity [Hashimoto and 
Nayatani 1994], and later updated and promoted as a measure of color preference [Hashimoto and others 2007; 
Windisch and others 2017]. In its latest form, FCI is determined from the areas of two triangles formed by 
coordinates of four test color samples in CIE CAM02 or CIE LAB, the ratio of the two areas is also scaled 
with an exponent, 1.5. Hashimoto and others [2007] found the two color spaces to produce equivalent results 
for a set of 20 SPDs. With the triangle-area methodology, FCI attempts to include all three dimensions of color 
space, rather than the projected area of a set of color samples onto a plane. The reference illuminant for FCI is 
fixed as CIE D65. An alternative measure created for this analysis, Rg4, uses the four color samples of FCI but 
follows the methodology of IES TM-30-18 Rg (excluding hue-angle binning). 

In 2010, Ohno and Davis published an article documenting the Color Quality Scale (CQS), which includes a 
gamut area measure (Qg). All of the measures included in CQS rely on a set of 15 color samples, denoted VS, 
which are of higher chroma than the samples used to calculate CIE Ra, though they are still from the Munsell 
system and thus have a similar aggregate spectral sensitivity profile. The samples are approximately evenly 
spaced by hue angle in CIE LAB, which is used for CQS calculations. Like the rest of CQS, Qg relies on a 
relative reference scheme that is the same as that used by CIE Ra. As with FCI, the color samples of CQS can 
be used to calculate a gamut area measure that otherwise follows the procedures of IES TM-30-18 Rg 
(excluding hue-angle binning); this measure is reported here as Rg15. 

IES TM-30-15 was developed beginning in 2014, and revised in 2017 as IES TM-30-18. Given the prevalence 
of gamut area measures in scientific literature, including a measure of gamut area in IES TM-30 was a priority 
during its initial development. The rationale behind the procedure for calculating the IES Gamut Index, Rg, is 
covered by David and colleagues [2015] and Royer and colleagues [2017]. The most unique feature of Rg is 
that it relies on 16 average coordinates pairs instead of specific color samples. The coordinates are found via a 
process that begins by dividing the a'-b' plane of CAM02-UCS into hue-angle bins, each of which subtends 
22.5° of the plane. Each hue-angle bin contains a portion of the 99 total color evaluation samples (CES) used 
in the method, varying somewhat based on the reference illuminant. The 16 coordinate pairs are the averages 
of the a' and b' coordinates for the color samples determined to be in each hue-angle bin. Other alternatives, 
such as calculating the area or volume enclosed by all 99 CES were considered at the time, and are compared 
to the specified method in this article. 

2.3 Gamut Area Alternatives 
The concept of gamut area has seen considerable attention, but at least two other related concepts have been 
proposed: average change in chroma and gamut volume. These both rely on modern object color spaces, which 
were not formally available when gamut area was first conceptualized. Average change in chroma (ΔC) can be 
calculated for any set of color samples (or any single color sample) as long as a color space intended to 
characterize object colors is used—that is, a color space that has a chroma correlate, such as CIE LAB or CIE 
CAM02. Only a couple of measures based on average change in chroma have been explicitly documented. 
Khanh and colleagues [2016; 2016a; 2016b] explored ΔC measures based on various color sample sets, 
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including samples specific to what was being illuminated. They found these measures useful for describing 
perceptual ratings. Royer and Wei [2017] described how average change in chroma could be calculated within 
the IES TM-30-15 system (ΔCCES), and compared the measure to IES TM-30-15 Rg using a set of 
approximately 400 SPDs. While the measures were reasonably well correlated, there were substantial 
differences in some cases, especially for sources that induce a relatively greater amount of hue shift. 

One unique approach to characterizing chroma shifts is the Color Saturation Index (CSI) [Zukauskas and 
others 2009]. Within a larger framework, CSI defines the percentages of color samples for which chroma 
exceeds a three-step MacAdam ellipse, without regard to the actual difference in chroma. Thus, it is not 
expected to be closely correlated with gamut area over a large set of SPDs, and is not considered further in this 
analysis. 

Another concept directly related to gamut area is gamut volume. Whereas gamut area focuses on changes in 
the hue-chroma plane, gamut volume includes changes in the lightness dimension of color space. One measure 
of gamut volume has been documented, the Gamut Volume Index (GVI) [Liu and others 2017]. It is uses CIE 
LAB color space and 14 color samples selected so that the measure was correlated with preference data from 
previous subjective evaluations. A gamut volume measure based on the 99 CES of IES TM-30-18 was 
calculated for this article, denoted RgV. It utilizes CAM02-UCS and the same quick-hull algorithm used to 
determine GVI. Unlike GVI, it is based on the relative reference scheme of IES TM-30-18/CIE 224. Rg14V is 
a more direct alternative to GVI that uses the same color sample set but utilizes CAM02-UCS and a relative 
reference scheme. 

3 Results: Comparing Measures 
To get a complete picture of the differences between color rendition measures, a large set of SPDs with varied 
attributes—including average color fidelity, gamut area, and gamut shape—is necessary. Including a wide 
variety of SPDs helps to identify systematic patterns, which are not always present in smaller sets of SPDs 
focused on commercially-available products. This is further described and demonstrated by Royer [2017]. A 
set of 15,806 SPDs featuring 319 commercially-available, experimental, modelled, and theoretical light 
sources from the TM-30-18 Calculator Tool Example Library, 80 additional experimental LED sources [Royer 
and others 2016, Royer and others 2017], 825 real and theoretical SPDs collected by CIE R1-62, and 14,582 
randomly-generated theoretical SPDs is used throughout this analysis. The set used in this article includes 
10,000 new theoretical SPDs, comprised of five randomly-generated Gaussian components with a full-width-
half-maximum (FWHM) between 2 and 120 nm, such that the resulting combination had a nominal CCT 
between 2700 K and 6500 K and Duv between -0.018 and 0.006. All SPDs and calculated values are available 
as in a supplemental file that is linked to this article. 

For the figures in this article, these SPDs are classified as commercial (n = 212), real (n = 806), or theoretical 
(n = 14,788). For clarity, many of the figures in this article show the gamut area range of 50 to 150. This 
includes approximately 14,500 of the SPDs, depending on the specific measures being compared. 

3.1 Varying Color Sample Set 
One of the attributes that gets a lot of attention in color rendition measures is the set of color samples used for 
evaluation. Typically, color sample sets are intended to mimic the color (spectral reflectance) of objects in 
architectural environments, either directly or in the values of the resulting measures. However, there is no 
explicit way to rate the “accuracy” of a color sample set—the best color sample set is the one most similar to a 
given set of real objects. For general use in rating the performance of light sources, a sufficiently large set with 
neutral spectral sensitivity, such as that used in IES TM-30 and CIE 224, is a logical choice [Royer 2017; Smet 
and others 2015]. For reference, Figure 2 shows the CAM02-UCS (a', b') coordinates for five different color 
sample sets illuminated by CIE D50: The 99 CES and 16 hue-angle-bin averages of IES TM-30, the 4 samples 
used to calculate FCI, the 8 samples used to calculate CIE Ra, the 14 samples used to calculate GVI, and the 15 
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samples used to calculate CQS Qg. Note that some of these color sample sets are not being used here as 
intended; in particular, the color sample set for GVI was not chosen with gamut area calculations in mind.  

Figure 3 compares IES Rg to four alternatives: Rg4, Rg8, Rg14 and Rg15. Aside from the different color 
samples, all of the calculation procedures are the same for these measures, except that—by necessity—the 
alternatives do not use hue-angle binning to average coordinates. The differences between the measures are 
readily apparent. In all cases, the middle 95% of differences (the 2.5 to 97.5 percentile) exceed 10 points, with 
Rg4 being substantially more different from IES Rg than the others. Linear regression analysis may offer a 
slightly different impression, although it ignores some of the systematic differences that contribute to scale 
differences. In all cases the coefficient of determination (r2) is greater than 0.85. The SPD-specific random 
variation (the residuals for a linear trend line fit to each comparison) shown in the charts in Figure 3 tends to 
decrease as the quantity of samples in the alternative set increases. For Rg4 compared to IES TM-30-18 Rg, the 
mean squared error (MSE) for all 15,806 SPDs is 83.0 points. For Rg8, Rg14, and Rg15, the MSEs are 
approximately 11.0, 14.5, and 4.4 points, respectively. If only real (commercial and experimental) SPDs are 
considered—which excludes extreme values—the corresponding MSEs are 18.3, 10.1, 4.9 and 0.9 points, 
respectively. It is logical that measures derived from fewer samples have higher MSEs than measures derived 
from larger color sample sets, as a shift for a given color sample has more influence if it is part of a smaller 
color sample set. Further, small color sample sets cannot accurately detect the patterns of color shift in the 
three dimensions of color space. This has been explored by others [David 2013; David and others 2018; Smet 
and others 2015].  

Figure 2. Comparison of (a', b') CAM02-UCS 
coordinates for five color sample sets. The 
illuminant is CIE D50. 
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Another consideration is that the color sample sets with very high chroma tend to lead to lower values than IES 
Rg when gamut area values are very high, resulting in systematic variation. This is particularly noticeable for 
Rg14 versus IES Rg, and to a lesser extent for Rg15 versus IES Rg. Chroma cannot be increased indefinitely, so 
high-chroma color sample sets may result in a compression in gamut area values as the limits of the color 
volume are approached. This phenomenon is not likely representative of typical objects in architectural 
interiors. The 99 CES used in IES TM-30 include samples that reach similar chroma levels to the 15 VS used 
for Rg15. However, because they are averaged with color samples having lower chroma values, compression 
does not appear to be an issue; if it were, “decompression” would be seen in the comparison of Rg8 and IES Rg. 

The systematic variation is also related to gamut shape [Royer and others 2017a], which may occur because of 
different sample-set spectral-sensitivity profiles [David and others 2015; Royer 2017; Royer and Wei 2017] 
and/or due to the chroma level of the color samples. This is illustrated in Figure 4, which compares the 
difference between IES Rg and the four alternative gamut area measures to Local Chroma Shift in hue-angle 

Figure 3. Comparison of four alternative gamut area measures using different color sample sets to IES TM-30-18 Rg. See Table 2 for a 
description of each alternative measure. 
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bin 1 (IES Rcs,h1). IES Rcs,h1 was chosen for this comparison to align with the subsequent analysis on color 
spaces, where non-uniformity in the red region is a documented issue. Other hue-angle bins can be examined 
in the supplemental data associated with this article. As shown, each color sample set has a unique relationship 
to the baseline: 

• For Rg4 compared to IES Rg, any relationship with IES Rcs,h1 is obscured by the large amount of 
random, SPD-specific error.  

• The difference between IES Rg and Rg8 is slightly more likely to be negative as IES Rcs,h1 increases—
that is, the 8 TCS tend to lead to slightly higher gamut area values than the 99 CES as IES Rcs,h1 
increases. This may occur because the chroma of TCS1 (red) is relatively lower than the other TCS 
and the coordinates used to calculate IES Rg (Figure 2).  

Figure 4. The difference between IES TM-30-18 Rg and alternative gamut area measures versus IES TM-30-18 Rcs,h1 (red chroma shift). 
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• In contrast, Rg14 values tend to be lower than IES Rg values as IES Rcs,h1 increases, which may be 
linked to the uneven distribution of the 14 samples in hue space—there is only one sample in the 
positive a', negative b' quadrant (Figure 2)—and/or the high chroma levels of the color samples.  

• Rg15 follows a similar trend as Rg14, but the slope of the linear relationship is much smaller.  

An important factor in these relationships is that large increases in chroma (and thus gamut area) typically 
occur when red (and green) chroma is increased [Royer and others 2017a]. Therefore, the difference between 
IES Rg and Rg14 or Rg15 in relationship to IES Rcs,h1 may be directly related to the compression issue. No 
trends are present when examining IES Rcs,h5 (nominally yellow chroma shift) instead of IES Rcs,h1. 

3.2 Varying Color Space 
The influence of color spaces (or color appearance models) on gamut area values can be examined by 
comparing Ga (CIE 1964 U*V*W*), a relative-reference version of GAI (GAIrel, CIE 1976 u'v'), newly-defined 
GLAB (CIE LAB), and RGAI (CAM02-UCS), as shown in Figure 5. It is not possible to make this comparison 

Figure 5. Comparison of gamut area measures with varied color space. CAM02-UCS is the baseline for each comparison. See Table 2 for a 
description of each alternative measure. 

 



COMPARING MEASURES OF GAMUT AREA 

11 

using the 99 CES with IES Rg as the baseline, because CIE 1964 U*V*W* and CIE 1976 u'v' were developed 
for the purpose of color difference calculations and do not include a hue correlate, which is required for the 
IES TM-30 hue-angle binning procedure. CIE LAB was also originally developed for the purpose of uniform 
color difference calculations, although it is frequently extended and used as a color appearance model 
[Fairchild 2013]. CAM02-UCS is an extension of the CIE CAM02 color appearance model that also allows for 
uniform color difference calculations. Given the distinction between color appearance models and uniform 
color spaces, it should be considered suspect to use uniform color spaces for calculating gamut area (or other 
values tied to hue and chroma perception), although it has been done in the past and continues to be proposed. 

All of the measures shown in Figure 5 use the same relative reference scheme and color samples, which are 
those of CIE Ra. Importantly, GAIrel does not use a chromatic adaptation transformation (CAT), Ga uses a 
simple von Kries CAT as employed in CIE Ra, GLAB uses the “wrong” von Kries CAT native to CIE LAB, and 
CAM02-UCS uses CIE CAT02; thus, the comparison is not only of the color space/color appearance model, 
but includes influences from the typical CATs used with each option. The use of different CATs with different 
color spaces/color appearance models was not investigated. 

As with varying the color samples, the differences in gamut area quantifications with different color spaces are 
quite substantial when evaluating a large number of SPDs, with the range of the middle 95% of differences 
exceeding 40 points in all cases. This contrasts the conclusion of Teunissen and others [2016], who found that 
the difference between CIE U*V*W* and CAM02-UCS was not meaningful (using only a small number of 
SPDs). As with all comparisons in this document, the differences tend to be smaller—but often still 
meaningful—if only currently commercially-available light sources are considered, principally because 
currently available light sources offer little variation in gamut shape [Royer and others 2017a]. For this reason, 
it is insufficient to rely only on commercially-available light sources when evaluating the performance of color 
rendition measures. 

The differences in gamut area characterizations due to color space are systematic, with a strong dependence on 
gamut shape. As shown in Figure 6, the difference between RGAI (CAM02-UCS) and the other three 
measures is strongly correlated with IES Rcs,h1. The different chromatic adaptation transformations may 
contribute to the random variation, but are not likely contributors to this systematic variation. The systematic 
difference caused by the color space should be considered flaws in Ga, GAIrel, and GLAB—which rely on 
uniform color spaces, not a color appearance model—because CAM02-UCS has been shown to be a more 
accurate representation of human color perception than older color spaces [Jost and others 2018; Luo and 
others 2006; Xu and others 2016]—this applies to both color appearance and color difference, including in the 
specific context of color rendition. Figure 5 also illustrates some non-linearity for Ga and GAIrel versus RGAI, 
which reflects the non-uniformity in those color spaces coupled with the typical gamut shape for very large 
increases in gamut area (red-green major axis ellipse). In short, using outdated color spaces can contribute to 
substantial errors in calculation of a visually-accurate measure of gamut area. This finding also applies to 
average color fidelity and all other measures of color rendition. 

3.3 Alternative Calculation Methodologies 
3.3.1 TM-30 Gamut Area without Hue-Angle Binning 
Because IES TM-30-18 Rg is used here as the baseline for comparison, it is important to consider how the 
unique hue-angle bin averaging method influences its performance. To do this, IES TM-30-18 Rg can be 
compared to measures that eliminate hue-angle bin averaging and instead calculate the area enclosed by the (a', 
b') coordinates of all 99 CES. Rather than a (relatively) circular shape that is typical of smaller color sample 
sets used to calculate relative gamut area measures, the polygon formed by the 99 CES has a spikey shape. It 
should be noted that the 99 CES were chosen from the color volume, not from the hue-chroma (a', b') plane. 
Because individual color samples shift somewhat independently, the hue-angle order of the samples can vary 
between SPDs. This presents at least three options for calculating a relative gamut area measure based directly 
on all 99 CES.  



COMPARING MEASURES OF GAMUT AREA 

12 

For this article, the first approach was to maintain the numerical order of the samples defined in IES TM-30-
15, which was determined based on the hue angle of each sample under the 5000 K reference illuminant (a mix 
of 5000 K Planckian radiation and CIE D50); this presents the possibility of a discontinuous area, where 
individual segments of the polygon may intersect. This approach is identified as Rg99A. The second approach 
was to re-order the samples based on their hue angle under the specified, CCT-dependent reference illuminant, 
using the same order for the test source; with this approach, the order of the samples can vary with the test 
light source. This approach is identified as Rg99B. The third option evaluated was to re-order the samples, 
based on hue angle, independently for the test light source and reference illuminant; in this case, the order of 
the samples, and thus the polygons, may not be the same for the test and reference conditions. This approach is 
identified as Rg99C. 

Figure 7 shows Rg99A, Rg99B, and Rg99C versus IES TM-30-18 Rg. In all cases, there is substantial variation 
between the measures, both for commercially-available light sources and for theoretical SPDs. Given the 
stronger correlation of IES TM-30-18 Rg than any of the three variants of Rg99 with the other color sample sets 

Figure 6. The difference between gamut area measures using varying color spaces versus IES Rcs,h1 (red chroma shift). 
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described in Section 3.1 (not shown), it appears that the aforementioned issues with all three alternatives for 
using all 99 CES are problematic in practice. This is also evidenced by similarly large differences when 
comparing Rg99A, Rg99B, and Rg99C to one another, and to measures of average change in chroma (also not 
shown). In short, large sets of color samples forming irregular polygons are not equivalent to regularly-spaced 
color samples for calculating gamut area, and there is no evidence to suggest irregular polygon approach is 
appropriate.  

Another option for avoiding hue-angle binning in calculating a gamut area with the 99 CES is to use an 
algorithm to find a convex area, but this may suffer from the compression issue discussed previously as well as 
issue of different samples forming the perimeter. It was not explored further for this analysis. 

3.3.2 TM-30 Gamut Area with Larger (Reference) Color Sample Set 
The 99 CES used in IES TM-30 were chosen to closely mimic the quantification results from a larger set of 
4,880 samples chosen to evenly sample the color volume with (approximately) neutral spectral sensitivity in 
aggregate, which is referred to as the reference set [David and others 2015]. It is possible to calculate any of 

Figure 7. Three alternatives for computing gamut area based directly on all 99 CES versus IES TM-30-18 Rg.  
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the measures included in IES TM-30 using the 4,880-sample reference set instead of the 99 CES. Figure 8 
compares Rg4880, which uses the full reference set, to IES TM-30-18 Rg, which uses the 99 CES, showing that 
the difference is small and consistent throughout the range of IES TM-30-18 Rg values. For the 15,806 SPDs 
considered in this analysis, 95% of the differences (IES TM-30-18 Rg – Rg4880) are between -1.4 and 2.2 
points. Thus, IES TM-30-18 Rg is a reasonably strong correlate of the reference gamut area. This also 
demonstrates that, when carefully selected, somewhat smaller color sample sets can provide a reasonable 
approximation for much larger color sample sets. 

3.3.3 Gamut Area Versus Gamut Volume 
The emergence of larger sets of color samples filling the color volume instead of just the hue-chroma plane has 
fomented the idea of calculating gamut volume instead of gamut area. Figure 9a compares RgV (a gamut 
volume metric based on the 99 CES) and IES TM-30-18 Rg, showing fairly strong correlation between the two 
with a typical range in RgV of approximately ±5 points at any given value of IES TM-30-18 Rg. At least some 
of the difference may be attributed to the fact that the convex hulls [Barber and others 1996] of the CES under 
the test and reference illuminants may include a different number of facets—a similar situation to what is 
encountered when trying to calculate the gamut area directly from all 99 CES.  

Not all corresponding volume and gamut measures will produce similar results. For example, Rg14V (a gamut 
volume measure calculated from the 14 color samples used to calculate GVI) and Rg14 do not have a linear 
relationship (Figure 9b), which is a function of the color samples used in the calculation, including their 
distribution in the color volume. The problem of facets is exacerbated with only 14 samples; SPDs from the 
examined set with a volume including 22 facets for the reference condition had as few as 10 and as many as 24 
facets under the test condition. This may be due to the fact that the 14 samples are arranged in a ring, which 
does not relate to the theoretical spherical volume of color space. RgV and Rg14 are more closely related, 
despite the use of different color sample sets, because the greater number of samples used for RgV reduces the 
level of facet mismatch.  

Of course, the 14 color samples of GVI were not selected for use in a relative measure. However, when they 
are used in the reference-free GVI calculation, they induce a CCT-dependence that is remarkably similar to the 

Figure 8. Gamut area calculated using the 4,880 sample reference set in lieu of the 99 CES versus the standard IES TM-30-18 Rg calculation. 
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CCT-dependence induced by the non-uniformity of the CIE U*V*W* color space (Figure 10a). Note that GVI 
values were calculated with a corrected formula that includes division by 10,000 [Liu 2017]. The CCT-
dependence is not supported by experimental evidence when chromatic adaptation and color rendition 
characteristics are carefully controlled [Royer and others 2017b; Zhang and others 2017]. As a consequence of 
its CCT-dependence and other factors, GVI shows a relatively weak relationship with other measures of gamut 
volume or gamut area, such as IES TM-30-18 Rg (Figure 10b) or RgV (Figure 10c). Although GVI was 
proposed as a measure of color preference and fit to existing color preference data, it does not reward increases 
in red chroma (Figure 10d) and cannot entirely account for gamut shape, which calls into question its utility, 
as both are important factors driving evaluations of color preference [Esposito 2016; Esposito and Houser 
2018; Ohno and others 2015; Royer and others 2017a; Royer and others 2017b; Royer and others 2016; Zhang 
and others 2017]. 

3.3.4 Gamut Area Versus Chroma Shift 
Gamut area measures are often thought of as a measure of the average change in objects’ saturation or chroma 
induced by a test light source relative to the reference illuminant. Modern object color spaces have direct 
correlates for chroma and saturation, but these post-date the initial conceptualization of gamut area. 
Nonetheless, it is now possible to calculate change in chroma directly. Figure 11a documents the difference 
between ΔC99A and IES TM-30-18 Rg for the large SPD set, where ΔC99A is the average of the absolute chroma 
difference between test and reference for all 99 CES, with each individual chroma difference scaled by the CIE 
224/IES TM-30 scaling factor (6.73) and added to 100. Figure 11b documents the difference between ΔC99B 
and IES TM-30-18 Rg for the large SPD set, where ΔC99B is the average of the relative chroma difference 
between test and reference for each of the 99 CES. Figure 11c documents the difference between ΔC16 and 
IES TM-30-18 Rg for the large SPD set, where ΔC16 is the average Local Chroma Shift for all 16 hue-angle 
bins. 

A clear difference is visible, regardless of the specific ΔC formulation, and it occurs because hue shifts 
influence gamut area but not average chroma shift. Thus, it should be kept in mind that gamut area is not 
entirely a measure of saturation or chroma levels, especially as overall color shifts compared to the reference 
illuminant become large.  

Figure 9. A: Gamut volume versus gamut area using the 99 CES of IES TM-30-18. B: Gamut volume versus gamut area using the 14 color 
samples of the recently proposed Gamut Volume Index (GVI). 
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Figure 10. A: The Gamut Volume Index (GVI) is dependent on CCT. B: GVI is not well correlated with IES TM-30-18 Rg. C: GVI does not favor 
increases in red chroma compared to IES TM-30-18 Rg. D: The difference between IES Rg and GVI is no related to red chroma, casting doubt on 
the utility of GVI as a measure of color preference. 
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4 Discussion 
4.1 Combined Effects 
This analysis has demonstrated that changing the color sample set or color space can have a substantial effect 
on how the gamut area of a light source is characterized. This occurs absent of other differences in calculation 
methods—such as volume versus area—that may also lead to different characterizations. The combined effects 
of these differences are also important. For example, Figure 12a demonstrates the relationship between IES 
TM-30-18 Rg and Ga, which use different color samples, different color spaces, and a slightly different 
reference illuminant scheme. Ga values have a range exceeding 30 points at any given value of IES TM-30-18 
Rg within the range of typical architectural light sources, and the range of the middle 95% of differences (IES 
TM-30-18 Rg – Ga) for all SPDs in the set examined was -31.4 to 11.9 points. Even commercially-available 

Figure 11.  Three measures of average change in chroma based on the IES TM-30 system compared to IES TM-30-18 Rg. 
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sources can have differences ranging from -19.1 points (a particular RGB LED) to 14.3 points (plasma). Thus, 
IES TM-30-18 Rg and Ga provide substantially different characterizations.  

As with their counterpart measures for average color fidelity (IES Rf and CIE Ra), the primary contribution to 
this difference comes from the fact that Ga relies on a non-uniform color space, although the color sample set 
also plays a role. Unlike how CIE Ra unduly penalizes increases in red chroma, Ga values tend to be greater 
than IES TM-30-18 Rg values for such sources (Figure 12b). When each is used alone, this tends to make Ga 
more strongly correlated with subjective evaluations of color preference, saturation (vividness), and 
normalness (naturalness), although neither is the best fit to subjective evaluation data when an appropriate 
variety of light sources is considered. Additionally, Ga is still an average value, which means that two sources 
with equal Ga values can be perceived very differently, and because it essentially functions as a weighted 
measure of gamut area—where all increases in chroma are not treated equally—it is less useful in applications 
where red chroma enhancement is not important. Although some have advocated for gamut measures based on 
the eight TCS of CIE Ra because of their apparent ease of implementation, they carry with them significant 

Figure 12.  A: Comparison of Ga and IES TM-30-18 Rg. B: The difference between IES TM-30-18 Rg and Ga versus IES Rcs,h1. 
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limitations that unnecessarily complicate product development and specification, as further discussed in the 
next section. 

Appendix A documents the net relationship between four additional existing measures of gamut area (FCI, 
GAI, Qg, and RGAI) and IES TM-30-18 Rg, further illustrating the points made previously based on individual 
calculation elements. When an appropriately diverse set of SPDs is considered, CCT does not contribute to 
differences between relative-reference measures of gamut area (for example, Figure 12c), nor is gamut area 
correlated with CCT, as suggested by Khanh and colleagues [2016c]. However, CCT heavily influences gamut 
area quantifications with GAI (lower CCT determined to have lower gamut area) and somewhat influences 
gamut area quantifications with FCI (lower CCT determined to have higher gamut area). As mentioned earlier, 
CCT has been shown to have no influence on subjective evaluations of color rendition when chromatic 
adaptation is carefully controlled [Royer and others 2017b; Zhang and others 2017]. Likewise, Duv and gamut 
area are independent quantities, and do not contribute to differences between Ga and IES TM-30-18 Rg (Figure 
12d). 

4.2 Complementary Measures?  
In many cases, gamut area measures have been presented as complements to average color fidelity measures. 
For example, Ga was proposed as a complement to CIE Ra, Qg as a counterpart to Qf (and Qa) in the CQS 
system, and IES TM-30-18 Rg as a component of the broader IES TM-30 method. These three systems all 
share the tenet of being derived from a common calculation framework, with a unified set of color samples, 
model of human color perception, and reference illuminant scheme. Each system has unique characteristics, 
however, which arise from the underlying calculation elements. For example, the distortion in the CIE 
U*V*W* color space that influences both CIE Ra and Ga values means that the two provide less independent 
information than IES TM-30-18 Rf and Rg, as illustrated in Figure 13. This reduces the overall utility of the 
system—even if average measures alone are already insufficient for characterizing subjective evaluations of 
color quality. For example, specification criteria for such measures cannot be independent. 

4.3 Gamut Area Versus Perception: Is Gamut Area Useful? 
Gamut area measures originated under the premise that they were useful indicators of color preference or color 
discrimination. Experimental evidence on these suppositions is mixed, which may be a result of the inherent 
limitations and/or features of gamut area (or gamut volume) measures. Important considerations include: 

1. Global average measures—that is, measures that average all hues together—inherently discard 
important information. Because certain hues (for example, red) may influence subjective evaluations 
more than other hues, it is impossible for any gamut area measure to completely capture perceived 
color quality attributes [Royer and others 2016]. This remains true even if a gamut area measure is 
paired with an average color fidelity measure. However, experiments that present stimuli with limited 
variation in gamut shape—a frequent occurrence—may find gamut area to be a better predictor of 
subjective evaluations, which is similar to what happens with color fidelity [Royer 2017].  

2. Increases in gamut area require hue shifts. Because it does not appear to be possible to uniformly 
increase chroma for all hues, increasing gamut area requires increasing chroma for some hues more 
than others, which in turn means intermediate hues shift toward those where chroma is being 
enhanced. For example, meaningfully increasing red chroma typically results in oranges and purples 
shifting towards red. While increasing chroma may increase the difference between colors, thus aiding 
color discrimination, the accompanying hue shifts may counteract any benefit, even juxtaposing the 
hue order of color samples versus a reference condition [Esposito and Houser 2017; Royer and others 
2012]. 
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3. Though not exactly a limitation, it is important to remember that higher gamut area values are not 
necessarily better for color preference, color discrimination, or any other aspect of color quality [Wei 
and Houser 2017]. Increasing gamut area requires reductions in color fidelity, and at extreme levels 
increases in chroma can make scenes appear cartoonish. If developing models of subjective 
evaluations is an important experimental goal, it is important to include stimuli that capture this non-
linear effect, otherwise the model may simply reward any amount of increase in gamut area. 

Figure 13. Gamut area versus average color fidelity for SPDs in the large set having IES Rg ≥ 70 and IES Rcs,h1 ≥ 0%. For these 2,307 SPDs, IES Rg 
and IES Rf are independent, but the alternative pairs (Ga and Ra; Qg and Qf) are not. 
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4. No current methods for characterizing light source color rendition account for illuminance, instead 
always comparing the test source to a reference illuminant with the same Y tristimulus value. This 
stipulation is necessary for commerce, where light sources are characterized independent of their use. 
However, the Hunt effect [Fairchild 2013; Hunt 1952] identifies that colorfulness is dependent on 
luminance. Preliminary results suggest that preference for increases in chroma are tied to illuminance 
[Kawashima and others 2017; Wei and others 2018], which obscures the meaning of relative gamut 
area measures with regard to subjective evaluations of color preference or vividness. If the Y 
tristimulus value is allowed to vary—which can be done for measures based on a color appearance 
model, such as CAM02-UCS—relative gamut area values would be affected. 

These considerations reveal that gamut area (or volume), when used alone, is not a particularly useful or 
informative quantity. It is a quantification that is not predictive of subjective evaluations, such as saturation or 
vividness, or task performance. This makes trying validate gamut area measures in experimental settings a 
dubious strategy, because correlation will likely depend on other factors that may or may not be controlled. In 
contrast, red chroma shift (IES Rcs,h1) alone has been shown to be extremely well correlated with ratings of 
saturation or vividness in polychromatic environments [Esposito 2016; Royer and others 2017b; Royer and 
others 2016], likely due to the psychological importance of red [Elliot and Maier 2014]. Nonetheless, several 
studies have identified IES TM-30-18 Rg as a component of multi-measure models that show strong correlation 
with subjective evaluations of illuminated environments [Esposito 2016; Esposito and Houser 2018; Royer and 
others 2017b; Royer and others 2016; Zhang and others 2017]. This indicates that a coordinated system of 
measures—including average color fidelity, gamut area, and measures of gamut shape—is necessary to convey 
color rendition. 

5 Conclusions 
Calculations of gamut area are influenced by the color sample set, model of color perception, and other 
calculation elements. The magnitude of the differences can be substantial. Color sample sets that utilize too 
few samples or samples that are not approximately evenly spaced in hue angle appear to produce results that 
diverge from other sets in a way that is unrelated to other aspects of color rendition, such as gamut shape. 
Likewise color sample sets that include only high-chroma color samples may result in compression of gamut 
area values for sources that substantially increase gamut area. Gamut area measures that use too many samples 
can present methodological challenges (related to mismatched test and reference polygons) that have no logical 
resolution. A reasonable compromise is to use a moderate number of samples (approximately 16) with 
moderate chroma, either directly or derived using a grouping method—both of these solutions provide similar 
results. In contrast, differences in the color space lead to systematic differences based on gamut shape. Using a 
modern color appearance model vetted with color difference data (e.g., CAM02-UCS) is advisable.  

Gamut area measures are related to the average change in chroma, but are also influenced by hue shifts. Thus, 
gamut area measures and average chroma shift measures are not well correlated. In some cases, gamut area is 
more closely related to gamut volume, but this relationship is dependent on the color sample set. No form of a 
gamut area measure is capable of characterizing object color appearance for different hues—a similar 
limitation of gamut volume or average chroma shift measures. As a result, gamut area alone has not been 
linked to any perceptual attribute when a large quantity and diverse range of SPDs are considered. This makes 
the meaning of any of the differences between measures identified in this analysis difficult to determine. Still, 
some gamut area measures, such as IES Rg, are more useful than others when included in multi-measure 
models of subjective evaluations of color quality, because they can provide information that is more 
independent of other measures in the system.  

For lighting specifiers, manufacturers, and other end-users less concerned with the underlying complexities of 
gamut area calculations, there are two important takeaways. First, given the inherent limitations of hue-
averaged measures, gamut area should be considered, at best, a tertiary measure of color rendition. Gamut 
shape and color fidelity will have more bearing on light source quality in most situations, and simply 
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increasing gamut area may have no benefit. Second, if gamut area is considered, it is important to use an up-to-
date measure. Simply pairing CRI (CIE Ra) with its complementary gamut area measure (Ga) is unlikely to 
address any of CRI’s fundamental problems. 
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Appendix A: Additional Direct Comparisons 
Figures A1 through A4 provide summary comparisons between GAI, FCI, Qg, or RGAI versus the baseline of 
IES Rg. In each figure, the upper left chart is a direct comparison, whereas the other three charts explore 
potential underlying causes of differences based on treatment of gamut shape (exemplified with red chroma 
shift, Rcs,h1), CCT, and Duv. The differences in underlying calculation frameworks can lead to very large 
differences (between GAI or FCI and IES Rg) or moderate differences (between Qg or RGAI and IES Rg), 
depending on the specific elements of each calculation. 

 
  

Figure A1. GAI versus IES Rg. The use of a small number of color samples, fixed reference illuminant, and non-uniform color spaces leads to 
differences in how GAI treats different CCTs and gamut shapes.  
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Figure A2. FCI versus IES Rg. Here, FCI is computed in CAM02-UCS. The principle difference is due to the color samples: because FCI only uses 4 
color samples, there is a large amount of variation that results from specific SPD features. The used of a fixed reference illuminant is less 
problematic in a uniform color appearance model, but there is still some correlation with CCT. 
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Figure A3.  CQS Qg versus IES Rg. The use of a relative reference scheme means that Qg treats CCT and Duv similarly to IES Rg. However, the 
combination of the color samples and color space (CIE LAB) lead to different treatments of gamut shape: Qg increases more than IES Rg as red 
chroma is increased. 
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Figure A4.  RGAI versus IES Rg. Of the measures evaluated, RGAI performs most similarly to IES Rg. These two measures vary only in their color 
samples. The differences are SPD-specific—rather than systematic—and are still notably large, especially for theoretical light sources. 


